1
|
Liu S, Pang H, Wang C, Wang Z, Wang M, Zhang Y, Zhang W, Sui Z. Rapid and accurate quantification of viable Bifidobacterium cells in milk powder with a propidium monoazide-antibiotic fluorescence in situ hybridization-flow cytometry method. J Dairy Sci 2024; 107:7678-7690. [PMID: 38908696 DOI: 10.3168/jds.2024-24876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
Due to its beneficial effects on human health, Bifidobacterium is commonly added to milk powder. Accurate quantification of viable Bifidobacterium is essential for assessing the therapeutic efficacy of milk powder. In this study, we introduced a novel propidium monoazide (PMA)-antibiotic fluorescence in situ hybridization (AFISH)-flow cytometry (FC) method to rapidly and accurately quantify viable Bifidobacterium cells in milk powder. Briefly, Bifidobacterium cells were treated with chloramphenicol (CM) to increase their rRNA content, followed by staining with RNA-binding oligonucleotide probes, based on the AFISH technique. Then, the DNA-binding dye PMA was used to differentiate between viable and nonviable cells. The PMA-AFISH-FC method, including sample pretreatment, CM treatment, dual staining, and FC analysis, required approximately 2 h and was found to be better than the current methods. This is the first study to implement FC combined with PMA and an oligonucleotide probe for detecting Bifidobacterium.
Collapse
Affiliation(s)
- Siyuan Liu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Hebei Key Laboratory of Analysis and Control for Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding 071001, China
| | - Huimin Pang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Hebei Key Laboratory of Analysis and Control for Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding 071001, China
| | - Chenglong Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Ziquan Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Meng Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Yunzhe Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Hebei Key Laboratory of Analysis and Control for Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding 071001, China
| | - Wei Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Hebei Key Laboratory of Analysis and Control for Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding 071001, China.
| | - Zhiwei Sui
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China.
| |
Collapse
|
2
|
Peng HC, Mohan S, Huq MT, Bull JA, Michaud T, Piercy TC, Hilber S, Wettasinghe AP, Slinker JD, Kreutz C, Stelling AL. Isotope-Edited Variable Temperature Infrared Spectroscopy for Measuring Transition Temperatures of Single A-T Watson-Crick Base Pairs in DNA Duplexes. Anal Chem 2024; 96:8868-8874. [PMID: 38775341 DOI: 10.1021/acs.analchem.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Experimental methods to determine transition temperatures for individual base pair melting events in DNA duplexes are lacking despite intense interest in these thermodynamic parameters. Here, we determine the dimensions of the thymine (T) C2═O stretching vibration when it is within the DNA duplex via isotopic substitutions at other atomic positions in the structure. First, we determined that this stretching state was localized enough to specific atoms in the molecule to make submolecular scale measurements of local structure and stability in high molecular weight complexes. Next, we develop a new isotope-edited variable temperature infrared method to measure melting transitions at various locations in a DNA structure. As an initial test of this "sub-molecular scale thermometer", we applied our T13C2 difference infrared signal to measure location-dependent melting temperatures (TmL) in a DNA duplex via variable temperature attenuated total reflectance Fourier transform infrared (VT-ATR-FTIR) spectroscopy. We report that the TmL of a single Watson-Crick A-T base pair near the end of an A-T rich sequence (poly T) is ∼34.9 ± 0.7°C. This is slightly lower than the TmL of a single base pair near the middle position of the poly T sequence (TmL ∼35.6±0.2°C). In addition, we also report that the TmL of a single Watson-Crick A-T base pair near the end of a 50% G-C sequence (12-mer) is ∼52.5 ± 0.3°C, which is slightly lower than the global melting Tm of the 12-mer sequence (TmL ∼54.0±0.9°C). Our results provide direct physical evidence for end fraying in DNA sequences with our novel spectroscopic methods.
Collapse
Affiliation(s)
- Hao-Che Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Shrijaa Mohan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Muhammad T Huq
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Julie A Bull
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Troy Michaud
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Turner C Piercy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Stefan Hilber
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Ashan P Wettasinghe
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jason D Slinker
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Allison L Stelling
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
3
|
Qiao YP, Ren CL. Correlated Hybrid DNA Structures Explored by the oxDNA Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:109-117. [PMID: 38154122 DOI: 10.1021/acs.langmuir.3c02231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Thermodynamically, perfect DNA hybridization can be formed between probes and their corresponding targets due to the favorable energy. However, this is not the case dynamically. Here, we use molecular dynamics (MD) simulations based on the oxDNA model to investigate the process of DNA microarray hybridization. In general, correlated hybrid DNA structures are formed, including one probe associated with several targets as well as one target hybrid with multiple probes leading to the target-mediated hybridization. The formation of these two types of correlated structures largely depends on the surface coverage of the DNA microarray. Moreover, DNA sequence, DNA length, and spacer length have an impact on the structural formation. Our findings shed light on the dynamics of DNA hybridization, which is important for the application of DNA microarray.
Collapse
Affiliation(s)
- Ye-Peng Qiao
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
4
|
Roychoudhury A, Dear JW, Kersaudy-Kerhoas M, Bachmann TT. Amplification-free electrochemical biosensor detection of circulating microRNA to identify drug-induced liver injury. Biosens Bioelectron 2023; 231:115298. [PMID: 37054598 DOI: 10.1016/j.bios.2023.115298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
Drug-induced liver injury (DILI) is a major challenge in clinical medicine and drug development. There is a need for rapid diagnostic tests, ideally at point-of-care. MicroRNA 122 (miR-122) is an early biomarker for DILI which is reported to increase in the blood before standard-of-care markers such as alanine aminotransferase activity. We developed an electrochemical biosensor for diagnosis of DILI by detecting miR-122 from clinical samples. We used electrochemical impedance spectroscopy (EIS) for direct, amplification free detection of miR-122 with screen-printed electrodes functionalised with sequence specific peptide nucleic acid (PNA) probes. We studied the probe functionalisation using atomic force microscopy and performed elemental and electrochemical characterisations. To enhance the assay performance and minimise sample volume requirements, we designed and characterised a closed-loop microfluidic system. We presented the EIS assay's specificity for wild-type miR-122 over non-complementary and single nucleotide mismatch targets. We successfully demonstrated a detection limit of 50 pM for miR-122. Assay performance could be extended to real samples; it displayed high selectivity for liver (miR-122 high) comparing to kidney (miR-122 low) derived samples extracted from murine tissue. Finally, we successfully performed an evaluation with 26 clinical samples. Using EIS, DILI patients were distinguished from healthy controls with a ROC-AUC of 0.77, a comparable performance to qPCR detection of miR-122 (ROC-AUC: 0.83). In conclusion, direct, amplification free detection of miR-122 using EIS was achievable at clinically relevant concentrations and in clinical samples. Future work will focus on realising a full sample-to-answer system which can be deployed for point-of-care testing.
Collapse
Affiliation(s)
- Appan Roychoudhury
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - James W Dear
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Maïwenn Kersaudy-Kerhoas
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK; Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Till T Bachmann
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
5
|
Schulze H, Arnott A, Libori A, Obaje EA, Bachmann TT. Temperature-Enhanced mcr-1 Colistin Resistance Gene Detection with Electrochemical Impedance Spectroscopy Biosensors. Anal Chem 2021; 93:6025-6033. [PMID: 33819015 DOI: 10.1021/acs.analchem.0c00666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibiotic resistance is now one of the biggest threats humankind is facing, as highlighted in a declaration by the General Assembly of the United Nations in 2016. In particular, the growing resistance rates of Gram-negative bacteria cause increasing concerns. The occurrence of the easily transferable, plasmid-encoded mcr-1 colistin resistance gene further worsened the situation, significantly enhancing the risk of the occurrence of pan-resistant bacteria. There is therefore a strong demand for new rapid molecular diagnostic tests for the detection of mcr-1 gene-associated colistin resistance. Electrochemical impedance spectroscopy (EIS) is a well-suited method for rapid antimicrobial resistance detection as it enables rapid, label-free target detection in a cost-efficient manner. Here, we describe the development of an EIS-based mcr-1 gene detection test, including the design of mcr-1-specific peptide nucleic acid probes and assay specificity optimization through temperature-controlled real-time kinetic EIS measurements. A new flow cell measurement setup enabled for the first time detailed real-time, kinetic temperature-controlled hybridization and dehybridization studies of EIS-based nucleic acid biosensors. The temperature-controlled EIS setup allowed single-nucleotide polymorphism discrimination. Target hybridization at 60 °C enhanced the perfect match/mismatch (PM/MM) discrimination ratio from 2.1 at room temperature to 3.4. A hybridization and washing temperature of 55 °C further increased the PM/MM discrimination ratio to 5.7 by diminishing the mismatch signal during the washing step while keeping the perfect match signal. This newly developed mcr-1 gene detection test enabled the direct, specific label, and amplification-free detection of mcr-1 gene harboring plasmids from Escherichia coli.
Collapse
Affiliation(s)
- Holger Schulze
- Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, U.K
| | - Andrew Arnott
- Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, U.K
| | - Adriana Libori
- Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, U.K
| | - Eleojo A Obaje
- Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, U.K
| | - Till T Bachmann
- Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, U.K
| |
Collapse
|
6
|
Jung S, Kim J, Kim J, Yang SH, Kim SK. Extensible multiplex real-time PCR for rapid bacterial identification with carbon nanotube composite microparticles. Biosens Bioelectron 2017; 94:256-262. [PMID: 28285204 DOI: 10.1016/j.bios.2017.02.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/14/2017] [Accepted: 02/28/2017] [Indexed: 01/08/2023]
Abstract
The early diagnosis of pathogenic bacteria is significant for bacterial identification and antibiotic resistance. Implementing rapid, sensitive, and specific detection, molecular diagnosis has been considered complementary to the conventional bacterial culture. Composite microparticles of a primer-immobilized network (cPIN) are developed for multiplex detection of pathogenic bacteria with real-time polymerase chain reaction (qPCR). A pair of specific primers are incorporated and stably conserved in a cPIN particle. One primer is crosslinked to the polymer network, and the other is bound to carbon nanotubes (CNTs) in the particle. At the initiation of qPCR, the latter primer is released from the CNTs and participates in the amplification. The amplification efficiency of this cPIN qPCR is estimated at more than 90% with suppressed non-specific signals from complex samples. In multiplexing, four infective pathogens are successfully discriminated using this cPIN qPCR. Multiplex qPCR conforms with the corresponding singleplex assays, proving independent amplification in each particle. Four bacterial targets from clinical samples are differentially analyzed in 30min of a single qPCR trial with multiple cPIN particles.
Collapse
Affiliation(s)
- Seungwon Jung
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jungmin Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Chemical & Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Junsun Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Chemical & Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang Hwa Yang
- MD Healthcare Co., Ltd., Seoul 03923, Republic of Korea
| | - Sang Kyung Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
7
|
Landuzzi F, Palla PL, Cleri F. Stability of radiation-damaged DNA after multiple strand breaks. Phys Chem Chem Phys 2017; 19:14641-14651. [DOI: 10.1039/c7cp02266b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Radiation induced double-strand breaks in DNA are more stable against thermal and mechanical stress than usually thought.
Collapse
Affiliation(s)
- Fabio Landuzzi
- Institut d'Electronique
- Microelectronique et Nanotechnologie (IEMN Cnrs UMR 8520)
- Université de Lille I
- 59652 Villeneuve d'Ascq
- France
| | - Pier Luca Palla
- Institut d'Electronique
- Microelectronique et Nanotechnologie (IEMN Cnrs UMR 8520)
- Université de Lille I
- 59652 Villeneuve d'Ascq
- France
| | - Fabrizio Cleri
- Institut d'Electronique
- Microelectronique et Nanotechnologie (IEMN Cnrs UMR 8520)
- Université de Lille I
- 59652 Villeneuve d'Ascq
- France
| |
Collapse
|
8
|
Jung YK, Kim J, Mathies RA. Microfluidic hydrogel arrays for direct genotyping of clinical samples. Biosens Bioelectron 2016; 79:371-8. [DOI: 10.1016/j.bios.2015.12.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/07/2015] [Accepted: 12/20/2015] [Indexed: 12/29/2022]
|
9
|
The effect of unequal strand length on short DNA duplex hybridization in a model microarray system: A Monte Carlo simulation study. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Elder RM, Pfaendtner J, Jayaraman A. Effect of Hydrophobic and Hydrophilic Surfaces on the Stability of Double-Stranded DNA. Biomacromolecules 2015; 16:1862-9. [DOI: 10.1021/acs.biomac.5b00469] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Robert M. Elder
- U.S. Army Research
Laboratory, Aberdeen Proving
Ground, MD 21005, United States
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Jim Pfaendtner
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Arthi Jayaraman
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Departments
of Chemical and Biomolecular Engineering and Materials Science and
Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
11
|
Jung YK, Kim J, Mathies RA. Microfluidic Linear Hydrogel Array for Multiplexed Single Nucleotide Polymorphism (SNP) Detection. Anal Chem 2015; 87:3165-70. [DOI: 10.1021/ac5048696] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yun Kyung Jung
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- School
of Natural
Science, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Jungkyu Kim
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Richard A. Mathies
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
12
|
McGinely NL, Plumb JA, Wheate NJ. DNA-based aptamer fails as a simultaneous cancer targeting agent and drug delivery vehicle for a phenanthroline-based platinum(II) complex. J Inorg Biochem 2013; 128:124-30. [PMID: 23954482 DOI: 10.1016/j.jinorgbio.2013.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/12/2013] [Accepted: 07/13/2013] [Indexed: 10/26/2022]
Abstract
The sgc8c aptamer is a 41-base DNA oligonucleotide that binds to leukaemia cells with high affinity and specificity. In this work we examined the utility of this aptamer as both a delivery vehicle and an active targeting agent for an inert platinum complex [(1,10-phenathroline)(ethylenediamine)platinum(II)](2+). The aptamer forms a stem-and-loop confirmation as determined by circular dichroism. This conformation is adopted in both water and phosphate buffered saline solutions. The metal complex binds through intercalation into the aptamer's double helical stem with a binding constant of approximately 4.3 × 10(4) M(-1). Binding of the metal complex to the aptamer had a significant effect on the aptamer's global conformation, and increased its melting temperature by 28°C possibly through lengthening and stiffening of the aptamer stem. The effect of the aptamer on the metal complex's cytotoxicity and cellular uptake was determined using in vitro assays with the target leukaemia cell line CCRF-CEM and the off-target ovarian cancer cell lines A2780 and A2780cp70. The aptamer has little inherent cytotoxicity and when used to deliver the metal complex results in a significant decrease in the metal complex's cytotoxicity and uptake. The reason(s) for the poor uptake and activity may be due to the change in aptamer conformation which affects its ability to recognise leukaemia cells.
Collapse
Affiliation(s)
- Nicola L McGinely
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | | | | |
Collapse
|
13
|
Belozerova I, Ge D, Levicky R. Electrochemical measurements of DNA melting on surfaces. Methods Mol Biol 2013; 1025:127-136. [PMID: 23918334 DOI: 10.1007/978-1-62703-462-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Thermal denaturation, or melting, measurements are a classic technique for analysis of thermodynamics of nucleic base driven associations in solution, as well as of interactions between nucleic acids and small molecule ligands such as drugs or carcinogens. Performed on surface-immobilized DNA films, this well-established technique can help understand how energetics of surface hybridization relate to those in solution, as well as provide high-throughput platforms for screening of small molecule ligands. Here we describe methods for measuring DNA melting transitions at solid/liquid interfaces with focus on the role of immobilization chemistry, including a common "immobilization-through-self-assembly" approach that is effective at moderate temperatures, and a thermo-stable approach based on polymer-supported DNA monolayers that can be used at elevated temperatures. We also discuss conditions necessary for reversible measurements, as signified by superimposition of the association (cooling) and dissociation (heating) transitions of immobilized DNA strands.
Collapse
|