1
|
Xu H, Shi L, Boob AG, Park W, Tan SI, Tran VG, Schultz JC, Zhao H. Discovery, characterization, and application of chromosomal integration sites for stable heterologous gene expression in Rhodotorula toruloides. Metab Eng 2025; 89:22-32. [PMID: 39956426 DOI: 10.1016/j.ymben.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/25/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Rhodotorula toruloides is a non-model, oleaginous yeast uniquely suited to produce acetyl-CoA-derived chemicals. However, the lack of well-characterized genomic integration sites has impeded the metabolic engineering of this organism. Here we report a set of computationally predicted and experimentally validated chromosomal integration sites in R. toruloides. We first implemented an in silico platform by integrating essential gene information and transcriptomic data to identify candidate sites that meet stringent criteria. We then conducted a full experimental characterization of these sites, assessing integration efficiency, gene expression levels, impact on cell growth, and long-term expression stability. Among the identified sites, 12 exhibited integration efficiencies of 50% or higher, making them sufficient for most metabolic engineering applications. Using selected high-efficiency sites, we achieved simultaneous double and triple integrations and efficiently integrated long functional pathways (up to 14.7 kb). Additionally, we developed a new inducible marker recycling system that allows multiple rounds of integration at our characterized sites. We validated this system by performing five sequential rounds of GFP integration and three sequential rounds of MaFAR integration for fatty alcohol production, demonstrating, for the first time, precise gene copy number tuning in R. toruloides. These characterized integration sites should significantly advance metabolic engineering efforts and future genetic tool development in R. toruloides.
Collapse
Affiliation(s)
- Hao Xu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Longyuan Shi
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Aashutosh Girish Boob
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Wooyoung Park
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Shih-I Tan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Vinh Gia Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - John Carl Schultz
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
2
|
Adamczyk PA, Jiang T, Jetty K, Ganesan V, Liu D. Recent developments of oleaginous yeasts toward sustainable biomanufacturing. Curr Opin Biotechnol 2025; 93:103297. [PMID: 40157044 DOI: 10.1016/j.copbio.2025.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Oleaginous yeast are remarkably versatile organisms, distinguished by their natural capacities to accumulate high levels of neutral lipids and broad substrate range. With recent growing interests in engineering non-model organisms as superior biomanufacturing platforms, oleaginous yeasts have emerged as promising chassis for oleochemicals, terpenoids, organic acids, and other valuable products. Advancement in systems biology along with genetic tool development have significantly expanded our understanding of the metabolism in these species and enabled engineering efforts to produce biofuels and bioproducts from diverse feedstocks. This review examines the latest technical advances in oleaginous yeast research toward sustainable biomanufacturing. We cover recent developments in systems biology-enabled metabolism understanding, genetic tools, feedstock utilization, and strain engineering approaches for the production of various valuable chemicals.
Collapse
Affiliation(s)
- Paul A Adamczyk
- Agile Biofoundry, Emeryville, CA, USA; Sandia National Laboratories, Livermore, CA, USA
| | - Tian Jiang
- Agile Biofoundry, Emeryville, CA, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Karuna Jetty
- Agile Biofoundry, Emeryville, CA, USA; Sandia National Laboratories, Livermore, CA, USA
| | - Vijaydev Ganesan
- Agile Biofoundry, Emeryville, CA, USA; Sandia National Laboratories, Livermore, CA, USA
| | - Di Liu
- Agile Biofoundry, Emeryville, CA, USA; Sandia National Laboratories, Livermore, CA, USA.
| |
Collapse
|
3
|
Liao L, Xie M, Zheng X, Zhou Z, Deng Z, Gao J. Molecular insights fast-tracked: AI in biosynthetic pathway research. Nat Prod Rep 2025. [PMID: 40130306 DOI: 10.1039/d4np00003j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Covering: 2000 to 2025This review explores the potential of artificial intelligence (AI) in addressing challenges and accelerating molecular insights in biosynthetic pathway research, which is crucial for developing bioactive natural products with applications in pharmacology, agriculture, and biotechnology. It provides an overview of various AI techniques relevant to this research field, including machine learning (ML), deep learning (DL), natural language processing, network analysis, and data mining. AI-powered applications across three main areas, namely, pathway discovery and mining, pathway design, and pathway optimization, are discussed, and the benefits and challenges of integrating omics data and AI for enhanced pathway research are also elucidated. This review also addresses the current limitations, future directions, and the importance of synergy between AI and experimental approaches in unlocking rapid advancements in biosynthetic pathway research. The review concludes with an evaluation of AI's current capabilities and future outlook, emphasizing the transformative impact of AI on biosynthetic pathway research and the potential for new opportunities in the discovery and optimization of bioactive natural products.
Collapse
Affiliation(s)
- Lijuan Liao
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, College of Bee, Biomedical and Pharmaceutical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Mengjun Xie
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, College of Bee, Biomedical and Pharmaceutical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoshan Zheng
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, College of Bee, Biomedical and Pharmaceutical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhao Zhou
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, College of Bee, Biomedical and Pharmaceutical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiangtao Gao
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, College of Bee, Biomedical and Pharmaceutical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Chan DC, Winter L, Bjerg J, Krsmanovic S, Baldwin GS, Bernstein HC. Fine-Tuning Genetic Circuits via Host Context and RBS Modulation. ACS Synth Biol 2025; 14:193-205. [PMID: 39754601 PMCID: PMC11744933 DOI: 10.1021/acssynbio.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
The choice of organism to host a genetic circuit, the chassis, is often defaulted to model organisms due to their amenability. The chassis-design space has therefore remained underexplored as an engineering variable. In this work, we explored the design space of a genetic toggle switch through variations in nine ribosome binding site compositions and three host contexts, creating 27 circuit variants. Characterization of performance metrics in terms of toggle switch output and host growth dynamics unveils a spectrum of performance profiles from our circuit library. We find that changes in host context cause large shifts in overall performance, while modulating ribosome binding sites leads to more incremental changes. We find that a combined ribosome binding site and host context modulation approach can be used to fine-tune the properties of a toggle switch according to user-defined specifications, such as toward greater signaling strength, inducer sensitivity, or both. Other auxiliary properties, such as inducer tolerance, are also exclusively accessed through changes in the host context. We demonstrate here that exploration of the chassis-design space can offer significant value, reconceptualizing the chassis organism as an important part in the synthetic biologist's toolbox with important implications for the field of synthetic biology.
Collapse
Affiliation(s)
- Dennis
Tin Chat Chan
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Lena Winter
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Johan Bjerg
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Stina Krsmanovic
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Geoff S. Baldwin
- Department
of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, U.K.
- Imperial
College Centre for Synthetic Biology, Imperial
College London, South
Kensington, London SW7
2AZ, U.K.
| | - Hans C. Bernstein
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
- The
Arctic Centre for Sustainable Energy, UiT—The
Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
5
|
Chan DTC, Bernstein HC. Pangenomic landscapes shape performances of a synthetic genetic circuit across Stutzerimonas species. mSystems 2024; 9:e0084924. [PMID: 39166875 PMCID: PMC11406997 DOI: 10.1128/msystems.00849-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Engineering identical genetic circuits into different species typically results in large differences in performance due to the unique cellular environmental context of each host, a phenomenon known as the "chassis-effect" or "context-dependency". A better understanding of how genomic and physiological contexts underpin the chassis-effect will improve biodesign strategies across diverse microorganisms. Here, we combined a pangenomic-based gene expression analysis with quantitative measurements of performance from an engineered genetic inverter device to uncover how genome structure and function relate to the observed chassis-effect across six closely related Stutzerimonas hosts. Our results reveal that genome architecture underpins divergent responses between our chosen non-model bacterial hosts to the engineered device. Specifically, differential expression of the core genome, gene clusters shared between all hosts, was found to be the main source of significant concordance to the observed differential genetic device performance, whereas specialty genes from respective accessory genomes were not significant. A data-driven investigation revealed that genes involved in denitrification and components of trans-membrane transporter proteins were among the most differentially expressed gene clusters between hosts in response to the genetic device. Our results show that the chassis-effect can be traced along differences among the most conserved genome-encoded functions and that these differences create a unique biodesign space among closely related species.IMPORTANCEContemporary synthetic biology endeavors often default to a handful of model organisms to host their engineered systems. Model organisms such as Escherichia coli serve as attractive hosts due to their tractability but do not necessarily provide the ideal environment to optimize performance. As more novel microbes are domesticated for use as biotechnology platforms, synthetic biologists are urged to explore the chassis-design space to optimize their systems and deliver on the promises of synthetic biology. The consequences of the chassis-effect will therefore only become more relevant as the field of biodesign grows. In our work, we demonstrate that the performance of a genetic device is highly dependent on the host environment it operates within, promoting the notion that the chassis can be considered a design variable to tune circuit function. Importantly, our results unveil that the chassis-effect can be traced along similarities in genome architecture, specifically the shared core genome. Our study advocates for the exploration of the chassis-design space and is a step forward to empowering synthetic biologists with knowledge for more efficient exploration of the chassis-design space to enable the next generation of broad-host-range synthetic biology.
Collapse
Affiliation(s)
- Dennis Tin Chat Chan
- Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Hans C Bernstein
- Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
- The Arctic Centre for Sustainable Energy, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
6
|
Shen Y, Dinh HV, Cruz ER, Chen Z, Bartman CR, Xiao T, Call CM, Ryseck RP, Pratas J, Weilandt D, Baron H, Subramanian A, Fatma Z, Wu ZY, Dwaraknath S, Hendry JI, Tran VG, Yang L, Yoshikuni Y, Zhao H, Maranas CD, Wühr M, Rabinowitz JD. Mitochondrial ATP generation is more proteome efficient than glycolysis. Nat Chem Biol 2024; 20:1123-1132. [PMID: 38448734 PMCID: PMC11925356 DOI: 10.1038/s41589-024-01571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Metabolic efficiency profoundly influences organismal fitness. Nonphotosynthetic organisms, from yeast to mammals, derive usable energy primarily through glycolysis and respiration. Although respiration is more energy efficient, some cells favor glycolysis even when oxygen is available (aerobic glycolysis, Warburg effect). A leading explanation is that glycolysis is more efficient in terms of ATP production per unit mass of protein (that is, faster). Through quantitative flux analysis and proteomics, we find, however, that mitochondrial respiration is actually more proteome efficient than aerobic glycolysis. This is shown across yeast strains, T cells, cancer cells, and tissues and tumors in vivo. Instead of aerobic glycolysis being valuable for fast ATP production, it correlates with high glycolytic protein expression, which promotes hypoxic growth. Aerobic glycolytic yeasts do not excel at aerobic growth but outgrow respiratory cells during oxygen limitation. We accordingly propose that aerobic glycolysis emerges from cells maintaining a proteome conducive to both aerobic and hypoxic growth.
Collapse
Affiliation(s)
- Yihui Shen
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Hoang V Dinh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Edward R Cruz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Zihong Chen
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA
| | - Caroline R Bartman
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA
| | - Tianxia Xiao
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Catherine M Call
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Rolf-Peter Ryseck
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Jimmy Pratas
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Daniel Weilandt
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Heide Baron
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Arjuna Subramanian
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Zia Fatma
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zong-Yen Wu
- US Department of Energy Joint Genome Institute and Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sudharsan Dwaraknath
- US Department of Energy Joint Genome Institute and Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John I Hendry
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Vinh G Tran
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lifeng Yang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute and Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Huimin Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Martin Wühr
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA.
| |
Collapse
|
7
|
Dalvie NC, Lorgeree TR, Yang Y, Rodriguez-Aponte SA, Whittaker CA, Hinckley JA, Clark JJ, Del Rosario AM, Love KR, Love JC. CRISPR-Cas9 knockout screen informs efficient reduction of the Komagataella phaffii secretome. Microb Cell Fact 2024; 23:217. [PMID: 39085844 PMCID: PMC11293167 DOI: 10.1186/s12934-024-02466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The yeast Komagataella phaffii is widely used for manufacturing recombinant proteins, but secreted titers of recombinant proteins could be improved by genetic engineering. In this study, we hypothesized that cellular resources could be redirected from production of endogenous proteins to production of recombinant proteins by deleting unneeded endogenous proteins. In non-model microorganisms such as K. phaffii, however, genetic engineering is limited by lack gene annotation and knowledge of gene essentiality. RESULTS We identified a set of endogenous secreted proteins in K. phaffii by mass spectrometry and signal peptide prediction. Our efforts to disrupt these genes were hindered by limited annotation of essential genes. To predict essential genes, therefore, we designed, transformed, and sequenced a pooled library of guide RNAs for CRISPR-Cas9-mediated knockout of all endogenous secreted proteins. We then used predicted gene essentiality to guide iterative disruptions of up to 11 non-essential genes. Engineered strains exhibited a ~20× increase in the production of human serum albumin and a twofold increase in the production of a monoclonal antibody. CONCLUSIONS We demonstrated that disruption of as few as six genes can increase production of recombinant proteins. Further reduction of the endogenous proteome of K. phaffii may further improve strain performance. The pooled library of secretome-targeted guides for CRISPR-Cas9 and knowledge of gene essentiality reported here will facilitate future efforts to engineer K. phaffii for production of other recombinant proteins and enzymes.
Collapse
Affiliation(s)
- Neil C Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Timothy R Lorgeree
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Yuchen Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Sergio A Rodriguez-Aponte
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Charles A Whittaker
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Joshua A Hinckley
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - John J Clark
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Amanda M Del Rosario
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Kerry R Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA.
| | - J Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA.
| |
Collapse
|
8
|
Burbano DA, Kiattisewee C, Karanjia AV, Cardiff RAL, Faulkner ID, Sugianto W, Carothers JM. CRISPR Tools for Engineering Prokaryotic Systems: Recent Advances and New Applications. Annu Rev Chem Biomol Eng 2024; 15:389-430. [PMID: 38598861 DOI: 10.1146/annurev-chembioeng-100522-114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.
Collapse
Affiliation(s)
- Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Cholpisit Kiattisewee
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ava V Karanjia
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ian D Faulkner
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - James M Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
9
|
Bales MK, Vergara MM, Eckert CA. Application of functional genomics for domestication of novel non-model microbes. J Ind Microbiol Biotechnol 2024; 51:kuae022. [PMID: 38925657 PMCID: PMC11247347 DOI: 10.1093/jimb/kuae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
With the expansion of domesticated microbes producing biomaterials and chemicals to support a growing circular bioeconomy, the variety of waste and sustainable substrates that can support microbial growth and production will also continue to expand. The diversity of these microbes also requires a range of compatible genetic tools to engineer improved robustness and economic viability. As we still do not fully understand the function of many genes in even highly studied model microbes, engineering improved microbial performance requires introducing genome-scale genetic modifications followed by screening or selecting mutants that enhance growth under prohibitive conditions encountered during production. These approaches include adaptive laboratory evolution, random or directed mutagenesis, transposon-mediated gene disruption, or CRISPR interference (CRISPRi). Although any of these approaches may be applicable for identifying engineering targets, here we focus on using CRISPRi to reduce the time required to engineer more robust microbes for industrial applications. ONE-SENTENCE SUMMARY The development of genome scale CRISPR-based libraries in new microbes enables discovery of genetic factors linked to desired traits for engineering more robust microbial systems.
Collapse
Affiliation(s)
- Margaret K Bales
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Michael Melesse Vergara
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Carrie A Eckert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
10
|
Teng Y, Jiang T, Yan Y. The expanded CRISPR toolbox for constructing microbial cell factories. Trends Biotechnol 2024; 42:104-118. [PMID: 37500408 PMCID: PMC10808275 DOI: 10.1016/j.tibtech.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Microbial cell factories (MCFs) convert low-cost carbon sources into valuable compounds. The CRISPR/Cas9 system has revolutionized MCF construction as a remarkable genome editing tool with unprecedented programmability. Recently, the CRISPR toolbox has been significantly expanded through the exploration of new CRISPR systems, the engineering of Cas effectors, and the incorporation of other effectors, enabling multi-level regulation and gene editing free of double-strand breaks. This expanded CRISPR toolbox powerfully promotes MCF construction by facilitating pathway construction, enzyme engineering, flux redistribution, and metabolic burden control. In this article, we summarize different CRISPR tool designs and their applications in MCF construction for gene editing, transcriptional regulation, and enzyme modulation. Finally, we also discuss future perspectives for the development and application of the CRISPR toolbox.
Collapse
Affiliation(s)
- Yuxi Teng
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
11
|
Kruse L, Loeschcke A, de Witt J, Wierckx N, Jaeger K, Thies S. Halopseudomonas species: Cultivation and molecular genetic tools. Microb Biotechnol 2024; 17:e14369. [PMID: 37991430 PMCID: PMC10832565 DOI: 10.1111/1751-7915.14369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
The Halopseudomonas species, formerly classified as Pseudomonas pertucinogena lineage, form a unique phylogenetic branch within the Pseudomonads. Most strains have recently been isolated from challenging habitats including oil- or metal-polluted sites, deep sea, and intertidal zones, suggesting innate resilience to physical and chemical stresses. Despite their comparably small genomes, these bacteria synthesise several biomolecules with biotechnological potential and a role in the degradation of anthropogenic pollutants has been suggested for some Halopseudomonads. Until now, these bacteria are not readily amenable to existing cultivation and cloning methods. We addressed these limitations by selecting four Halopseudomonas strains of particular interest, namely H. aestusnigri, H. bauzanensis, H. litoralis, and H. oceani to establish microbiological and molecular genetic methods. We found that C4 -C10 dicarboxylic acids serve as viable carbon sources in both complex and mineral salt cultivation media. We also developed plasmid DNA transfer protocols and assessed vectors with different origins of replication and promoters inducible with isopropyl-β-d-thiogalactopyranoside, l-arabinose, and salicylate. Furthermore, we have demonstrated the simultaneous genomic integration of expression cassettes into one and two attTn7 integration sites. Our results provide a valuable toolbox for constructing robust chassis strains and highlight the biotechnological potential of Halopseudomonas strains.
Collapse
Affiliation(s)
- Luzie Kruse
- Institute of Molecular Enzyme TechnologyHeinrich Heine UniversityDüsseldorfGermany
| | - Anita Loeschcke
- Institute of Molecular Enzyme TechnologyHeinrich Heine UniversityDüsseldorfGermany
| | - Jan de Witt
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyJülichGermany
| | - Nick Wierckx
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyJülichGermany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme TechnologyHeinrich Heine UniversityDüsseldorfGermany
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyJülichGermany
| | - Stephan Thies
- Institute of Molecular Enzyme TechnologyHeinrich Heine UniversityDüsseldorfGermany
| |
Collapse
|
12
|
Wu X, Cai P, Yao L, Zhou YJ. Genetic tools for metabolic engineering of Pichia pastoris. ENGINEERING MICROBIOLOGY 2023; 3:100094. [PMID: 39628915 PMCID: PMC11611016 DOI: 10.1016/j.engmic.2023.100094] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 12/06/2024]
Abstract
The methylotrophic yeast Pichia pastoris (also known as Komagataella phaffii) is widely used as a yeast cell factory for producing heterologous proteins. Recently, it has gained attention for its potential in producing chemicals from inexpensive feedstocks, which requires efficient genetic engineering platforms. This review provides an overview of the current advances in developing genetic tools for metabolic engineering of P. pastoris. The topics cover promoters, terminators, plasmids, genome integration sites, and genetic editing systems, with a special focus on the development of CRISPR/Cas systems and their comparison to other genome editing tools. Additionally, this review highlights the prospects of multiplex genome integration, fine-tuning gene expression, and single-base editing systems. Overall, the aim of this review is to provide valuable insights into current genetic engineering and discuss potential directions for future efforts in developing efficient genetic tools in P. pastoris.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Cai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lun Yao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of7 Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of7 Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
13
|
Zhang FL, Zhang L, Zeng DW, Liao S, Fan Y, Champreda V, Runguphan W, Zhao XQ. Engineering yeast cell factories to produce biodegradable plastics and their monomers: Current status and prospects. Biotechnol Adv 2023; 68:108222. [PMID: 37516259 DOI: 10.1016/j.biotechadv.2023.108222] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Traditional plastic products have caused serious environmental pollution due to difficulty to be degraded in the natural environment. In the recent years, biodegradable plastics are receiving increasing attention due to advantages in natural degradability and environmental friendliness. Biodegradable plastics have potential to be used in food, agriculture, industry, medicine and other fields. However, the high production cost of such plastics is the bottleneck that limits their commercialization and application. Yeasts, including budding yeast and non-conventional yeasts, are widely studied to produce biodegradable plastics and their organic acid monomers. Compared to bacteria, yeast strains are more tolerable to multiple stress conditions including low pH and high temperature, and also have other advantages such as generally regarded as safe, and no phage infection. In addition, synthetic biology and metabolic engineering of yeast have enabled its rapid and efficient engineering for bioproduction using various renewable feedstocks, especially lignocellulosic biomass. This review focuses on the recent progress in biosynthesis technology and strategies of monomeric organic acids for biodegradable polymers, including polylactic acid (PLA), polyhydroxyalkanoate (PHA), polybutylene succinate (PBS), and polybutylene adipate terephthalate (PBAT) using yeast cell factories. Improving the performance of yeast as a cell factory and strategies to improve yeast acid stress tolerance are also discussed. In addition, the critical challenges and future prospects for the production of biodegradable plastic monomer using yeast are also discussed.
Collapse
Affiliation(s)
- Feng-Li Zhang
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116045, China
| | - Du-Wen Zeng
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sha Liao
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116045, China
| | - Yachao Fan
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116045, China
| | - Verawat Champreda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Xin-Qing Zhao
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
14
|
Albuini FM, de Castro AG, Campos VJ, Ribeiro LE, Vidigal PMP, de Oliveira Mendes TA, Fietto LG. Transcriptome profiling brings new insights into the ethanol stress responses of Spathaspora passalidarum. Appl Microbiol Biotechnol 2023; 107:6573-6589. [PMID: 37658163 DOI: 10.1007/s00253-023-12730-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 09/03/2023]
Abstract
Spathaspora passalidarum is a xylose-fermenting microorganism promising for the fermentation of lignocellulosic hydrolysates. This yeast is more sensitive to ethanol than Saccharomyces cerevisiae for unclear reasons. An RNA-seq experiment was performed to identify transcriptional changes in S. passalidarum in response to ethanol and gain insights into this phenotype. The results showed the upregulation of genes associated with translation and the downregulation of genes encoding proteins involved in lipid metabolism, transporters, and enzymes from glycolysis and fermentation pathways. Our results also revealed that genes encoding heat-shock proteins and involved in antioxidant response were upregulated, whereas the osmotic stress response of S. passalidarum appears impaired under ethanol stress. A pseudohyphal morphology of S. passalidarum colonies was observed in response to ethanol stress, which suggests that ethanol induces a misperception of nitrogen availability in the environment. Changes in the yeast fatty acid profile were observed only after 12 h of ethanol exposure, coinciding with the recovery of the yeast xylose consumption ability. These findings suggest that the lack of fast membrane lipid adjustments, the halt in nutrient absorption and cellular metabolism, and the failure to induce the expression of osmotic stress-responsive genes are the main aspects underlying the low ethanol tolerance of S. passalidarum. KEY POINTS: • Ethanol stress halts Spathaspora passalidarum metabolism and fermentation • Genes encoding nutrient transporters showed downregulation under ethanol stress • Ethanol induces a pseudohyphal cell shape, suggesting a misperception of nutrients.
Collapse
Affiliation(s)
- Fernanda Matias Albuini
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Alex Gazolla de Castro
- Departamento de Microbiologia, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Valquíria Júnia Campos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Lílian Emídio Ribeiro
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Universidade Federal de Viçosa, Av. PH Rolfs s/n, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Luciano Gomes Fietto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Campus Universitário, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
15
|
Orsi E, Nikel PI, Nielsen LK, Donati S. Synergistic investigation of natural and synthetic C1-trophic microorganisms to foster a circular carbon economy. Nat Commun 2023; 14:6673. [PMID: 37865689 PMCID: PMC10590403 DOI: 10.1038/s41467-023-42166-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/23/2023] Open
Abstract
A true circular carbon economy must upgrade waste greenhouse gases. C1-based biomanufacturing is an attractive solution, in which one carbon (C1) molecules (e.g. CO2, formate, methanol, etc.) are converted by microbial cell factories into value-added goods (i.e. food, feed, and chemicals). To render C1-based biomanufacturing cost-competitive, we must adapt microbial metabolism to perform chemical conversions at high rates and yields. To this end, the biotechnology community has undertaken two (seemingly opposing) paths: optimizing natural C1-trophic microorganisms versus engineering synthetic C1-assimilation de novo in model microorganisms. Here, we pose how these approaches can instead create synergies for strengthening the competitiveness of C1-based biomanufacturing as a whole.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Pablo Ivan Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Lars Keld Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072, Brisbane, QLD, Australia
| | - Stefano Donati
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
16
|
Fatma Z, Tan SI, Boob AG, Zhao H. A landing pad system for multicopy gene integration in Issatchenkia orientalis. Metab Eng 2023; 78:200-208. [PMID: 37343658 DOI: 10.1016/j.ymben.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/18/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
The robust nature of the non-conventional yeast Issatchenkia orientalis allows it to grow under highly acidic conditions and therefore, has gained increasing interest in producing organic acids using a variety of carbon sources. Recently, the development of a genetic toolbox for I. orientalis, including an episomal plasmid, characterization of multiple promoters and terminators, and CRISPR-Cas9 tools, has eased the metabolic engineering efforts in I. orientalis. However, multiplex engineering is still hampered by the lack of efficient multicopy integration tools. To facilitate the construction of large, complex metabolic pathways by multiplex CRISPR-Cas9-mediated genome editing, we developed a bioinformatics pipeline to identify and prioritize genome-wide intergenic loci and characterized 47 gRNAs located in 21 intergenic regions. These loci are screened for guide RNA cutting efficiency, integration efficiency of a gene cassette, the resulting cellular fitness, and GFP expression level. We further developed a landing pad system using components from these well-characterized loci, which can aid in the integration of multiple genes using single guide RNA and multiple repair templates of the user's choice. We have demonstrated the use of the landing pad for simultaneous integrations of 2, 3, 4, or 5 genes to the target loci with efficiencies greater than 80%. As a proof of concept, we showed how the production of 5-aminolevulinic acid can be improved by integrating five copies of genes at multiple sites in one step. We have further demonstrated the efficiency of this tool by constructing a metabolic pathway for succinic acid production by integrating five gene expression cassettes using a single guide RNA along with five different repair templates, leading to the production of 9 g/L of succinic acid in batch fermentations. This study demonstrates the effectiveness of a single gRNA-mediated CRISPR platform to build complex metabolic pathways in a non-conventional yeast. This landing pad system will be a valuable tool for the metabolic engineering of I. orientalis.
Collapse
Affiliation(s)
- Zia Fatma
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Shih-I Tan
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Aashutosh Girish Boob
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
17
|
Gurdo N, Volke DC, McCloskey D, Nikel PI. Automating the design-build-test-learn cycle towards next-generation bacterial cell factories. N Biotechnol 2023; 74:1-15. [PMID: 36736693 DOI: 10.1016/j.nbt.2023.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 02/04/2023]
Abstract
Automation is playing an increasingly significant role in synthetic biology. Groundbreaking technologies, developed over the past 20 years, have enormously accelerated the construction of efficient microbial cell factories. Integrating state-of-the-art tools (e.g. for genome engineering and analytical techniques) into the design-build-test-learn cycle (DBTLc) will shift the metabolic engineering paradigm from an almost artisanal labor towards a fully automated workflow. Here, we provide a perspective on how a fully automated DBTLc could be harnessed to construct the next-generation bacterial cell factories in a fast, high-throughput fashion. Innovative toolsets and approaches that pushed the boundaries in each segment of the cycle are reviewed to this end. We also present the most recent efforts on automation of the DBTLc, which heralds a fully autonomous pipeline for synthetic biology in the near future.
Collapse
Affiliation(s)
- Nicolás Gurdo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens, Lyngby, Denmark
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens, Lyngby, Denmark
| | - Douglas McCloskey
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens, Lyngby, Denmark
| | - Pablo Iván Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens, Lyngby, Denmark.
| |
Collapse
|
18
|
Tang YJ, Moon TS. Mining microbial metabolism. Nat Chem Biol 2023; 19:544-545. [PMID: 36747057 DOI: 10.1038/s41589-023-01257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yinjie J Tang
- Washington University in St. Louis, St. Louis, MO, USA.
| | - Tae Seok Moon
- Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
19
|
Hooker CA, Hanafy R, Hillman ET, Muñoz J, Solomon KV. A Genetic Engineering Toolbox for the Lignocellulolytic Anaerobic Gut Fungus Neocallimastix frontalis. ACS Synth Biol 2023; 12:1034-1045. [PMID: 36920337 PMCID: PMC11677189 DOI: 10.1021/acssynbio.2c00502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Anaerobic fungi are powerful platforms for biotechnology that remain unexploited due to a lack of genetic tools. These gut fungi encode the largest number of lignocellulolytic carbohydrate active enzymes (CAZymes) in the fungal kingdom, making them attractive for applications in renewable energy and sustainability. However, efforts to genetically modify anaerobic fungi have remained limited due to inefficient methods for DNA uptake and a lack of characterized genetic parts. We demonstrate that anaerobic fungi are naturally competent for DNA and leverage this to develop a nascent genetic toolbox informed by recently acquired genomes for transient transformation of anaerobic fungi. We validate multiple selectable markers (HygR and Neo), an anaerobic reporter protein (iRFP702), enolase and TEF1A promoters, TEF1A terminator, and a nuclear localization tag for protein compartmentalization. This work establishes novel methods to reliably transform the anaerobic fungus Neocallimastix frontalis, thereby paving the way for strain development and various synthetic biology applications.
Collapse
Affiliation(s)
- Casey A. Hooker
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907 USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716 USA
| | - Radwa Hanafy
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716 USA
| | - Ethan T. Hillman
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907 USA
| | - Javier Muñoz
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907 USA
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907 USA
| | - Kevin V. Solomon
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907 USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716 USA
| |
Collapse
|
20
|
Cao L, Li J, Yang Z, Hu X, Wang P. A review of synthetic biology tools in Yarrowia lipolytica. World J Microbiol Biotechnol 2023; 39:129. [PMID: 36944859 DOI: 10.1007/s11274-023-03557-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
Yarrowia lipolytica is a non-conventional oleaginous yeast with great potential for industrial production. Y. lipolytica has a high propensity for flux through tricarboxylic acid cycle intermediates. Therefore, this host is currently being developed as a workhorse, and is rapidly emerging in biotechnology fields, especially for industrial chemical production, whole-cell bioconversion, and the treatment and recycling of industrial waste. In recent studies, Y. lipolytica has been rewritten and introduced with non-native metabolites of certain compounds of interest owing to the advancement in synthetic biology tools. In this review, we collate recent progress to present a detailed and insightful summary of the major developments in synthetic biology tools and techniques for Y. lipolytica, including promoters, terminators, selection markers, autonomously replicating sequences, DNA assembly techniques, genome editing techniques, and subcellular organelle engineering. This comprehensive overview would be a useful resource for future genetic engineering studies to improve the yield of desired metabolic products in Y. lipolytica.
Collapse
Affiliation(s)
- Linshan Cao
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Jiajie Li
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Zihan Yang
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Xiao Hu
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Pengchao Wang
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China.
- Northeast Forestry University, No. 26 Hexing Road, Harbin, 150000, People's Republic of China.
| |
Collapse
|
21
|
Yu Y, Shi S. Development and Perspective of Rhodotorula toruloides as an Efficient Cell Factory. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1802-1819. [PMID: 36688927 DOI: 10.1021/acs.jafc.2c07361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rhodotorula toruloides is receiving significant attention as a novel cell factory because of its high production of lipids and carotenoids, fast growth and high cell density, as well as the ability to utilize a wide variety of substrates. These attractive traits of R. toruloides make it possible to become a low-cost producer that can be engineered for the production of various fuels and chemicals. However, the lack of understanding and genetic engineering tools impedes its metabolic engineering applications. A number of research efforts have been devoted to filling these gaps. This review focuses on recent developments in genetic engineering tools, advances in systems biology for improved understandings, and emerging engineered strains for metabolic engineering applications. Finally, future trends and barriers in developing R. toruloides as a cell factory are also discussed.
Collapse
Affiliation(s)
- Yi Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
22
|
Qiao W, Xu S, Liu Z, Fu X, Zhao H, Shi S. Challenges and opportunities in C1-based biomanufacturing. BIORESOURCE TECHNOLOGY 2022; 364:128095. [PMID: 36220528 DOI: 10.1016/j.biortech.2022.128095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The intensifying impact of green-house gas (GHG) emission on environment and climate change has attracted increasing attention, and biorefinery represents one of the most effective routes for reducing GHG emissions from human activities. However, this requires a shift for microbial fermentation from the current use of sugars to the use of biomass, and even better to the primary fixation of single carbon (C1) compounds. Here how microorganisms can be engineered for fixation and conversion of C1 compounds into metabolites that can serve as fuels and platform chemicals are reviewed. Meanwhile, key factors for utilization of these different pathways are discussed, followed by challenges and barriers for the development of C1-based biorefinery.
Collapse
Affiliation(s)
- Weibo Qiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoying Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
23
|
Zhu L, Zhang H, Wang S, Zhao A, Qu L, Xiong W, Alam MA, Ma W, Lv Y, Xu J. Screening a Panel of Acid-producing Strains by Developing a High-throughput Method. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
Sridhar S, Ajo-Franklin CM, Masiello CA. A Framework for the Systematic Selection of Biosensor Chassis for Environmental Synthetic Biology. ACS Synth Biol 2022; 11:2909-2916. [PMID: 35961652 PMCID: PMC9486965 DOI: 10.1021/acssynbio.2c00079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 01/24/2023]
Abstract
Microbial biosensors sense and report exposures to stimuli, thereby facilitating our understanding of environmental processes. Successful design and deployment of biosensors hinge on the persistence of the microbial host of the genetic circuit, termed the chassis. However, model chassis organisms may persist poorly in environmental conditions. In contrast, non-model organisms persist better in environmental conditions but are limited by other challenges, such as genetic intractability and part unavailability. Here we identify ecological, metabolic, and genetic constraints for chassis development and propose a conceptual framework for the systematic selection of environmental biosensor chassis. We identify key challenges with using current model chassis and delineate major points of conflict in choosing the most suitable organisms as chassis for environmental biosensing. This framework provides a way forward in the selection of biosensor chassis for environmental synthetic biology.
Collapse
Affiliation(s)
- Swetha Sridhar
- Systems,
Synthetic, and Physical Biology Graduate Program, Rice University, 6100 Main Street, MS-180, Houston, Texas 77005, United
States
| | - Caroline M. Ajo-Franklin
- Department
of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Caroline A. Masiello
- Department
of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
- Department
of Earth, Environmental, and Planetary Sciences, Rice University, 6100 Main St, MS-126, Houston, Texas 77005, United
States
| |
Collapse
|
25
|
Expanding the promoter toolbox for metabolic engineering of methylotrophic yeasts. Appl Microbiol Biotechnol 2022; 106:3449-3464. [PMID: 35538374 DOI: 10.1007/s00253-022-11948-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/31/2023]
Abstract
Methylotrophic yeasts have been widely recognized as a promising host for production of recombinant proteins and value-added chemicals. Promoters for controlled gene expression are critical for construction of efficient methylotrophic yeasts cell factories. Here, we summarized recent advances in characterizing and engineering promoters in methylotrophic yeasts, such as Komagataella phaffii and Ogataea polymorpha. Constitutive and inducible promoters controlled by methanol or other inducers/repressors were introduced to demonstrate their applications in production of proteins and chemicals. Furthermore, efforts of promoter engineering, including site-directed mutagenesis, hybrid promoter, and transcription factor regulation to expand the promoter toolbox were also summarized. This mini-review also provides useful information on promoters for the application of metabolic engineering in methylotrophic yeasts. KEY POINTS: • The characteristics of six methylotrophic yeasts and their promoters are described. • The applications of Komagataella phaffii and Ogataea polymorpha in metabolic engineeringare expounded. • Three promoter engineering strategies are introduced in order to expand the promoter toolbox.
Collapse
|
26
|
Li M, Huo YX, Guo S. CRISPR-Mediated Base Editing: From Precise Point Mutation to Genome-Wide Engineering in Nonmodel Microbes. BIOLOGY 2022; 11:571. [PMID: 35453770 PMCID: PMC9024924 DOI: 10.3390/biology11040571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 12/23/2022]
Abstract
Nonmodel microbes with unique and diverse metabolisms have become rising stars in synthetic biology; however, the lack of efficient gene engineering techniques still hinders their development. Recently, the use of base editors has emerged as a versatile method for gene engineering in a wide range of organisms including nonmodel microbes. This method is a fusion of impaired CRISPR/Cas9 nuclease and base deaminase, enabling the precise point mutation at the target without inducing homologous recombination. This review updates the latest advancement of base editors in microbes, including the conclusion of all microbes that have been researched by base editors, the introduction of newly developed base editors, and their applications. We provide a list that comprehensively concludes specific applications of BEs in nonmodel microbes, which play important roles in industrial, agricultural, and clinical fields. We also present some microbes in which BEs have not been fully established, in the hope that they are explored further and so that other microbial species can achieve arbitrary base conversions. The current obstacles facing BEs and solutions are put forward. Lastly, the highly efficient BEs and other developed versions for genome-wide reprogramming of cells are discussed, showing great potential for future engineering of nonmodel microbes.
Collapse
Affiliation(s)
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China;
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China;
| |
Collapse
|
27
|
CRISPR-based metabolic engineering in non-model microorganisms. Curr Opin Biotechnol 2022; 75:102698. [PMID: 35217297 DOI: 10.1016/j.copbio.2022.102698] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022]
Abstract
Non-model microorganisms possess unique and versatile metabolic characteristics, offering great opportunities as cell factories for biosynthesis of target products. However, lack of efficient genetic tools for pathway engineering represents a big challenge to unlock the full production potential of these microbes. Over the past years, CRISPR systems have been extensively developed and applied to domesticate non-model microorganisms. In this paper, we summarize the current significant advances in designing and constructing CRISPR-mediated genetic modification systems in non-model microorganisms, such as bacteria, fungi and cyanobacteria. We particularly put emphasis on reviewing some successful implementations in metabolic pathway engineering via CRISPR-based genome editing tools. Moreover, the current barriers and future perspectives on improving the editing efficiency of CRISPR systems in non-model microorganisms are also discussed.
Collapse
|
28
|
Zhang Y, Peng J, Zhao H, Shi S. Engineering oleaginous yeast Rhodotorula toruloides for overproduction of fatty acid ethyl esters. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:115. [PMID: 33964988 PMCID: PMC8106135 DOI: 10.1186/s13068-021-01965-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Production of biofuels and green chemicals by microbes is currently of great interest due to the increasingly limited reserves of fossil fuels. Biodiesel, especially fatty acid ethyl esters (FAEEs), is considered as an attractive alternative because of its similarity with petrodiesel and compatibility with existing infrastructures. Cost-efficient bio-production of FAEEs requires a highly lipogenic production host that is suitable for large-scale fermentation. As a non-model oleaginous yeast that can be cultured to an extremely high cell density and accumulate over 70% cell mass as lipids, Rhodotorula toruloides represents an attractive host for FAEEs production. RESULTS We first constructed the FAEE biosynthetic pathways in R. toruloides by introducing various wax ester synthase genes from different sources, and the bifunctional wax ester synthase/acyl-CoA-diacyglycerol acyltransferase (WS/DGAT) gene from Acinetobacter baylyi was successfully expressed, leading to a production of 826 mg/L FAEEs through shake-flask cultivation. We then mutated this bifunctional enzyme to abolish the DGAT activity, and further improved the titer to 1.02 g/L. Finally, to elevate the performance of Δku70-AbWS* in a bioreactor, both batch and fed-batch cultivation strategies were performed. The FAEEs titer, productivity and yield were 4.03 g/L, 69.5 mg/L/h and 57.9 mg/g (mg FAEEs/g glucose) under batch cultivation, and 9.97 g/L, 90.6 mg/L/h, and 86.1 mg/g under fed-batch cultivation. It is worth mentioning that most of the produced FAEEs were secreted out of the cell, which should greatly reduce the cost of downstream processing. CONCLUSION We achieved the highest FAEEs production in yeast with a final titer of 9.97 g/L and demonstrated that the engineered R. toruloides has the potential to serve as a platform strain for efficient production of fatty acid-derived molecules.
Collapse
Affiliation(s)
- Yang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Peng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois At Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
29
|
One step forward, two steps back: Transcriptional advancements and fermentation phenomena in Actinobacillus succinogenes 130Z. PLoS One 2021; 16:e0245407. [PMID: 33939701 PMCID: PMC8092802 DOI: 10.1371/journal.pone.0245407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
Within the field of bioproduction, non-model organisms offer promise as bio-platform candidates. Non-model organisms can possess natural abilities to consume complex feedstocks, produce industrially useful chemicals, and withstand extreme environments that can be ideal for product extraction. However, non-model organisms also come with unique challenges due to lack of characterization. As a consequence, developing synthetic biology tools, predicting growth behavior, and building computational models can be difficult. There have been many advancements that have improved work with non-model organisms to address broad limitations, however each organism can come with unique surprises. Here we share our work in the non-model bacterium Actinobacillus succinognes 130Z, which includes both advancements in synthetic biology toolkit development and pitfalls in unpredictable fermentation behaviors. To develop a synthetic biology “tool kit” for A. succinogenes, information gleaned from a growth study and antibiotic screening was used to characterize 22 promoters which demonstrated a 260-fold range of fluorescence protein expression. The strongest of the promoters was incorporated into an inducible system for tunable gene control in A. succinogenes using the promoter for the lac operon as a template. This system flaunted a 481-fold range of expression and no significant basal expression. These findings were accompanied by unexpected changes in fermentation products characterized by a loss of succinic acid and increase in lactic acid after approximately 10 months in the lab. During evaluation of the fermentation shifts, new tests of the synthetic biology tools in a succinic acid producing strain revealed a significant loss in their functionality. Contamination and mutation were ruled out as causes and further testing is needed to elucidate the driving factors. The significance of this work is to share a successful tool development strategy that could be employed in other non-model species, report on an unfortunate phenomenon that needs addressed for further development of A. succinogenes, and provide a cautionary tale for those undertaking non-model research. In sharing our findings, we seek to provide tools and necessary information for further development of A. succinogenes as a platform for bioproduction of succinic acid and to illustrate the importance of diligent and long-term observation when working with non-model bacteria.
Collapse
|
30
|
Zhang J, Chen Y, Fu L, Guo E, Wang B, Dai L, Si T. Accelerating strain engineering in biofuel research via build and test automation of synthetic biology. Curr Opin Biotechnol 2021; 67:88-98. [PMID: 33508635 DOI: 10.1016/j.copbio.2021.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
Biofuels are a type of sustainable and renewable energy. However, for the economical production of bulk-volume biofuels, biosystems design is particularly challenging to achieve sufficient yield, titer, and productivity. Because of the lack of predictive modeling, high-throughput screening remains essential. Recently established biofoundries provide an emerging infrastructure to accelerate biological design-build-test-learn (DBTL) cycles through the integration of robotics, synthetic biology, and informatics. In this review, we first introduce the technical advances of build and test automation in synthetic biology, focusing on the use of industry-standard microplates for DNA assembly, chassis engineering, and enzyme and strain screening. Proof-of-concept studies on prototypes of automated foundries are then discussed, for improving biomass deconstruction, metabolic conversion, and host robustness. We conclude with future challenges and opportunities in creating a flexible, versatile, and data-driven framework to support biofuel research and development in biofoundries.
Collapse
Affiliation(s)
- Jianzhi Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yongcan Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lihao Fu
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Erpeng Guo
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
31
|
Suthers PF, Dinh HV, Fatma Z, Shen Y, Chan SHJ, Rabinowitz JD, Zhao H, Maranas CD. Genome-scale metabolic reconstruction of the non-model yeast Issatchenkia orientalis SD108 and its application to organic acids production. Metab Eng Commun 2020; 11:e00148. [PMID: 33134082 PMCID: PMC7586132 DOI: 10.1016/j.mec.2020.e00148] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Many platform chemicals can be produced from renewable biomass by microorganisms, with organic acids making up a large fraction. Intolerance to the resulting low pH growth conditions, however, remains a challenge for the industrial production of organic acids by microorganisms. Issatchenkia orientalis SD108 is a promising host for industrial production because it is tolerant to acidic conditions as low as pH 2.0. With the goal to systematically assess the metabolic capabilities of this non-model yeast, we developed a genome-scale metabolic model for I. orientalis SD108 spanning 850 genes, 1826 reactions, and 1702 metabolites. In order to improve the model’s quantitative predictions, organism-specific macromolecular composition and ATP maintenance requirements were determined experimentally and implemented. We examined its network topology, including essential genes and flux coupling analysis and drew comparisons with the Yeast 8.3 model for Saccharomyces cerevisiae. We explored the carbon substrate utilization and examined the organism’s production potential for the industrially-relevant succinic acid, making use of the OptKnock framework to identify gene knockouts which couple production of the targeted chemical to biomass production. The genome-scale metabolic model iIsor850 is a data-supported curated model which can inform genetic interventions for overproduction. Genome-scale metabolic model iIsor850 describes metabolism of I. orientalis SD108. Customized biomass reaction highlights differences with S. cerevisiae. Chemostat data elucidate growth-associated ATP maintenance. Substrate utilization and CRISPR/Cas9 gene knockout phenotypes validate model. Model pinpoints candidate gene deletions coupling succinic acid production to growth.
Collapse
Affiliation(s)
- Patrick F Suthers
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hoang V Dinh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zia Fatma
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yihui Shen
- Department of Chemistry, Princeton University, Princeton, NJ, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Siu Hung Joshua Chan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champagne, Urbana, IL, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
32
|
Yeast as a promising heterologous host for steroid bioproduction. J Ind Microbiol Biotechnol 2020; 47:829-843. [PMID: 32661815 PMCID: PMC7358296 DOI: 10.1007/s10295-020-02291-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
With the rapid development of synthetic biology and metabolic engineering technologies, yeast has been generally considered as promising hosts for the bioproduction of secondary metabolites. Sterols are essential components of cell membrane, and are the precursors for the biosynthesis of steroid hormones, signaling molecules, and defense molecules in the higher eukaryotes, which are of pharmaceutical and agricultural significance. In this mini-review, we summarize the recent engineering efforts of using yeast to synthesize various steroids, and discuss the structural diversity that the current steroid-producing yeast can achieve, the challenge and the potential of using yeast as the bioproduction platform of various steroids from higher eukaryotes.
Collapse
|