1
|
Sampaio CS, Angelotti JAF, Fernandez-Lafuente R, Hirata DB. Lipase immobilization via cross-linked enzyme aggregates: Problems and prospects - A review. Int J Biol Macromol 2022; 215:434-449. [PMID: 35752332 DOI: 10.1016/j.ijbiomac.2022.06.139] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 02/08/2023]
Abstract
In this review we have focused on the preparation of cross-linked enzyme aggregates (CLEAs) from lipases, as these are among the most used enzyme in bioprocesses. This immobilization method is considered very attractive due to preparation simplicity, non-use of supports and the possibility of using crude enzyme extracts. CLEAs provide lipase stabilization under extreme temperature or pH conditions or in the presence of organic solvents, in addition to preventing enzyme leaching in aqueous medium. However, it presents some problems in the preparation and limitations in their use. The problems in preparation refer mainly to the crosslinking step, and may be solved using an aminated feeder. The problems in handling have been tackled designing magnetic-CLEAs or trapping the CLEAs in particles with better mechanical properties, the substrate diffusion problems has been reduced by producing more porous-CLEAs, etc. The enzyme co-immobilization using combi-CLEAs is also a new tendency. Therefore, this review explores the CLEAs methodology aimed at lipase immobilization and its applications.
Collapse
Affiliation(s)
- Camila S Sampaio
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Joelise A F Angelotti
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Roberto Fernandez-Lafuente
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain.; Center of Excellence in Bionanoscience Research, Member of The External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Daniela B Hirata
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil.
| |
Collapse
|
2
|
Lambhiya S, Patel G, Banerjee UC. Immobilization of transaminase from Bacillus licheniformis on copper phosphate nanoflowers and its potential application in the kinetic resolution of RS-α-methyl benzyl amine. BIORESOUR BIOPROCESS 2021; 8:126. [PMID: 38650298 PMCID: PMC10992165 DOI: 10.1186/s40643-021-00474-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/28/2021] [Indexed: 11/10/2022] Open
Abstract
This study reports the isolation and partial purification of transaminase from the wild species of Bacillus licheniformis. Semi-purified transaminase was immobilized on copper nanoflowers (NFs) synthesized through sonochemical method and explored it as a nanobiocatalyst. The conditions for the synthesis of transaminase NFs [TA@Cu3(PO4)2NF] were optimized. Synthesized NFs revealed the protein loading and activity yield-60 ± 5% and 70 ± 5%, respectively. The surface morphology of the synthesized hybrid NFs was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed the average size to be around 1 ± 0.5 μm. Fourier-transform infrared (FTIR) was used to confirm the presence of the enzyme inside the immobilized matrix. In addition, circular dichroism and florescence spectroscopy were also used to confirm the integrity of the secondary and tertiary structures of the protein in the immobilized material. The transaminase hybrid NFs exhibited enhanced kinetic properties and stability over the free enzyme and revealed high reusability. Furthermore, the potential application of the immobilized transaminase hybrid NFs was demonstrated in the resolution of racemic α-methyl benzylamine.
Collapse
Affiliation(s)
- Shraddha Lambhiya
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062, Punjab, India
| | - Gopal Patel
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062, Punjab, India
- Sagar Institute of Pharmacy and Technology, Gandhi Nagar Campus Opposite International Airport, Bhopal, 462036, MP, India
| | - Uttam Chand Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062, Punjab, India.
- Departments of Biotechnology, Amity University, Sector 82A, IT City, International Airport Road, Mohali, 5300016, India.
| |
Collapse
|
3
|
de Sousa RR, Pinto MCC, Aguieiras ECG, Cipolatti EP, Manoel EA, da Silva AS, Pinto JC, Freire DMG, Ferreira-Leitão VS. Comparative performance and reusability studies of lipases on syntheses of octyl esters with an economic approach. Bioprocess Biosyst Eng 2021; 45:131-145. [PMID: 34605995 DOI: 10.1007/s00449-021-02646-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
A suitable immobilized lipase for esters syntheses should be selected considering not only its cost. We evaluated five biocatalysts in syntheses of octyl caprylate, octyl caprate, and octyl laurate, in which conversions higher than 90% were achieved. Novozym® 435 and non-commercial preparations (including a dry fermented solid) were selected for short-term octyl laurate syntheses using different biocatalysts loadings. By increasing the biocatalyst's loading the lipase's reusability also raised, but without strict proportionality, which resulted in a convergence between the lowest biocatalyst loading and the lowest cost per batch. The use of a dry fermented solid was cost-effective, even using loadings as high as 20.0% wt/wt due to its low obtaining cost, although exhibiting low productiveness. The combination of biocatalyst's cost, esterification activity, stability, and reusability represents proper criteria for the choice. This kind of assessment may help to establish quantitative goals to improve or to develop new biocatalysts.
Collapse
Affiliation(s)
- Ronaldo Rodrigues de Sousa
- Biocatalysis Laboratory, Ministry of Science, Technology, and Innovations, National Institute of Technology, Rio de Janeiro, RJ, 20081-312, Brazil.,Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Martina Costa Cerqueira Pinto
- Federal University of Rio de Janeiro, Chemical Engineering Program, COPPE, Rio de Janeiro, RJ, 21941-972, Brazil.,Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Erika Cristina Gonçalves Aguieiras
- Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.,Federal University of Rio de Janeiro Campus, UFRJ - Duque de Caxias, Prof. Geraldo Cidade, Duque de Caxias, RJ, 25240-005, Brazil
| | - Eliane Pereira Cipolatti
- Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.,Pharmaceutical Biotechnology Program, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-972, Brazil
| | - Evelin Andrade Manoel
- Pharmaceutical Biotechnology Program, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-972, Brazil
| | - Ayla Sant'Ana da Silva
- Biocatalysis Laboratory, Ministry of Science, Technology, and Innovations, National Institute of Technology, Rio de Janeiro, RJ, 20081-312, Brazil.,Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - José Carlos Pinto
- Federal University of Rio de Janeiro, Chemical Engineering Program, COPPE, Rio de Janeiro, RJ, 21941-972, Brazil
| | | | - Viridiana Santana Ferreira-Leitão
- Biocatalysis Laboratory, Ministry of Science, Technology, and Innovations, National Institute of Technology, Rio de Janeiro, RJ, 20081-312, Brazil. .,Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.
| |
Collapse
|
4
|
Enhanced Performance of Immobilized Rhizopus oryzae Lipase on Coated Porous Polypropylene Support with Additives. Catalysts 2021. [DOI: 10.3390/catal11030303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The immobilization of Rhizopus oryzae lipase (RoL) by hydrophobic adsorption on polypropylene supports with additives was investigated. Additives such as hen egg albumin, sodium caseinate and CAVAMAX® W6 were used to coat the support during immobilization where the immobilized RoL on coated support was compared to those of noncoated support. Following the immobilization, the catalytic activity of immobilized RoL was characterized based on different temperatures and pH. The immobilized RoL without additives showed optimal lipase activity at an optimum temperature of 50 °C and pH 6. However, RoL lipase that was immobilized on support treated with CAVAMAX® W6 had better performance in terms of hydrolytic activity and stability as compared to other additives. In addition, by having a support treated with hen egg albumin, the immobilized RoL was capable of yielding higher ester during esterification reactions.
Collapse
|
5
|
Fatima S, Faryad A, Ataa A, Joyia FA, Parvaiz A. Microbial lipase production: A deep insight into the recent advances of lipase production and purification techniques. Biotechnol Appl Biochem 2020; 68:445-458. [PMID: 32881094 DOI: 10.1002/bab.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Importance of enzymes is ever-rising particularly microbial lipases holding great industrial worth owing to their potential to catalyze a diverse array of chemical reactions in aqueous as well as nonaqueous settings. International lipase market is anticipated to cross USD 797.7 million till 2025, rising at a 6.2% compound annual growth rate from 2017 to 2025. The recent breakthrough in the field of lipase research is the generation of new and upgraded versions of lipases via molecular strategies. For example, integration of rational enzyme design and directed enzyme evolution to attain desired properties in lipases. Normally, purification of lipase with significant purity is achieved through a multistep procedure. Such multiple step approach of lipase purification entails both conventional and novel techniques. The present review attempts to provide an overview of different aspects of lipase production including fermentation techniques, factors affecting lipase production, and purification strategies, with the aim to assist researchers to pick a suitable technique for the production and purification of lipase.
Collapse
Affiliation(s)
- Samar Fatima
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Faryad
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Asia Ataa
- Department of Biochemistry, Baha-ud-Din Zakariya, University Multan, Multan, Pakistan
| | - Faiz Ahmad Joyia
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Aqsa Parvaiz
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Effect of cyclic and acyclic surfactants on the activity of Candida rugosa lipase. Bioprocess Biosyst Eng 2020; 43:2085-2093. [DOI: 10.1007/s00449-020-02397-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/23/2020] [Indexed: 10/24/2022]
|
7
|
Li C, Zhao J, Zhang Z, Jiang Y, Bilal M, Jiang Y, Jia S, Cui J. Self-assembly of activated lipase hybrid nanoflowers with superior activity and enhanced stability. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107582] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Rodrigues de Sousa R, Vitor Belo Pazutti L, Zamith Leal Dalmaso G, Frauches Siqueira D, Sant’Ana da Silva A, Ferreira-Leitão VS. A practical approach to obtain high yield lipase-mediated synthesis of octyl caprylate with Novozym 435. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1739025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ronaldo Rodrigues de Sousa
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, Innovations and Communications, Rio de Janeiro, Brazil
| | - Leonardo Vitor Belo Pazutti
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, Innovations and Communications, Rio de Janeiro, Brazil
- Military Institute of Engineering, Rio de Janeiro, Brazil
| | - Gabriel Zamith Leal Dalmaso
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, Innovations and Communications, Rio de Janeiro, Brazil
| | - Diane Frauches Siqueira
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, Innovations and Communications, Rio de Janeiro, Brazil
| | - Ayla Sant’Ana da Silva
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, Innovations and Communications, Rio de Janeiro, Brazil
- Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Viridiana Santana Ferreira-Leitão
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, Innovations and Communications, Rio de Janeiro, Brazil
- Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Bhattacharjee D, Goswami D. Surfactant assisted production of ricinoleic acid using cross-linked and entrapped porcine pancreas lipase. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1730187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Debapriya Bhattacharjee
- Department of Chemical Engineering, University College of Science and Technology, University of Calcutta, Kolkata, India
| | - Debajyoti Goswami
- Department of Chemical Engineering, University College of Science and Technology, University of Calcutta, Kolkata, India
| |
Collapse
|
10
|
Shin M, Seo J, Baek Y, Lee T, Jang M, Park C. Novel and Efficient Synthesis of Phenethyl Formate via Enzymatic Esterification of Formic Acid. Biomolecules 2020; 10:biom10010070. [PMID: 31906270 PMCID: PMC7022603 DOI: 10.3390/biom10010070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 11/24/2019] [Indexed: 12/19/2022] Open
Abstract
Current methods for the production of esters, including chemical synthesis and extraction from natural sources, are hindered by low yields and environmental pollution. The enzymatic synthesis of these compounds could help overcome these problems. In this study, phenethyl formate, a commercially valuable formate ester, was synthesized using commercial immobilized lipases. The effects of specific enzymes, enzyme concentration, formic acid:phenethyl alcohol molar ratio, temperature, and solvent were studied in order to optimize the synthesis conditions, which were identified as 15 g/L of Novozym 435 enzyme, a 1:5 formic acid:phenethyl alcohol molar ratio, a 40 °C reaction temperature, and 1,2-dichloroethane as the solvent. Under these conditions, phenethyl formate was obtained in a conversion yield of 95.92%. In addition, when 1,2-dichloroethane was replaced with toluene as the solvent, the enzyme could be recycled for at least 20 reactions with a steady conversion yield above 92%, testifying to the economic aspects of the process. The enzymatic synthesis of phenethyl formate using the proposed method is more environmentally friendly than methods currently employed in academic and laboratory settings. Moreover, the method has the potential to enhance the value-added properties of formic acid owing to its downstream use in the production of commercially essential esters.
Collapse
Affiliation(s)
- Minguk Shin
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (M.S.); (J.S.); (Y.B.); (T.L.)
| | - Jeongbae Seo
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (M.S.); (J.S.); (Y.B.); (T.L.)
| | - Yesol Baek
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (M.S.); (J.S.); (Y.B.); (T.L.)
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (M.S.); (J.S.); (Y.B.); (T.L.)
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Korea;
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (M.S.); (J.S.); (Y.B.); (T.L.)
- Correspondence:
| |
Collapse
|
11
|
Lipase Catalysis in Presence of Nonionic Surfactants. Appl Biochem Biotechnol 2019; 191:744-762. [DOI: 10.1007/s12010-019-03212-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023]
|
12
|
Pervez S, Nawaz MA, Shahid F, Aman A, Tauseef I, Qader SAU. Characterization of cross-linked amyloglucosidase aggregates from Aspergillus fumigatus KIBGE-IB33 for continuous production of glucose. Int J Biol Macromol 2019; 135:1252-1260. [DOI: 10.1016/j.ijbiomac.2018.11.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 04/24/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
|
13
|
Zhao JF, Tao-Wang, Lin JP, Yang LR, Wu MB. Preparation of High-purity 1,3-Diacylglycerol Using Performance-enhanced Lipase Immobilized on Nanosized Magnetite Particles. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0458-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Enhanced Performance of Rhizopus oryzae Lipase by Reasonable Immobilization on Magnetic Nanoparticles and Its Application in Synthesis 1,3-Diacyglycerol. Appl Biochem Biotechnol 2019; 188:677-689. [DOI: 10.1007/s12010-018-02947-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/26/2018] [Indexed: 11/26/2022]
|
15
|
Xue P, Hu C, Yan X, Fang G, Shen H. Enhancement of activity and reusability of lipase immobilized on magnetic mesoporous silica for the resolution of racemic secondary alcohols. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ping Xue
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical EngineeringCollege of Chemistry & Chemical Engineering, Ningxia University Yinchuan China
| | - Chun‐Miao Hu
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical EngineeringCollege of Chemistry & Chemical Engineering, Ningxia University Yinchuan China
| | | | | | | |
Collapse
|
16
|
Soni S, Dwivedee BP, Chand Banerjee U. Facile fabrication of a recyclable nanobiocatalyst: immobilization of Burkholderia cepacia lipase on carbon nanofibers for the kinetic resolution of a racemic atenolol intermediate. RSC Adv 2018; 8:27763-27774. [PMID: 35542692 PMCID: PMC9083555 DOI: 10.1039/c8ra05463k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/25/2018] [Indexed: 11/21/2022] Open
Abstract
Immobilization of surfactant treated Burkholderia cepacia lipase on the surface of carbon nanofibers was performed via two different methods: adsorption and covalent attachment. Simple adsorption of lipase on carbon nanofibers turned out to be a poor strategy, exhibiting an immobilization efficiency of 36%, while covalent coupling using 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide (EDC)/N-hydroxysuccinimide (NHS) showed better immobilization efficiency (56%). The nanobioconjugate fabricated using the latter method showed an eleven-fold increase in enzyme activity towards the hydrolysis of p-nitrophenyl palmitate and enhanced dispersion in organic solvents. At 80 °C, the half-life of lipase in the nanobioconjugate was almost 20 fold higher than that of free lipase, demonstrating its thermal stability. The as-prepared nanobioconjugate was reused for nine consecutive reaction cycles achieving 100% yield in the hydrolysis of p-nitrophenol palmitate but losing almost 50% of the initial activity after seven operational cycles. Finally, this heterogeneous nanobioconjugate was more active and enantioselective [C = 47.8, eep = 97.0 and E = 194] than free lipase [C = 35.4, eep = 97.1 and E = 88] towards the kinetic resolution of a racemic intermediate of atenolol yielding the S enantiomer, which signifies its importance as a nanobiocatalyst.
Collapse
Affiliation(s)
- Surbhi Soni
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research S.A.S. Nagar 160062 Punjab India
| | - Bharat Prasad Dwivedee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research S.A.S. Nagar 160062 Punjab India
| | - Uttam Chand Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research S.A.S. Nagar 160062 Punjab India
| |
Collapse
|
17
|
Sarmah N, Revathi D, Sheelu G, Yamuna Rani K, Sridhar S, Mehtab V, Sumana C. Recent advances on sources and industrial applications of lipases. Biotechnol Prog 2017; 34:5-28. [DOI: 10.1002/btpr.2581] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Nipon Sarmah
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); Chennai 600 113 India
| | - D. Revathi
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - G. Sheelu
- Medicinal Chemistry and Pharmacology Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - K. Yamuna Rani
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - S. Sridhar
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - V. Mehtab
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - C. Sumana
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); Chennai 600 113 India
| |
Collapse
|
18
|
Hu X, Liu L, Chen D, Wang Y, Zhang J, Shao L. Co-expression of the recombined alcohol dehydrogenase and glucose dehydrogenase and cross-linked enzyme aggregates stabilization. BIORESOURCE TECHNOLOGY 2017; 224:531-535. [PMID: 27838320 DOI: 10.1016/j.biortech.2016.10.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
As the key chiral precursor of Crizotinib (S)-1-(2,6-dichloro-3-fluorophenyl) phenethyl alcohol can be prepared from 1-(2,6-dichloro-3-fluorophenyl) acetophenone by the reductive coupling reactions of alcohol dehydrogenase (ADH) and glucose dehydrogenases (GDH). In this work the heterologous expression plasmids harbouring the encoding genes of ADH and GDH were constructed respectively and co-expressed in the same E. coli strain. After optimization, a co-cross-linked enzyme aggregates (co-CLEAs) of both ADH and GDH were prepared from crude enzyme extracts by cross-linking with the mass ratio of Tween 80, glutaraldehyde and total protein (0.6:1:2) which rendered immobilized biocatalysts that retained 81.90% (ADH) and 40.29% (GDH) activity retention. The ADH/GDH co-CLEAs show increased thermal stability and pH stability compared to both enzymes. The ADH/GDH co-CLEAs also show 80% (ADH) and 87% (GDH) residual activity after seven cycles of repeated use. These results make the ADH/GDH co-CLEAs a potential biocatalyst for the industrial preparation of (S)-1-(2,6-dichloro-3-fluorophenyl) phenethyl alcohol.
Collapse
Affiliation(s)
- Xiaozhi Hu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, 285 Gebaini Rd., Shanghai 200040, China; School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Liqin Liu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, 285 Gebaini Rd., Shanghai 200040, China
| | - Daijie Chen
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, 285 Gebaini Rd., Shanghai 200040, China
| | - Yongzhong Wang
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei 230039, China
| | - Junliang Zhang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, 285 Gebaini Rd., Shanghai 200040, China
| | - Lei Shao
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, 285 Gebaini Rd., Shanghai 200040, China.
| |
Collapse
|