1
|
Mehdiyeva A, Kaasinen V, Heervä E, Sipilä JOT. Impact of Parkinson's disease diagnosis validity on the association with cancer: A systematic review and meta-analysis. Parkinsonism Relat Disord 2025:107846. [PMID: 40300914 DOI: 10.1016/j.parkreldis.2025.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/17/2025] [Accepted: 04/20/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND Meta-analyses have reported lower cancer incidence in patients with Parkinson's disease (PD) compared to the general population but with considerable data heterogeneity. OBJECTIVE To explore how the validity of the PD diagnoses is related to the association with cancer. METHODS We conducted a systematic review and meta-analysis in which studies were stratified into groups based on the diagnostic validity of Parkinson's disease. Studies investigating mortality data and those examining cancer risk within certain genetic subgroups of PD were excluded. RESULTS Thirty-four articles encompassing 533,102 patients with PD from 11 countries met the inclusion criteria. Stratified analyses revealed no association between PD and overall cancer risk preceding or following the PD diagnosis in studies using validated PD data. Studies utilizing less robust PD identification methods, the majority of which were cohort studies, demonstrated a neutral or decreased cancer risk among PD patients. In the studies with the most rigorous PD validation organ-specific analyses showed an increased risk of cutaneous melanoma but no decreased risk in any type of cancer. The positive association between PD and melanoma was more pronounced in the studies with more robust PD diagnosis validity. CONCLUSIONS The reported associations between PD and cancer are substantially influenced by the quality of PD data. Future investigations should concentrate on organ-specific cancers, instead of pooling cancers together, and use only PD cohorts with validated diagnosis.
Collapse
Affiliation(s)
- Ayla Mehdiyeva
- Department of Neurology, Siun Sote North Karelia Central Hospital, Joensuu, Finland; Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter, Turku University Hospital, Turku, Finland
| | - Eetu Heervä
- Department of Oncology, University of Turku, Finland
| | - Jussi O T Sipilä
- Department of Neurology, Siun Sote North Karelia Central Hospital, Joensuu, Finland; Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Clinical Neurosciences, University of Turku, Turku, Finland
| |
Collapse
|
2
|
Deliz JR, Tanner CM, Gonzalez-Latapi P. Epidemiology of Parkinson's Disease: An Update. Curr Neurol Neurosci Rep 2024; 24:163-179. [PMID: 38642225 DOI: 10.1007/s11910-024-01339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF REVIEW In recent decades, epidemiological understanding of Parkinson disease (PD) has evolved significantly. Major discoveries in genetics and large epidemiological investigations have provided a better understanding of the genetic, behavioral, and environmental factors that play a role in the pathogenesis and progression of PD. In this review, we provide an epidemiological update of PD with a particular focus on advances in the last five years of published literature. RECENT FINDINGS We include an overview of PD pathophysiology, followed by a detailed discussion of the known distribution of disease and varied determinants of disease. We describe investigations of risk factors for PD, and provide a critical summary of current knowledge, knowledge gaps, and both clinical and research implications. We emphasize the need to characterize the epidemiology of the disease in diverse populations. Despite increasing understanding of PD epidemiology, recent paradigm shifts in the conceptualization of PD as a biological entity will also impact epidemiological research moving forward and guide further work in this field.
Collapse
Affiliation(s)
- Juan R Deliz
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Caroline M Tanner
- Weill Institute for Neurosciences, Department of Neurology, University of California -San Francisco, San Francisco, CA, USA
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
3
|
Mohamed W. Leveraging genetic diversity to understand monogenic Parkinson's disease's landscape in AfrAbia. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2023; 12:108-122. [PMID: 37736165 PMCID: PMC10509492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Parkinson's disease may be caused by a single highly deleterious and penetrant pathogenic variant in 5-10% of cases (monogenic). Research into these mutational disorders yields important pathophysiological insights. This article examines the phenotype, genotype, pathophysiology, and geographic and ethnic distribution of genetic forms of disease. Well established Parkinson's disease (PD) causal variants can follow an autosomal dominant (SNCA, LRRK2, and VPS35) and autosomal recessive pattern of inheritance (PRKN, PINK1, and DJ). Parkinson's disease is a worldwide condition, yet the AfrAbia population is understudied in this regard. No prevalence or incidence investigations have been conducted yet. Few studies on genetic risk factors for PD in AfrAbia communities have been reported which supported the notion that the prevalence and incidence rates of PD in AfrAbia are generally lower than those reported for European and North American populations. There have been only a handful of documented genetic studies of PD in AfrAbia and very limited cohort and case-control research studies on PD have been documented. In this article, we provide a summary of prior conducted research on monogenic PD in Africa and highlight data gaps and promising new research directions. We emphasize that monogenic Parkinson's disease is influenced by distinctions in ethnicity and geography, thereby reinforcing the need for global initiatives to aggregate large numbers of patients and identify novel candidate genes. The current article increases our knowledge of the genetics of Parkinson's disease (PD) and helps to further our knowledge on the genetic factors that contribute to PD, such as the lower penetrance and varying clinical expressivity of known genetic variants, particularly in AfrAbian PD patients.
Collapse
Affiliation(s)
- Wael Mohamed
- Basic Medical Science Department, Kulliyah of Medicine, International Islamic University Malaysia Kuantan, Pahang, Malaysia
| |
Collapse
|
4
|
Sugier P, Lucotte EA, Domenighetti C, Law MH, Iles MM, Brown K, Amos C, McKay JD, Hung RJ, Karimi M, Bacq‐Daian D, Boland‐Augé A, Olaso R, Deleuze J, Lesueur F, Ostroumova E, Kesminiene A, de Vathaire F, Guénel P, the EPITHYR consortium, Sreelatha AAK, Schulte C, Grover S, May P, Bobbili DR, Radivojkov‐Blagojevic M, Lichtner P, Singleton AB, Hernandez DG, Edsall C, Mellick GD, Zimprich A, Pirker W, Rogaeva E, Lang AE, Koks S, Taba P, Lesage S, Brice A, Corvol J, Chartier‐Harlin M, Mutez E, Brockmann K, Deutschländer AB, Hadjigeorgiou GM, Dardiotis E, Stefanis L, Simitsi AM, Valente EM, Petrucci S, Straniero L, Zecchinelli A, Pezzoli G, Brighina L, Ferrarese C, Annesi G, Quattrone A, Gagliardi M, Matsuo H, Nakayama A, Hattori N, Nishioka K, Chung SJ, Kim YJ, Kolber P, van de Warrenburg BP, Bloem BR, Aasly J, Toft M, Pihlstrøm L, Guedes LC, Ferreira JJ, Bardien S, Carr J, Tolosa E, Ezquerra M, Pastor P, Diez‐Fairen M, Wirdefeldt K, Pedersen N, Ran C, Belin AC, Puschmann A, Rödström EY, Clarke CE, Morrison KE, Tan M, Krainc D, Burbulla LF, Farrer MJ, Kruger R, Gasser T, Sharma M, the Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease (Courage‐PD) consortium, Truong T, Elbaz A. Investigation of Shared Genetic Risk Factors Between Parkinson's Disease and Cancers. Mov Disord 2023; 38:604-615. [PMID: 36788297 PMCID: PMC10334300 DOI: 10.1002/mds.29337] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Epidemiological studies that examined the association between Parkinson's disease (PD) and cancers led to inconsistent results, but they face a number of methodological difficulties. OBJECTIVE We used results from genome-wide association studies (GWASs) to study the genetic correlation between PD and different cancers to identify common genetic risk factors. METHODS We used individual data for participants of European ancestry from the Courage-PD (Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease; PD, N = 16,519) and EPITHYR (differentiated thyroid cancer, N = 3527) consortia and summary statistics of GWASs from iPDGC (International Parkinson Disease Genomics Consortium; PD, N = 482,730), Melanoma Meta-Analysis Consortium (MMAC), Breast Cancer Association Consortium (breast cancer), the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (prostate cancer), International Lung Cancer Consortium (lung cancer), and Ovarian Cancer Association Consortium (ovarian cancer) (N comprised between 36,017 and 228,951 for cancer GWASs). We estimated the genetic correlation between PD and cancers using linkage disequilibrium score regression. We studied the association between PD and polymorphisms associated with cancers, and vice versa, using cross-phenotypes polygenic risk score (PRS) analyses. RESULTS We confirmed a previously reported positive genetic correlation of PD with melanoma (Gcorr = 0.16 [0.04; 0.28]) and reported an additional significant positive correlation of PD with prostate cancer (Gcorr = 0.11 [0.03; 0.19]). There was a significant inverse association between the PRS for ovarian cancer and PD (odds ratio [OR] = 0.89 [0.84; 0.94]). Conversely, the PRS of PD was positively associated with breast cancer (OR = 1.08 [1.06; 1.10]) and inversely associated with ovarian cancer (OR = 0.95 [0.91; 0.99]). The association between PD and ovarian cancer was mostly driven by rs183211 located in an intron of the NSF gene (17q21.31). CONCLUSIONS We show evidence in favor of a contribution of pleiotropic genes to the association between PD and specific cancers. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Pierre‐Emmanuel Sugier
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
- Laboratoire de Mathématiques et de leurs Applications de PauE2S UPPA, CNRSPauFrance
| | - Elise A. Lucotte
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
| | - Cloé Domenighetti
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
| | - Matthew H. Law
- Statistical Genetics, QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Faculty of Health, Queensland University of TechnologyBrisbaneAustralia
| | - Mark M. Iles
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and PathologyUniversity of LeedsLeedsUnited Kingdom
| | - Kevin Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Christopher Amos
- Institute for Clinical and Translational ResearchBaylor Medical College of MedecineHoustonTexasUSA
| | | | - Rayjean J. Hung
- Lunenfeld‐Tanenbuaum Research Institute, Sinai Health SystemTorontoOntarioCanada
- Dalla Lana School of Public Health, University of TorontoTorontoOntarioCanada
| | - Mojgan Karimi
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
| | - Delphine Bacq‐Daian
- Université Paris‐Saclay, CEA, Centre National de Recherche en Génomique Humaine, Institut de Biologie François JacobEvryFrance
| | - Anne Boland‐Augé
- Université Paris‐Saclay, CEA, Centre National de Recherche en Génomique Humaine, Institut de Biologie François JacobEvryFrance
| | - Robert Olaso
- Université Paris‐Saclay, CEA, Centre National de Recherche en Génomique Humaine, Institut de Biologie François JacobEvryFrance
| | - Jean‐françois Deleuze
- Université Paris‐Saclay, CEA, Centre National de Recherche en Génomique Humaine, Institut de Biologie François JacobEvryFrance
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL University, Mines ParisTechParisFrance
| | | | | | - Florent de Vathaire
- Université Paris‐Saclay, UVSQ, Gustave Roussy, Inserm, Team “Epidemiology of radiations,” CESPVillejuifFrance
| | - Pascal Guénel
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
| | | | - Ashwin Ashok Kumar Sreelatha
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied BiometryUniversity of TubingenTübingenGermany
| | - Claudia Schulte
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of TubingenTübingenGermany
- German Center for Neurodegenerative DiseasesTübingenGermany
| | - Sandeep Grover
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied BiometryUniversity of TubingenTübingenGermany
| | - Patrick May
- Translational Neuroscience, Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐BelvalLuxembourg
| | - Dheeraj R. Bobbili
- Translational Neuroscience, Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐BelvalLuxembourg
| | | | - Peter Lichtner
- Institute of Human GeneticsHelmholtz Zentrum MünchenNeuherbergGermany
| | - Andrew B. Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
- Center For Alzheimer's and Related Dementias, National Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Dena G. Hernandez
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Connor Edsall
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - George D. Mellick
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanAustralia
| | | | - Walter Pirker
- Department of NeurologyKlinik OttakringViennaAustria
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoOntarioCanada
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders ClinicToronto Western Hospital, UHNTorontoOntarioCanada
- Division of NeurologyUniversity of TorontoTorontoOntarioCanada
- Krembil Brain InstituteTorontoOntarioCanada
| | - Sulev Koks
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochAustralia
- Perron Institute for Neurological and Translational ScienceNedlandsAustralia
| | - Pille Taba
- Department of Neurology and NeurosurgeryUniversity of TartuTartuEstonia
- Neurology Clinic, Tartu University HospitalTartuEstonia
| | - Suzanne Lesage
- Department of NeurologySorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, INSERM, CNRS, Assistance Publique Hôpitaux de ParisParisFrance
| | - Alexis Brice
- Department of NeurologySorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, INSERM, CNRS, Assistance Publique Hôpitaux de ParisParisFrance
| | - Jean‐Christophe Corvol
- Department of NeurologySorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, INSERM, CNRS, Assistance Publique Hôpitaux de ParisParisFrance
- Assistance Publique Hôpitaux de Paris, Department of NeurologyCIC NeurosciencesParisFrance
| | | | - Eugénie Mutez
- Université de Lille, Inserm, CHU Lille, UMR‐S 1172, LilNCog, Centre de Recherche Lille Neurosciences & CognitionLilleFrance
| | - Kathrin Brockmann
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of TubingenTübingenGermany
- German Center for Neurodegenerative DiseasesTübingenGermany
| | - Angela B. Deutschländer
- Department of NeurologyLudwig Maximilians University of MunichMunichGermany
- Department of NeurologyMax Planck Institute of PsychiatryMunichGermany
| | - Georges M. Hadjigeorgiou
- Department of Neurology and Department of Clinical GenomicsMayo Clinic FloridaJacksonvilleFloridaUSA
- Department of Neurology, Laboratory of NeurogeneticsUniversity of Thessaly, University Hospital of LarissaLarissaGreece
- Department of NeurologyMedical School, University of CyprusNicosiaCyprus
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of NeurogeneticsUniversity of Thessaly, University Hospital of LarissaLarissaGreece
| | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
- Center of Clinical Research, Experimental Surgery and Translational ResearchBiomedical Research Foundation of the Academy of AthensAthensGreece
| | - Athina Maria Simitsi
- 1st Department of Neurology, Eginition Hospital, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Enza Maria Valente
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino FoundationPaviaItaly
| | - Simona Petrucci
- UOC Medical Genetics and Advanced Cell DiagnosticsS. Andrea University HospitalRomeItaly
- Department of Clinical and Molecular MedicineSapienza University of RomeRomeItaly
| | | | - Anna Zecchinelli
- Parkinson Institute, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini/CTOMilanItaly
| | - Gianni Pezzoli
- Parkinson Institute, Fontazione Grigioni–Via ZurettiMilanItaly
| | - Laura Brighina
- Department of NeurologySan Gerardo HospitalMonzaItaly
- Department of Medicine and Surgery and Milan Center for NeuroscienceUniversity of Milano BicoccaMilanItaly
| | - Carlo Ferrarese
- Department of NeurologySan Gerardo HospitalMonzaItaly
- Department of Medicine and Surgery and Milan Center for NeuroscienceUniversity of Milano BicoccaMilanItaly
| | - Grazia Annesi
- Institute for Biomedical Research and InnovationNational Research CouncilCosenzaItaly
| | - Andrea Quattrone
- Institute of Neurology, Department of Medical and Surgical SciencesMagna Graecia University of CatanzaroCatanzaroItaly
- Department of Medical and Surgical Sciences, Neuroscience Research CenterMagna Graecia UniversityCatanzaroItaly
| | - Monica Gagliardi
- Department of Medical and Surgical Sciences, Neuroscience Research CenterMagna Graecia UniversityCatanzaroItaly
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio‐Nano MedicineNational Defense Medical CollegeSaitamaJapan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio‐Nano MedicineNational Defense Medical CollegeSaitamaJapan
| | - Nobutaka Hattori
- Department of NeurologyJuntendo University School of MedicineTokyoJapan
| | - Kenya Nishioka
- Department of NeurologyJuntendo University School of MedicineTokyoJapan
| | - Sun Ju Chung
- Department of Neurology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Yun Joong Kim
- Department of NeurologyYonsei University College of MedicineSeoulSouth Korea
| | - Pierre Kolber
- Neurology, Centre Hospitalier de LuxembourgLuxembourgLuxembourg
| | - Bart P.C. van de Warrenburg
- Department of Neurology, Radboud University Medical CentreDonders Institute for Brain, Cognition and BehaviourNijmegenthe Netherlands
| | - Bastiaan R. Bloem
- Department of Neurology, Radboud University Medical CentreDonders Institute for Brain, Cognition and BehaviourNijmegenthe Netherlands
| | - Jan Aasly
- Department of NeurologySt. Olav's Hospital and Norwegian University of Science and TechnologyTrondheimNorway
| | - Mathias Toft
- Department of NeurologyOslo University HospitalOsloNorway
| | | | - Leonor Correia Guedes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Department of Neurosciences and Mental Health, Neurology, Hospital de Santa MariaCentro Hospitalar Universitario Lisboa Norte (CHULN)LisbonPortugal
| | - Joaquim J. Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Department of Neurosciences and Mental Health, Neurology, Hospital de Santa MariaCentro Hospitalar Universitario Lisboa Norte (CHULN)LisbonPortugal
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical SciencesFaculty of Medicine and Health Sciences, Stellenbosch UniversityStellenboschSouth Africa
| | - Jonathan Carr
- Division of Neurology, Department of MedicineFaculty of Medicine and Health Sciences, Stellenbosch UniversityStellenboschSouth Africa
| | - Eduardo Tolosa
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018‐ISCIII)BarcelonaSpain
| | - Mario Ezquerra
- Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de NeurociènciesUniversitat de BarcelonaBarcelonaSpain
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of NeurologyUniversity Hospital Germans Trias i PujolBarcelonaSpain
| | - Monica Diez‐Fairen
- Fundació per la Recerca Biomèdica i Social Mútua TerrassaBarcelonaSpain
- Movement Disorders Unit, Department of NeurologyHospital Universitari Mutua de TerrassaBarcelonaSpain
| | - Karin Wirdefeldt
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Nancy Pedersen
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Caroline Ran
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Andrea C. Belin
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Andreas Puschmann
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, NeurologyLundSweden
| | - Emil Ygland Rödström
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, NeurologyLundSweden
| | - Carl E. Clarke
- University of Birmingham and Sandwell and West Birmingham Hospitals NHS TrustBirminghamUnited Kingdom
| | - Karen E. Morrison
- Faculty of Medicine, Health and Life SciencesQueens UniversityBelfastUnited Kingdom
| | - Manuela Tan
- Department of NeurologyOslo University HospitalOsloNorway
| | - Dimitri Krainc
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Lena F. Burbulla
- German Center for Neurodegenerative DiseasesTübingenGermany
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Metabolic Biochemistry, Biomedical Center, Faculty of MedicineLudwig‐Maximilians‐Universität MünchenMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Matt J. Farrer
- Department of NeurologyMcKnight Brain Institute, University of FloridaGainesvilleFloridaUSA
| | - Rejko Kruger
- Translational Neuroscience, Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐BelvalLuxembourg
- NeurologyCentre Hospitalier de LuxembourgLuxembourgLuxembourg
- Parkinson's Research ClinicCentre Hospitalier de LuxembourgLuxembourgLuxembourg
- Transversal Translational MedicineLuxembourg Institute of HealthStrassenLuxembourg
| | - Thomas Gasser
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of TubingenTübingenGermany
- German Center for Neurodegenerative DiseasesTübingenGermany
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied BiometryUniversity of TubingenTübingenGermany
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of TubingenTübingenGermany
| | | | - Thérèse Truong
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
| | - Alexis Elbaz
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
| |
Collapse
|
5
|
Yahya V, Di Fonzo A, Monfrini E. Genetic Evidence for Endolysosomal Dysfunction in Parkinson’s Disease: A Critical Overview. Int J Mol Sci 2023; 24:ijms24076338. [PMID: 37047309 PMCID: PMC10094484 DOI: 10.3390/ijms24076338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the aging population, and no disease-modifying therapy has been approved to date. The pathogenesis of PD has been related to many dysfunctional cellular mechanisms, however, most of its monogenic forms are caused by pathogenic variants in genes involved in endolysosomal function (LRRK2, VPS35, VPS13C, and ATP13A2) and synaptic vesicle trafficking (SNCA, RAB39B, SYNJ1, and DNAJC6). Moreover, an extensive search for PD risk variants revealed strong risk variants in several lysosomal genes (e.g., GBA1, SMPD1, TMEM175, and SCARB2) highlighting the key role of lysosomal dysfunction in PD pathogenesis. Furthermore, large genetic studies revealed that PD status is associated with the overall “lysosomal genetic burden”, namely the cumulative effect of strong and weak risk variants affecting lysosomal genes. In this context, understanding the complex mechanisms of impaired vesicular trafficking and dysfunctional endolysosomes in dopaminergic neurons of PD patients is a fundamental step to identifying precise therapeutic targets and developing effective drugs to modify the neurodegenerative process in PD.
Collapse
Affiliation(s)
- Vidal Yahya
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Alessio Di Fonzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Edoardo Monfrini
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
- Correspondence:
| |
Collapse
|
6
|
Al-Fatlawi A, Afrin N, Ozen C, Malekian N, Schroeder M. NetRank Recovers Known Cancer Hallmark Genes as Universal Biomarker Signature for Cancer Outcome Prediction. FRONTIERS IN BIOINFORMATICS 2022; 2:780229. [PMID: 36304266 PMCID: PMC9580863 DOI: 10.3389/fbinf.2022.780229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/16/2022] [Indexed: 11/30/2022] Open
Abstract
Gene expression can serve as a powerful predictor for disease progression and other phenotypes. Consequently, microarrays, which capture gene expression genome-wide, have been used widely over the past two decades to derive biomarker signatures for tasks such as cancer grading, prognosticating the formation of metastases, survival, and others. Each of these signatures was selected and optimized for a very specific phenotype, tissue type, and experimental set-up. While all of these differences may naturally contribute to very heterogeneous and different biomarker signatures, all cancers share characteristics regardless of particular cell types or tissue as summarized in the hallmarks of cancer. These commonalities could give rise to biomarker signatures, which perform well across different phenotypes, cell and tissue types. Here, we explore this possibility by employing a network-based approach for pan-cancer biomarker discovery. We implement a random surfer model, which integrates interaction, expression, and phenotypic information to rank genes by their suitability for outcome prediction. To evaluate our approach, we assembled 105 high-quality microarray datasets sampled from around 13,000 patients and covering 13 cancer types. We applied our approach (NetRank) to each dataset and aggregated individual signatures into one compact signature of 50 genes. This signature stands out for two reasons. First, in contrast to other signatures of the 105 datasets, it is performant across nearly all cancer types and phenotypes. Second, It is interpretable, as the majority of genes are linked to the hallmarks of cancer in general and proliferation specifically. Many of the identified genes are cancer drivers with a known mutation burden linked to cancer. Overall, our work demonstrates the power of network-based approaches to compose robust, compact, and universal biomarker signatures for cancer outcome prediction.
Collapse
|
7
|
Monogenic Parkinson’s Disease: Genotype, Phenotype, Pathophysiology, and Genetic Testing. Genes (Basel) 2022; 13:genes13030471. [PMID: 35328025 PMCID: PMC8950888 DOI: 10.3390/genes13030471] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease may be caused by a single pathogenic variant (monogenic) in 5–10% of cases, but investigation of these disorders provides valuable pathophysiological insights. In this review, we discuss each genetic form with a focus on genotype, phenotype, pathophysiology, and the geographic and ethnic distribution. Well-established Parkinson’s disease genes include autosomal dominant forms (SNCA, LRRK2, and VPS35) and autosomal recessive forms (PRKN, PINK1 and DJ1). Furthermore, mutations in the GBA gene are a key risk factor for Parkinson’s disease, and there have been major developments for X-linked dystonia parkinsonism. Moreover, atypical or complex parkinsonism may be due to mutations in genes such as ATP13A2, DCTN1, DNAJC6, FBXO7, PLA2G6, and SYNJ1. Furthermore, numerous genes have recently been implicated in Parkinson’s disease, such as CHCHD2, LRP10, TMEM230, UQCRC1, and VPS13C. Additionally, we discuss the role of heterozygous mutations in autosomal recessive genes, the effect of having mutations in two Parkinson’s disease genes, the outcome of deep brain stimulation, and the role of genetic testing. We highlight that monogenic Parkinson’s disease is influenced by ethnicity and geographical differences, reinforcing the need for global efforts to pool large numbers of patients and identify novel candidate genes.
Collapse
|
8
|
Lee JYS, Ng JH, Saffari SE, Tan EK. Parkinson's disease and cancer: a systematic review and meta-analysis on the influence of lifestyle habits, genetic variants, and gender. Aging (Albany NY) 2022; 14:2148-2173. [PMID: 35247252 PMCID: PMC8954974 DOI: 10.18632/aging.203932] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/15/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE The relationship between Parkinson's disease (PD) and cancer has been debated. Gender and genetic influences on cancer development in PD is unclear. METHODS Using QUOROM guidelines, we conducted a systematic review and meta-analysis on potential clinical and genetic factors influencing the PD and subsequent cancer relationship. English articles published in PubMed, Web of Science, and SCOPUS from 2010 to 30 August 2020 were considered for suitability. RESULTS Of 46 studies identified, fourteen satisfied the inclusion criteria and were further analysed. Unadjusted risk ratios (RR) and 95% confidence intervals were computed to determine the PD and cancer relationship. PD patients have decreased subsequent cancer risks (RR = 0.87, 95% CI = 0.81-0.93), reduced risks of colon, rectal, and colorectal cancer (RR = 0.77, 95% CI = 0.63-0.94), lung cancer (RR = 0.62, 95% CI = 0.48-0.80), and increased brain cancer (R = 1.48, 95% CI = 1.02-2.13) and melanoma risk (R = 1.76, 95% CI = 1.23-2.50). Compared to idiopathic PD, LRRK2-G2019S carriers had increased general cancer risks (RR = 1.26, 95% CI = 1.09-1.46), particularly brain (RR = 2.41, 95% CI = 1.06-5.50), breast (RR = 2.57, 95% CI = 1.19-5.58), colon (RR = 1.83, 95% CI = 1.13-2.99), and haematological cancers (RR = 2.05, 95% CI = 1.07-3.92). Female PD patients have decreased general cancer risks compared to male PD patients in this analysis (RR = 0.83, 95% CI = 0.69-0.98). CONCLUSION PD patients have reduced risks of colon, rectal, colorectal cancer and lung cancers and increased risks of brain cancer and melanoma. LRRK2-G2019S carriers have increased cancer risks, particularly brain, breast, colon and blood cancers. Female gender was associated with reduced risks. The role of ethnicity, comorbidities, and lifestyle habits on PD patients' subsequent cancer risk should be further investigated.
Collapse
Affiliation(s)
- Joon Yan Selene Lee
- Department of Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore
| | - Jing Han Ng
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Seyed Ehsan Saffari
- Department of Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore.,Department of Neurology, National Neuroscience Institute, Singapore
| | - Eng-King Tan
- Department of Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore.,Department of Neurology, National Neuroscience Institute, Singapore
| |
Collapse
|
9
|
Yan J, Zhao W, Yu W, Cheng H, Zhu B. LRRK2 correlates with macrophage infiltration in pan-cancer. Genomics 2021; 114:316-327. [PMID: 34929286 DOI: 10.1016/j.ygeno.2021.11.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 01/08/2023]
Abstract
Leucine-rich repeat kinase2 (LRRK2) influences the host immune responses and correlates with the pathogenesis of inflammation, cancer as well as Parkinson' Disease. Herein, we explored the oncogenic role of LRRK2 at pan-cancer level and validated the analysis by single cell RNA-sequencing and in-vitro experiments. As a result, LRRK2 significantly correlated with the survival events. Specifically, LRRK2 increased the risk of Low-Grade Glioma whereas improved the survival probability of patients with Skin Cutaneous Melanoma. Gene set enrichment analysis demonstrated the involvement of LRRK2 in the host immune responses. Within the tumor microenvironment, LRRK2 was positively associated with the recruitment of macrophages. Furthermore, scRNA-seq and co-culture experiments demonstrated that LRRK2 deficiency impaired macrophage functions, and influenced the neoplastic progression in a cancer type-specific manner. Therefore, the present study provided a therapeutic strategy for LGG based on the interference with LRRK2 expression and activity to prevent macrophage recruitment and promote tumor eradication.
Collapse
Affiliation(s)
- Jing Yan
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China.
| | - Wenhui Zhao
- Department of Basic Medicine, Jiangsu College of Nursing, China
| | - Wei Yu
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China
| | - Hongju Cheng
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China
| | - Baoliang Zhu
- Department of Physiology, Jining Medical University, Jining City, Shandong Province 272067, China
| |
Collapse
|
10
|
Fang HS, Chao CY, Wang CC, Fan WL, Huang PJ, Fung HC, Wu YR. Association of AXIN1 With Parkinson's Disease in a Taiwanese Population. J Mov Disord 2021; 15:33-37. [PMID: 34781631 PMCID: PMC8820876 DOI: 10.14802/jmd.21073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/05/2021] [Indexed: 12/01/2022] Open
Abstract
Objective A meta-analysis of locus-based genome-wide association studies recently identified a relationship between AXIN1 and Parkinson’s disease (PD). Few studies of Asian populations, however, have reported such a genetic association. The influences of rs13337493, rs758033, and rs2361988, three PD-associated genetic variants of AXIN1, were investigated in the present study because AXIN1 is related to Wnt/β-catenin signaling. Methods A total of 2,418 individuals were enrolled in our Taiwanese cohort for analysis of the genotypic and allelic frequency. Polymerase chain reaction–restriction fragment length polymorphism analysis was employed for rs13337493 genotyping, and the Agena MassARRAY platform (Agena Bioscience, San Diego, CA, USA) was used for rs758033 and rs2361988 genotyping in 672 patients with PD and 392 controls. Taiwan Biobank data of another 1,354 healthy controls were subjected to whole-genome sequencing performed using Illumina platforms at approximately 30× average depth. Results Our results revealed that rs758033 {odds ratios [OR] (95% confidence interval [CI]) = 0.267 [0.064, 0.795], p = 0.014} was associated with the risk of PD, and there was a trend toward a protective effect of rs2361988 (OR [95% CI] = 0.296 [0.071, 0.884], p = 0.026) under the recessive model. The TT genotype of rs758033 (OR [95% CI] = 0.271 [0.065, 0.805], p = 0.015) and the CC genotype of rs2361988 (OR [95% CI] = 0.305 [0.073, 0.913], p = 0.031) were less common in the PD group than in the non-PD group. Conclusion Our findings indicate that the rs758033 and rs2361988 polymorphisms of AXIN1 may affect the risk of PD in the Taiwanese population.
Collapse
Affiliation(s)
- Hwa-Shin Fang
- Division of General Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chih-Ying Chao
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Chun-Chieh Wang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Wen-Lang Fan
- Department of Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Po-Jung Huang
- Department of Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Hon-Chung Fung
- Fu Jen Faculty of Theology of St. Robert Bellarmine, Fu Jen University Clinic Taiwan, New Taipei, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,Department of Neurology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
11
|
Cancer in Parkinson’s Disease, a Review of Literature. ARS MEDICA TOMITANA 2021. [DOI: 10.2478/arsm-2021-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Background/Aim: The present study aimed to assess the conclusions of literature articles on the matter of cancer in Parkinson’s disease.
Patients and Methods: Studies and articles that contained information on epidemiology, pathophysiological, clinical as well as associations and correlations on the topic of Parkinson’s disease and cancer were incorporated in the research too.
Results: The prevalent part of the investigations and studies on the matter of Parkinson’s disease patients’ risk of cancer revealed a decreased lifetime risk in comparisson with non-PD subjects. In the literature, the most prevalent types of cancer among Parkinson’s disease patients were melanoma and other subtypes skin cancer and also, breast cancer.
Conclusion: Epigenetic factors, gene–environment interactions, and problematic events can have an impact in the occurance and progression of Parkinson’s disease. Further, the mentioned factors can also determine the developing of cancer. Therefore, a complex and interesting relation between the two diseases is further to be discovered.
Collapse
|
12
|
Nabar NR, Heijjer CN, Shi CS, Hwang IY, Ganesan S, Karlsson MCI, Kehrl JH. LRRK2 is required for CD38-mediated NAADP-Ca 2+ signaling and the downstream activation of TFEB (transcription factor EB) in immune cells. Autophagy 2021; 18:204-222. [PMID: 34313548 PMCID: PMC8865229 DOI: 10.1080/15548627.2021.1954779] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
CD38 is a cell surface receptor capable of generating calcium-mobilizing second messengers. It has been implicated in host defense and cancer biology, but signaling mechanisms downstream of CD38 remain unclear. Mutations in LRRK2 (leucine-rich repeat kinase 2) are the most common genetic cause of Parkinson disease; it is also a risk factor for Crohn disease, leprosy, and certain types of cancers. The pathogenesis of these diseases involves inflammation and macroautophagy/autophagy, processes both CD38 and LRRK2 are implicated in. Here, we mechanistically and functionally link CD38 and LRRK2 as upstream activators of TFEB (transcription factor EB), a host defense transcription factor and the master transcriptional regulator of the autophagy/lysosome machinery. In B-lymphocytes and macrophages, we show that CD38 and LRRK2 exist in a complex on the plasma membrane. Ligation of CD38 with the monoclonal antibody clone 90 results in internalization of the CD38-LRRK2 complex and its targeting to the endolysosomal system. This generates an NAADP-dependent calcium signal, which requires LRRK2 kinase activity, and results in the downstream activation of TFEB. lrrk2 KO macrophages accordingly have TFEB activation defects following CD38 or LPS stimulation and fail to switch to glycolytic metabolism after LPS treatment. In overexpression models, the pathogenic LRRK2G2019S mutant promotes hyperactivation of TFEB even in the absence of CD38, both by stabilizing TFEB and promoting its nuclear translocation via aberrant calcium signaling. In sum, we have identified a physiological CD38-LRRK2-TFEB signaling axis in immune cells. The common pathogenic mutant, LRRK2G2019S, appears to hijack this pathway. Abbreviations:ADPR: ADP-ribose; AMPK: AMP-activated protein kinase; BMDM: bone marrow-derived macrophage; cADPR: cyclic-ADP-ribose; COR: C-terminal of ROC; CTSD: cathepsin D; ECAR: extracellular acidification rate; EDTA: ethylenediaminetetraacetic acid; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GPN: Gly-Phe β-naphthylamide; GSK3B/GSK3β: glycogen synthase kinase 3 beta; GTP: guanosine triphosphate; KD: knockdown; LAMP1: lysosomal-associated membrane protein 1; LRR: leucine rich repeat; LRRK2: leucine rich repeat kinase 2; mAb: monoclonal antibody; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAPK/ERK: mitogen-activated protein kinase; MCOLN1: mucolipin 1; MFI: mean fluorescence intensity; mRNA: messenger RNA; MTOR: mechanistic target of rapamycin kinase; NAADP: nicotinic acid adenine dinucleotide phosphate; NAD: nicotinamide adenine dinucleotide; NADP: nicotinamide adenine dinucleotide phosphate; PD: Parkinson disease; PPP3CB: protein phosphatase 3, catalytic subunit, beta isoform; q-RT-PCR: quantitative reverse transcription polymerase chain reaction; ROC: Ras of complex; siRNA: small interfering RNA; SQSTM1/p62: sequestome 1; TFEB: transcription factor EB; TPCN: two pore channel; TRPM2: transient receptor potential cation channel, subfamily M, member 2; ZKSCAN3: zinc finger with KRAB and SCAN domains 3
Collapse
Affiliation(s)
- Neel R Nabar
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher N Heijjer
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chong-Shan Shi
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Il-Young Hwang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - John H Kehrl
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Zhang L, Han L, Huang Y, Feng Z, Wang X, Li H, Song F, Liu L, Li J, Zheng H, Wang P, Song F, Chen K. SNPs within microRNA binding sites and the prognosis of breast cancer. Aging (Albany NY) 2021; 13:7465-7480. [PMID: 33658398 PMCID: PMC7993692 DOI: 10.18632/aging.202612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022]
Abstract
Single nucleotide polymorphisms (SNPs) within microRNA binding sites can affect the binding of microRNA to mRNA and regulate gene expression, thereby contributing to cancer prognosis. Here we performed a two-stage study of 2647 breast cancer patients to explore the association between SNPs within microRNA binding sites and breast cancer prognosis. In stage I, we genotyped 192 SNPs within microRNA binding sites using the Illumina Goldengate platform. In stage II, we validated SNPs associated with breast cancer prognosis in another dataset using the TaqMan platform. We identified 8 SNPs significantly associated with breast cancer prognosis in stage I (P<0.05), and only rs10878441 was statistically significant in stage II (AA vs CC, HR=2.21, 95% CI: 1.11-4.42, P=0.024). We combined the data from stage I and stage II, and found that, compared with rs10878441 AA genotype, CC genotype was associated with poor survival of breast cancer (HR=2.19, 95% CI: 1.30-3.70, P=0.003). Stratified analyses demonstrated that rs10878441 was related to breast cancer prognosis in grade II and lymph node-negative patients (P<0.05). The Leucine-rich repeat kinase 2 (LRRK2) rs10878441 CC genotype is associated with poor prognosis of breast cancer in a Chinese population and may be used as a potential prognostic biomarker for breast cancer. • The LRRK2 rs10878441 CC genotype is associated with poor prognosis of breast cancer in a Chinese population. • Stratified analyses demonstrated that rs10878441 was related to breast cancer prognosis in grade II patients and lymph node-negative patients.
Collapse
Affiliation(s)
- Liwen Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Lu Han
- Department of Infection Control, Tianjin Huanhu Hospital, Tianjin 300350, People's Republic of China
| | - Yubei Huang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Ziwei Feng
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Xin Wang
- Department of Epidemiology and Biostatistics, West China School of Public Health, Sichuan University, Sichuan 610041, People's Republic of China
| | - Haixin Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China.,Department of Cancer Biobank, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Centre of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Luyang Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Junxian Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Peishan Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, People's Republic of China
| |
Collapse
|
14
|
Aasly JO. Inflammatory Diseases Among Norwegian LRRK2 Mutation Carriers. A 15-Years Follow-Up of a Cohort. Front Neurosci 2021; 15:634666. [PMID: 33584195 PMCID: PMC7876287 DOI: 10.3389/fnins.2021.634666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022] Open
Abstract
The first families with LRRK2 related Parkinson’s disease (PD) were presented around 15 years ago and numerous papers have described the characteristics of the LRRK2 phenotype. The prevalence of autosomal dominant PD varies around the world mainly depending on local founder effects. The highest prevalence of LRRK2 G2019S PD in Norway is located to the central part of the country and most families could be traced back to common ancestors. The typical Norwegian LRRK2 phenotype is not different from classical PD and similar to that seen in most other LRRK2 families. The discovery of LRRK2 PD has allowed us to follow-up multi-incident families and to study their phenotype longitudinally. In the Norwegian LRRK2 families there has been a significantly higher incidence of inflammatory diseases like multiple sclerosis and rheumatoid arthritis that seen in other PD populations. Recent studies in LRRK2 mechanisms have indicated that this protein may be crucial in initiating disease processes. In this short survey of 100 Norwegian mutation carriers followed through more than 15 years are presented. The prevalence of inflammatory diseases among these cases is highlighted. The role of LRRK2 in the conversion process from carrier status to PD phenotype is still unknown and disease generating mechanisms important for initiating LRRK2 PD are still to be identified.
Collapse
Affiliation(s)
- Jan O Aasly
- Department of Neurology, St. Olavs Hospital, Trondheim, Norway.,Department of Neuromedicine and Movement Science (INB), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
15
|
Avram CM, Brumbach BH, Hiller AL. A Report of Tamoxifen and Parkinson's Disease in a US Population and a Review of the Literature. Mov Disord 2021; 36:1238-1242. [PMID: 33449420 DOI: 10.1002/mds.28471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/08/2020] [Accepted: 12/09/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Tamoxifen, a selective estrogen receptor modulator, has been shown to variably affect Parkinson's disease (PD) risk. OBJECTIVE The aim of this study was to review epidemiological literature and evaluate the rate of PD in women with breast cancer with tamoxifen exposure in a US population. METHODS A literature search was conducted to identify relevant studies. We performed a retrospective cohort analysis using the Nurses' Health Study Version One to report descriptive statistics. RESULTS Most studies suggest there may be a time-dependent effect of tamoxifen on PD risk, with the risk increasing with time from exposure. However, rates of PD in persons exposed to tamoxifen overall appear to be low. In our cohort, PD was evident in 6.2 per 1,000 of those with tamoxifen use and 3.6 per 1,000 of those without tamoxifen use. Time from breast cancer to PD diagnosis was 9.7 years among women with tamoxifen exposure and 11.7 among women without. CONCLUSIONS Tamoxifen may be associated with an increased risk for PD. Further research is needed to elucidate the role of estrogen and selective estrogen antagonism in PD. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Carmen M Avram
- Duke University Medical Center, Durham, North Carolina, USA
| | | | - Amie L Hiller
- Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
16
|
Hakim S, Craig JM, Koblinski JE, Clevenger CV. Inhibition of the Activity of Cyclophilin A Impedes Prolactin Receptor-Mediated Signaling, Mammary Tumorigenesis, and Metastases. iScience 2020; 23:101581. [PMID: 33083747 PMCID: PMC7549119 DOI: 10.1016/j.isci.2020.101581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/27/2020] [Accepted: 09/15/2020] [Indexed: 01/12/2023] Open
Abstract
Prolactin (PRL) and its receptor (PRLr) play important roles in the pathogenesis of breast cancer. Cyclophilin A (CypA) is a cis-trans peptidyl-prolyl isomerase (PPI) that is constitutively associated with the PRLr and facilitates the activation of the tyrosine kinase Jak2. Treatment with the non-immunosuppressive prolyl isomerase inhibitor NIM811 or CypA short hairpin RNA inhibited PRL-stimulated signaling, breast cancer cell growth, and migration. Transcriptomic analysis revealed that NIM811 inhibited two-thirds of the top 50 PRL-induced genes and a reduction in gene pathways associated with cancer cell signaling. In vivo treatment of NIM811 in a TNBC xenograft lessened primary tumor growth and induced central tumor necrosis. Deletion of CypA in the MMTV-PyMT mouse model demonstrated inhibition of tumorigenesis with significant reduction in lung and lymph node metastasis. The regulation of PRLr/Jak2-mediated biology by NIM811 demonstrates that a non-immunosuppressive prolyl isomerase inhibitor can function as a potential breast cancer therapeutic. CypA inhibition or knockdown blocks breast cancer cell signaling, growth, and migration NIM811 inhibited PRL-induced genes and gene pathways relevant to cancer signaling Deletion of CypA has shown reduction in tumorigenesis and metastasis in mice
Collapse
Affiliation(s)
- Shawn Hakim
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA.,Wright Center for Clinical and Translational Sciences, Richmond, VA 23298, USA
| | - Justin M Craig
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA.,Wright Center for Clinical and Translational Sciences, Richmond, VA 23298, USA
| | - Jennifer E Koblinski
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA
| | - Charles V Clevenger
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
17
|
Parrilla Castellar ER, Plichta JK, Davis R, Gonzalez-Hunt C, Sanders LH. Somatic Mutations in LRRK2 Identify a Subset of Invasive Mammary Carcinomas Associated with High Mutation Burden. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2478-2482. [PMID: 32931768 DOI: 10.1016/j.ajpath.2020.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 01/05/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of familial Parkinson disease. Although LRRK2-related Parkinson disease patients have a heightened risk of certain nonskin cancers, including breast cancer, it is unknown whether LRRK2 somatic mutations occur and are associated with breast cancer. The objective of this study was to evaluate the occurrence of LRRK2 somatic mutations in breast cancer and the clinicopathologic features associated with LRRK2-mutated tumors. Using The Cancer Genome Atlas Breast Cancer Project, somatic LRRK2 DNA sequence information was obtained for 93 cases, of which 17 cases (18%) with 18 mutations were identified. LRRK2-mutated mammary carcinomas are enriched with stop-gain, truncating mutations predicted to result in loss of function; missense mutations frequently targeted the GTPase and kinase domains. Tumors displayed predominantly high-grade morphology with abundant granular eosinophilic cytoplasm, resembling mitochondria-rich apocrine-like carcinomas. Exploration of the genomic landscape of LRRK2-mutated carcinomas yielded frequent TP53 deactivation and a remarkably high tumor mutation burden. More important, breast cancers with LRRK2 mutations are associated with reduced patient survival compared with The Cancer Genome Atlas Breast Cancer Project cohort. These findings, for the first time, show that somatic LRRK2 mutations occur frequently in breast cancer, and the high mutation burden seen in this subset of tumors suggests that LRRK2 mutations may herald benefit from immune checkpoint inhibition.
Collapse
Affiliation(s)
| | - Jennifer K Plichta
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Richard Davis
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | | | - Laurie H Sanders
- Department of Neurology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
18
|
Lopez G, Lazzeri G, Rappa A, Isimbaldi G, Cribiù FM, Guerini-Rocco E, Ferrero S, Vaira V, Di Fonzo A. Comprehensive Genomic Analysis Reveals the Prognostic Role of LRRK2 Copy-Number Variations in Human Malignancies. Genes (Basel) 2020; 11:genes11080846. [PMID: 32722212 PMCID: PMC7465025 DOI: 10.3390/genes11080846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022] Open
Abstract
Genetic alterations of leucine-rich repeat kinase 2 (LRRK2), one of the most important contributors to familial Parkinson’s disease (PD), have been hypothesized to play a role in cancer development due to demographical and preclinical data. Here, we sought to define the prevalence and prognostic significance of LRRK2 somatic mutations across all types of human malignancies by querying the publicly available online genomic database cBioPortal. Ninety-six different studies with 14,041 cases were included in the analysis, and 761/14,041 (5.4%) showed genetic alterations in LRRK2. Among these, 585 (76.9%) were point mutations, indels or fusions, 168 (22.1%) were copy number variations (CNVs), and 8 (1.0%) showed both types of alterations. One case showed the somatic mutation R1441C. A significant difference in terms of overall survival (OS) was noted between cases harboring somatic LRRK2 whole deletions, amplifications, and CNV-unaltered cases (median OS: 20.09, 57.40, and 106.57 months, respectively; p = 0.0008). These results suggest that both LRRK2 amplifications and whole gene deletions could play a role in cancer development, paving the way for future research in terms of potential treatment with LRRK2 small molecule inhibitors for LRRK2-amplified cases.
Collapse
Affiliation(s)
- Gianluca Lopez
- Pathology Unit, Fondazione IRCCS Ca’ Granda–Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.M.C.); (S.F.); (V.V.)
- School of Pathology, University of Milan, 20122 Milan, Italy
- Correspondence:
| | - Giulia Lazzeri
- Neurology Unit, Fondazione IRCCS Ca’ Granda–Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.L.); (A.D.F.)
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- School of Neurology, University of Milan, 20122 Milan, Italy
| | - Alessandra Rappa
- European Institute of Oncology (IEO), 20141 Milan, Italy; (A.R.); (E.G.-R.)
| | - Giuseppe Isimbaldi
- Unit of Surgical Pathology and Cytogenetics, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy;
| | - Fulvia Milena Cribiù
- Pathology Unit, Fondazione IRCCS Ca’ Granda–Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.M.C.); (S.F.); (V.V.)
| | - Elena Guerini-Rocco
- European Institute of Oncology (IEO), 20141 Milan, Italy; (A.R.); (E.G.-R.)
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy
| | - Stefano Ferrero
- Pathology Unit, Fondazione IRCCS Ca’ Granda–Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.M.C.); (S.F.); (V.V.)
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Valentina Vaira
- Pathology Unit, Fondazione IRCCS Ca’ Granda–Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.M.C.); (S.F.); (V.V.)
| | - Alessio Di Fonzo
- Neurology Unit, Fondazione IRCCS Ca’ Granda–Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.L.); (A.D.F.)
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
19
|
Gu S, Chen J, Zhou Q, Yan M, He J, Han X, Qiu Y. LRRK2 Is Associated with Recurrence-Free Survival in Intrahepatic Cholangiocarcinoma and Downregulation of LRRK2 Suppresses Tumor Progress In Vitro. Dig Dis Sci 2020; 65:500-508. [PMID: 31489563 DOI: 10.1007/s10620-019-05806-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/12/2019] [Indexed: 12/09/2022]
Abstract
BACKGROUND The leucine-rich repeat kinase 2 (LRRK2) gene was confirmed to be associated with a variety of diseases, while the physiological function of LRRK2 remains poorly understood. Intrahepatic cholangiocarcinoma (ICC) has over the last 10 years become the focus of increasing concern largely. Despite recent progress in the standard of care and management options for ICC, the prognosis for this devastating cancer remains dismal. METHODS A total of 57 consecutive ICC patients who underwent curative hepatectomy in our institution were included in our study. We conduct a retrospective study to evaluate the prognostic value of LRRK2 in ICC after resection. The mechanism of LRRK2 in ICC development was also investigated in vitro. RESULTS All patients were divided into two groups according to the content of LRRK2 in the tissue microarray blocks via immunohistochemistry: low-LRRK2 group (n = 33) and high-LRRK2 group (n = 24). The recurrence-free survival rate of high-LRRK2 group was significantly poorer than that of low-LRRK2 group (P = 0.010). Multivariate analysis showed high-LRRK2 was the prognostic factor for recurrence-free survival after hepatectomy. We demonstrated that downregulation of LRRK2 depressed the proliferation and metastasis of ICC cells in vitro. CONCLUSION We provide evidence that LRRK2 was an independent prognostic factor for ICC in humans by participating in the proliferation and metastasis of ICC cells.
Collapse
Affiliation(s)
- Shen Gu
- Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jun Chen
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China
| | - Qun Zhou
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China
| | - Minghao Yan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jian He
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yudong Qiu
- Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China.
| |
Collapse
|
20
|
Wang J, Wang Y, Kong F, Han R, Song W, Chen D, Bu L, Wang S, Yue J, Ma L. Identification of a six‐gene prognostic signature for oral squamous cell carcinoma. J Cell Physiol 2019; 235:3056-3068. [PMID: 31538341 DOI: 10.1002/jcp.29210] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Jiaying Wang
- Department of Stomatology Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Yuanyong Wang
- Department of Thoracic Surgery Affiliated Hospital of Qingdao University Qingdao China
| | - Fanzhi Kong
- Department of Stomatology Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Rui Han
- Department of Stomatology Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Wenbin Song
- Department of Stomatology Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Di Chen
- Department of Gastroenterology Affiliated Hospital of Qingdao University Qingdao China
| | - Lingxue Bu
- Department of Stomatology Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Shuangyi Wang
- Department of Stomatology Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Jin Yue
- Department of Stomatology Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Lei Ma
- Department of Stomatology Affiliated Hospital of Qingdao University Qingdao Shandong China
| |
Collapse
|
21
|
Agalliu I, Ortega RA, Luciano MS, Mirelman A, Pont-Sunyer C, Brockmann K, Vilas D, Tolosa E, Berg D, Warø B, Glickman A, Raymond D, Inzelberg R, Ruiz-Martinez J, Mondragon E, Friedman E, Hassin-Baer S, Alcalay RN, Mejia-Santana H, Aasly J, Foroud T, Marder K, Giladi N, Bressman S, Saunders-Pullman R. Cancer outcomes among Parkinson's disease patients with leucine rich repeat kinase 2 mutations, idiopathic Parkinson's disease patients, and nonaffected controls. Mov Disord 2019; 34:1392-1398. [PMID: 31348549 DOI: 10.1002/mds.27807] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/20/2019] [Accepted: 07/08/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Increased cancer risk has been reported in Parkinson's disease (PD) patients carrying the leucine rich repeat kinase 2 (LRRK2) G2019S mutation (LRRK2-PD) in comparison with idiopathic PD (IPD). It is unclear whether the elevated risk would be maintained when compared with unaffected controls. METHODS Cancer outcomes were compared among 257 LRRK2-PD patients, 712 IPD patients, and 218 controls recruited from 7 LRRK2 consortium centers using mixed-effects logistic regression. Data were then pooled with a previous study to examine cancer risk between 401 LRRK2-PD and 1946 IPD patients. RESULTS Although cancer prevalence was similar among LRRK2-PD patients (32.3%), IPD patients (27.5%), and controls (27.5%; P = 0.33), LRRK2-PD had increased risks of leukemia (odds ratio [OR] = 4.55; 95% confidence interval [CI], 1.46-10.61) and skin cancer (OR = 1.61; 95% CI, 1.09-2.37). In the pooled analysis, LRRK2-PD patients had also elevated risks of leukemia (OR = 9.84; 95% CI, 2.15-44.94) and colon cancer (OR = 2.34; 95% CI, 1.15-4.74) when compared with IPD patients. CONCLUSIONS The increased risks of leukemia as well as skin and colon cancers among LRRK2-PD patients suggest that LRRK2 mutations heighten risks of certain cancers. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Roberto A Ortega
- Department of Neurology, Mount Sinai Beth Israel Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marta San Luciano
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Anat Mirelman
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Claustre Pont-Sunyer
- Neurology Service, Hospital Clínic, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat de Barcelona, Catalonia, Spain.,Neurology Unit, Hospital General de Granollers, Universitat Internacional de Catalunya, Granollers, Barcelona, Spain
| | | | - Dolores Vilas
- Neurology Service, Hospital Clínic, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat de Barcelona, Catalonia, Spain.,Movement Disorders Unit, Neurology Service, Hospital Universitari Germans Trias I Pujol, Badalona, Barcelona, Spain
| | - Eduardo Tolosa
- Neurology Service, Hospital Clínic, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat de Barcelona, Catalonia, Spain
| | - Daniela Berg
- Hertie-Institut für klinische Hirnforschung, Tubingen, Germany.,Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Bjørg Warø
- Department of Neurology, St. Olavs Hospital, and Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Amanda Glickman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Deborah Raymond
- Department of Neurology, Mount Sinai Beth Israel Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rivka Inzelberg
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Javier Ruiz-Martinez
- Neurology Department, Donostia University Hospital, Biodonostia Institut Research, Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas, San Sebastian, Gipuzkoa, Spain
| | - Elisabet Mondragon
- Neurology Department, Donostia University Hospital, Biodonostia Institut Research, Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas, San Sebastian, Gipuzkoa, Spain
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer and the Departments of Internal Medicine and Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Sharon Hassin-Baer
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Parkinson's Disease and Movement Disorders Clinic and Department of Neurology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Helen Mejia-Santana
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jan Aasly
- Department of Neurology, St. Olavs Hospital, and Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Karen Marder
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Nir Giladi
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Susan Bressman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
22
|
Signals Getting Crossed in the Entanglement of Redox and Phosphorylation Pathways: Phosphorylation of Peroxiredoxin Proteins Sparks Cell Signaling. Antioxidants (Basel) 2019; 8:antiox8020029. [PMID: 30678096 PMCID: PMC6406269 DOI: 10.3390/antiox8020029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen and nitrogen species have cell signaling properties and are involved in a multitude of processes beyond redox homeostasis. The peroxiredoxin (Prdx) proteins are highly sensitive intracellular peroxidases that can coordinate cell signaling via direct reactive species scavenging or by acting as a redox sensor that enables control of binding partner activity. Oxidation of the peroxidatic cysteine residue of Prdx proteins are the classical post-translational modification that has been recognized to modulate downstream signaling cascades, but increasing evidence supports that dynamic changes to phosphorylation of Prdx proteins is also an important determinant in redox signaling. Phosphorylation of Prdx proteins affects three-dimensional structure and function to coordinate cell proliferation, wound healing, cell fate and lipid signaling. The advent of large proteomic datasets has shown that there are many opportunities to understand further how phosphorylation of Prdx proteins fit into intracellular signaling cascades in normal or malignant cells and that more research is necessary. This review summarizes the Prdx family of proteins and details how post-translational modification by kinases and phosphatases controls intracellular signaling.
Collapse
|