1
|
Islam F, Javdan SB, Lewis MR, Craig JD, Wu H, Deans TL. Programming megakaryocytes to produce engineered platelets for delivering non-native proteins. Commun Biol 2025; 8:638. [PMID: 40253534 PMCID: PMC12009418 DOI: 10.1038/s42003-025-08017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/28/2025] [Indexed: 04/21/2025] Open
Abstract
Platelets are anucleate cells naturally filled with secretory granules that store large amounts of protein to be released in response to certain physiological conditions. Cell engineering can endow platelets with the ability to deliver non-native proteins by modifying them as they develop during the cell fate process. This study presents a strategy to efficiently generate mouse platelets from pluripotent stem cells and demonstrates their potential as bioengineered protein delivery platforms. By modifying megakaryocytes, the progenitor cells of platelets, we successfully engineered platelets capable of packaging and delivering non-native proteins. These engineered platelets can offer flexible delivery platforms to release non-native proteins in a controlled manner upon activation when packaged into α-granules or deliver active enzymes to genetically alter recipient cells. Our findings highlight platelets as a promising tool for protein delivery in cell therapy applications.
Collapse
Affiliation(s)
- Farhana Islam
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Shwan B Javdan
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Mitchell R Lewis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - James D Craig
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Han Wu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Kweon S, Kim S, Choi HS, Jo K, Park JM, Baek EJ. Current status of platelet manufacturing in 3D or bioreactors. Biotechnol Prog 2023; 39:e3364. [PMID: 37294031 DOI: 10.1002/btpr.3364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023]
Abstract
Blood shortages for transfusion are global issues of grave concern. As in vitro manufactured platelets are promising substitutes for blood donation, recent research has shown progresses including different cell sources, different bioreactors, and three-dimensional materials. The first-in-human clinical trial of cultured platelets using induced pluripotent stem cell-derived platelets began in Japan and demonstrated its quality, safety, and efficacy. A novel bioreactor with fluid motion for platelet production has been reported. Herein, we discuss various cell sources for blood cell production, recent advances in manufacturing processes, and clinical applications of cultured blood.
Collapse
Affiliation(s)
- Soonho Kweon
- Department of Research and Development, ArtBlood Inc, Seoul, Republic of Korea
| | - Suyeon Kim
- Department of Research and Development, ArtBlood Inc, Seoul, Republic of Korea
| | - Hye Sook Choi
- Department of Research and Development, ArtBlood Inc, Seoul, Republic of Korea
| | - Kyeongwon Jo
- Department of Research and Development, ArtBlood Inc, Seoul, Republic of Korea
| | - Ju Mi Park
- Department of Research and Development, ArtBlood Inc, Seoul, Republic of Korea
| | - Eun Jung Baek
- Department of Research and Development, ArtBlood Inc, Seoul, Republic of Korea
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Manufacture and Quality Control of Human Umbilical Cord-Derived Mesenchymal Stem Cell Sheets for Clinical Use. Cells 2022; 11:cells11172732. [PMID: 36078137 PMCID: PMC9454431 DOI: 10.3390/cells11172732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Human umbilical cord-derived mesenchymal stem cell (UC−MSC) sheets have attracted much attention in cell therapy. However, the culture media and coating matrix used for the preparation of UC−MSC sheets have not been safe enough to comply with current clinical drug standards. Moreover, the UC−MSC sheet preservation systems developed before did not comply with Good Manufacturing Practice (GMP) regulations. In this study, the culture medium and coating matrix were developed for UC−MSC sheet production to comply with clinical drug standards. Additionally, the GMP-compliant preservation solution and method for the UC−MSC sheet were developed. Then, quality standards of the UC−MSC sheet were formulated according to national and international regulations for drugs. Finally, the production process of UC−MSC sheets on a large scale was standardized, and three batches of trial production were conducted and tested to meet the established quality standards. This research provides the possibility for clinical trials of UC−MSC sheet products in the development stage of new drugs and lays the foundation for industrial large-scale production after the new drug is launched.
Collapse
|
4
|
Ueki M, Tansho N, Sato M, Kanamori H, Kato Y. Improved cultivation of Chinese hamster ovary cells in bioreactor with reciprocal mixing. J Biosci Bioeng 2021; 132:531-536. [PMID: 34474981 DOI: 10.1016/j.jbiosc.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022]
Abstract
We have constructed a new bioreactor with reciprocal mixing that is better suited for the cultivation of delicate animal cells. In-silico simulation (computational fluid dynamics) suggested both maximum and average shear stresses in the bioreactor with reciprocal mixing to be remarkably lower than in a conventional bioreactor with rotary mixing. Although we could not find any difference in growth speed and cell density between the bioreactors with reciprocal and rotary mixing, we did find cell viability in the reciprocal-mixing bioreactor to be retained longer than in the rotary-paddle bioreactor. This implied that cell culture in a bioreactor with reciprocal mixing could be prolonged for the production of target proteins. Leakage of lactate dehydrogenase activity into the culture medium was suppressed much more in the reciprocal-mixing bioreactor than in the rotary-paddle one. Production of human tissue plasminogen activator in the former system was also observed to be much higher than in the latter. Therefore, a bioreactor with reciprocal mixing was concluded to be better suited for the cultivation of animal cells and efficient production of proteins, such as antibody drugs and various growth factors.
Collapse
Affiliation(s)
- Masashi Ueki
- Animal Cell Incubator Laboratory, RIKEN Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Noriyuki Tansho
- Animal Cell Incubator Laboratory, RIKEN Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Mixing Technology Laboratory, Satake Chemical Equipment Mfg., Ltd., 60 Niizo, Toda, Saitama 335-0021, Japan
| | - Makoto Sato
- Animal Cell Incubator Laboratory, RIKEN Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Mixing Technology Laboratory, Satake Chemical Equipment Mfg., Ltd., 60 Niizo, Toda, Saitama 335-0021, Japan
| | - Hisayuki Kanamori
- Animal Cell Incubator Laboratory, RIKEN Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Mixing Technology Laboratory, Satake Chemical Equipment Mfg., Ltd., 60 Niizo, Toda, Saitama 335-0021, Japan
| | - Yoshikazu Kato
- Animal Cell Incubator Laboratory, RIKEN Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Mixing Technology Laboratory, Satake Chemical Equipment Mfg., Ltd., 60 Niizo, Toda, Saitama 335-0021, Japan
| |
Collapse
|
5
|
Generation and manipulation of human iPSC-derived platelets. Cell Mol Life Sci 2021; 78:3385-3401. [PMID: 33439272 PMCID: PMC7804213 DOI: 10.1007/s00018-020-03749-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/01/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
The discovery of iPSCs has led to the ex vivo production of differentiated cells for regenerative medicine. In the case of transfusion products, the derivation of platelets from iPSCs is expected to complement our current blood-donor supplied transfusion system through donor-independent production with complete pathogen-free assurance. This derivation can also overcome alloimmune platelet transfusion refractoriness by resulting in autologous, HLA-homologous or HLA-deficient products. Several developments were necessary to produce a massive number of platelets required for a single transfusion. First, expandable megakaryocytes were established from iPSCs through transgene expression. Second, a turbulent-type bioreactor with improved platelet yield and quality was developed. Third, novel drugs that enabled efficient feeder cell-free conditions were developed. Fourth, the platelet-containing suspension was purified and resuspended in an appropriate buffer. Finally, the platelet product needed to be assured for competency and safety including non-tumorigenicity through in vitro and in vivo preclinical tests. Based on these advancements, a clinical trial has started. The generation of human iPSC-derived platelets could evolve transfusion medicine to the next stage and assure a ubiquitous, safe supply of platelet products. Further, considering the feasibility of gene manipulations in iPSCs, other platelet products may bring forth novel therapeutic measures.
Collapse
|
6
|
Ahmed S, Chauhan VM, Ghaemmaghami AM, Aylott JW. New generation of bioreactors that advance extracellular matrix modelling and tissue engineering. Biotechnol Lett 2019; 41:1-25. [PMID: 30368691 PMCID: PMC6313369 DOI: 10.1007/s10529-018-2611-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
Bioreactors hold a lot of promise for tissue engineering and regenerative medicine applications. They have multiple uses including cell cultivation for therapeutic production and for in vitro organ modelling to provide a more physiologically relevant environment for cultures compared to conventional static conditions. Bioreactors are often used in combination with scaffolds as the nutrient flow can enhance oxygen and diffusion throughout the 3D constructs to prevent the formation of necrotic cores. A variety of scaffolds have been fabricated to achieve a structural architecture that mimic native extracellular matrix. Future developments of in vitro models will incorporate the ability to non-invasively monitor the cellular microenvironment to enhance the understanding of in vitro conditions. This review details current advancements in bioreactor and scaffold systems and provides insight on how in vitro models can be augmented for future biomedical applications.
Collapse
Affiliation(s)
- Shehnaz Ahmed
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, UK
| | - Veeren M. Chauhan
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, UK
| | - Amir M. Ghaemmaghami
- School of Life Sciences, University of Nottingham, Life Sciences Building, University Park, Nottingham, NG7 2RD UK
| | - Jonathan W. Aylott
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, UK
| |
Collapse
|