1
|
Klauer RR, Silvestri R, White H, Hayes RD, Riley R, Lipzen A, Barry K, Grigoriev IV, Talag J, Bunting V, Stevenson Z, Solomon KV, Blenner M. Hydrophobins from Aspergillus mediate fungal interactions with microplastics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622132. [PMID: 39574658 PMCID: PMC11580879 DOI: 10.1101/2024.11.05.622132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Microplastics present myriad ecological and human health risks including serving as a vector for pathogens in human and animal food chains. However, the specific mechanisms by which pathogenic fungi colonize these microplastics have yet to be explored. In this work, we examine the opportunistic fungal pathogen, Aspergillus fumigatus, and other common soil and marine Aspergilli, which we found bind microplastics tightly. Up to 3.85+/- 1.48 g microplastic plastic/g fungi were bound and flocculated for polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET) powders and particles ranging in size from 0.05 - 5 mm. Gene knockouts revealed hydrophobins as a key biomolecule driving microplastic-fungi binding. Moreover, purified hydrophobins were still able to flocculate microplastics independent of the fungus. Our work elucidates a role for hydrophobins in fungal colonization of microplastics and highlights a potential target for mitigating the harm of microplastics through engineered fungal-microplastic interactions.
Collapse
Affiliation(s)
- Ross R Klauer
- Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716
| | - Rachel Silvestri
- Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716
| | - Hanna White
- Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716
| | - Richard D Hayes
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Robert Riley
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720
| | - Jayson Talag
- Arizona Genomics Institute, 1657 E Helen St, Tucson, AZ 85721
| | | | - Zachary Stevenson
- Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716
| | - Kevin V Solomon
- Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716
| | - Mark Blenner
- Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716
| |
Collapse
|
2
|
Shi YC, Zheng YJ, Lin YC, Huang CH, Shen TL, Hsu YC, Lee BH. Investigation of the Microbial Diversity in the Oryza sativa Cultivation Environment and Artificial Transplantation of Microorganisms to Improve Sustainable Mycobiota. J Fungi (Basel) 2024; 10:412. [PMID: 38921398 PMCID: PMC11205129 DOI: 10.3390/jof10060412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024] Open
Abstract
Rice straw is not easy to decompose, it takes a long time to compost, and the anaerobic bacteria involved in the decomposition process produce a large amount of carbon dioxide (CO2), indicating that applications for rice straw need to be developed. Recycling rice straw in agricultural crops is an opportunity to increase the sustainability of grain production. Several studies have shown that the probiotic population gradually decreases in the soil, leading to an increased risk of plant diseases and decreased biomass yield. Because the microorganisms in the soil are related to the growth of plants, when the soil microbial community is imbalanced it seriously affects plant growth. We investigated the feasibility of using composted rice stalks to artificially cultivate microorganisms obtained from the Oryza sativa-planted environment for analyzing the mycobiota and evaluating applications for sustainable agriculture. Microbes obtained from the water-submerged part (group-A) and soil part (group-B) of O. sativa were cultured in an artificial medium, and the microbial diversity was analyzed with internal transcribed spacer sequencing. Paddy field soil was mixed with fermented paddy straw compost, and the microbes obtained from the soil used for O. sativa planting were designated as group-C. The paddy fields transplanted with artificially cultured microbes from group-A were designated as group-D and those from group-B were designated as group-E. We found that fungi and yeasts can be cultured in groups-A and -B. These microbes altered the soil mycobiota in the paddy fields after transplantation in groups-D and -E compared to groups-A and -B. Development in O. sativa post treatment with microbial transplantation was observed in the groups-D and -E compared to group-C. These results showed that artificially cultured microorganisms could be efficiently transplanted into the soil and improve the mycobiota. Phytohormones were involved in improving O. sativa growth and rice yield via the submerged part-derived microbial medium (group-D) or the soil part-derived microbial medium (group-E) treatments. Collectively, these fungi and yeasts may be applied in microbial transplantation via rice straw fermentation to repair soil mycobiota imbalances, facilitating plant growth and sustainable agriculture. These fungi and yeasts may be applied in microbial transplantation to repair soil mycobiota imbalances and sustainable agriculture.
Collapse
Affiliation(s)
- Yeu-Ching Shi
- Department of Food Sciences, National Chiayi University, Chiayi 60004, Taiwan;
| | - Yu-Juan Zheng
- Department of Horticultural Sciences, National Chiayi University, Chiayi 60004, Taiwan; (Y.-J.Z.); (Y.-C.L.)
| | - Yi-Ching Lin
- Department of Horticultural Sciences, National Chiayi University, Chiayi 60004, Taiwan; (Y.-J.Z.); (Y.-C.L.)
| | - Cheng-Hao Huang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan;
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan;
| | - Yu-Chia Hsu
- Department of Agronomy, National Chiayi University, Chiayi 60004, Taiwan;
| | - Bao-Hong Lee
- Department of Horticultural Sciences, National Chiayi University, Chiayi 60004, Taiwan; (Y.-J.Z.); (Y.-C.L.)
| |
Collapse
|
3
|
Hooker CA, Hanafy R, Hillman ET, Muñoz J, Solomon KV. A Genetic Engineering Toolbox for the Lignocellulolytic Anaerobic Gut Fungus Neocallimastix frontalis. ACS Synth Biol 2023; 12:1034-1045. [PMID: 36920337 PMCID: PMC11677189 DOI: 10.1021/acssynbio.2c00502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Anaerobic fungi are powerful platforms for biotechnology that remain unexploited due to a lack of genetic tools. These gut fungi encode the largest number of lignocellulolytic carbohydrate active enzymes (CAZymes) in the fungal kingdom, making them attractive for applications in renewable energy and sustainability. However, efforts to genetically modify anaerobic fungi have remained limited due to inefficient methods for DNA uptake and a lack of characterized genetic parts. We demonstrate that anaerobic fungi are naturally competent for DNA and leverage this to develop a nascent genetic toolbox informed by recently acquired genomes for transient transformation of anaerobic fungi. We validate multiple selectable markers (HygR and Neo), an anaerobic reporter protein (iRFP702), enolase and TEF1A promoters, TEF1A terminator, and a nuclear localization tag for protein compartmentalization. This work establishes novel methods to reliably transform the anaerobic fungus Neocallimastix frontalis, thereby paving the way for strain development and various synthetic biology applications.
Collapse
Affiliation(s)
- Casey A. Hooker
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907 USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716 USA
| | - Radwa Hanafy
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716 USA
| | - Ethan T. Hillman
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907 USA
| | - Javier Muñoz
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907 USA
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907 USA
| | - Kevin V. Solomon
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907 USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716 USA
| |
Collapse
|
4
|
Zhou S, Zhang M, Zhu L, Zhao X, Chen J, Chen W, Chang C. Hydrolysis of lignocellulose to succinic acid: a review of treatment methods and succinic acid applications. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:1. [PMID: 36593503 PMCID: PMC9806916 DOI: 10.1186/s13068-022-02244-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/08/2022] [Indexed: 01/03/2023]
Abstract
Succinic acid (SA) is an intermediate product of the tricarboxylic acid cycle (TCA) and is one of the most significant platform chemicals for the production of various derivatives with high added value. Due to the depletion of fossil raw materials and the demand for eco-friendly energy sources, SA biosynthesis from renewable energy sources is gaining attention for its environmental friendliness. This review comprehensively analyzes strategies for the bioconversion of lignocellulose to SA based on the lignocellulose pretreatment processes and cellulose hydrolysis and fermentation principles and highlights the research progress on acid production and SA utilization under different microbial culture conditions. In addition, the fermentation efficiency of different microbial strains for the production of SA and the main challenges were analyzed. The future application directions of SA derivatives were pointed out. It is expected that this research will provide a reference for the optimization of SA production from lignocellulose.
Collapse
Affiliation(s)
- Shuzhen Zhou
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Miaomiao Zhang
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Linying Zhu
- College of Management Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiaoling Zhao
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China.
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, China.
- Henan Center for Outstanding Overseas Scientists, Zhengzhou, China.
| | - Junying Chen
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, China
- Henan Center for Outstanding Overseas Scientists, Zhengzhou, China
| | - Wei Chen
- Henan Key Laboratory of Green Manufacturing of Biobased Chemicals, Puyang, China
| | - Chun Chang
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, China
- Henan Center for Outstanding Overseas Scientists, Zhengzhou, China
| |
Collapse
|
5
|
Luo X, Liu Y, Muhmood A, Zhang Q, Wang J, Ruan R, Wang Y, Cui X. Effect of time and temperature of pretreatment and anaerobic co-digestion of rice straw and swine wastewater by domesticated paddy soil microbes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116218. [PMID: 36108514 DOI: 10.1016/j.jenvman.2022.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Rice straw and swine wastewater are abundant, easy to obtain, and inexpensive biomass materials. Anaerobic digestion of rice straw and swine wastewater effectively regulates the carbon-to-nitrogen ratio and also improves methane production efficiency. The dense lignocellulosic structure, unsuitable carbon-to-nitrogen ratio, and light texture of rice straw hinder its application in anaerobic digestion. Effective pretreatment technologies can improve degradation efficiency and methane production. Our study is the first to apply domesticated paddy soil microbes to enhance the efficiency of hydrolytic acidification of rice straw and swine wastewater at varying temperatures and times. The results show that the highest total organic carbon (1757.2 mg/L), soluble chemical oxygen demand (5341.7 mg/L), and organic acid concentration (4134.6 mg/L) appeared in the hydrolysate after five days of hydrolytic acidification at 37 °C. Moreover, the use of hydrolysate produced 13% more gas and reduced the anaerobic digestion period by ten days compared to the untreated control. This suggests that using domesticated paddy soil microbes as a pretreatment might be a sustainable and cost-effective strategy for improving the degradation efficacy and methane production from lignocellulosic materials.
Collapse
Affiliation(s)
- Xuan Luo
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Atif Muhmood
- Institute of Soil Chemistry & Environmental Sciences, AARI, Faisalabad, Pakistan
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Jingjing Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Roger Ruan
- Center for Biorefining and Dept. of Bioproducts and Biosystems Engineering, University of Minnesota, Paul, 55108, USA
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China.
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China.
| |
Collapse
|
6
|
Bever D, Wheeldon I, Da Silva N. RNA polymerase II-driven CRISPR-Cas9 system for efficient non-growth-biased metabolic engineering of Kluyveromyces marxianus. Metab Eng Commun 2022; 15:e00208. [PMID: 36249306 PMCID: PMC9558044 DOI: 10.1016/j.mec.2022.e00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
The thermotolerant yeast Kluyveromyces marxianus has gained significant attention in recent years as a promising microbial candidate for industrial biomanufacturing. Despite several contributions to the expanding molecular toolbox for gene expression and metabolic engineering of K. marxianus, there remains a need for a more efficient and versatile genome editing platform. To address this, we developed a CRISPR-based editing system that enables high efficiency marker-less gene disruptions and integrations using only 40 bp homology arms in NHEJ functional and non-functional K. marxianus strains. The use of a strong RNA polymerase II promoter allows efficient expression of gRNAs flanked by the self-cleaving RNA structures, tRNA and HDV ribozyme, from a single plasmid co-expressing a codon optimized Cas9. Implementing this system resulted in nearly 100% efficiency of gene disruptions in both NHEJ-functional and NHEJ-deficient K. marxianus strains, with donor integration efficiencies reaching 50% and 100% in the two strains, respectively. The high gRNA targeting performance also proved instrumental for selection of engineered strains with lower growth rate but improved polyketide biosynthesis by avoiding an extended outgrowth period, a common method used to enrich for edited cells but that fails to recover advantageous mutants with even slightly impaired fitness. Finally, we provide the first demonstration of simultaneous, markerless integrations at multiple loci in K. marxianus using a 2.6 kb and a 7.6 kb donor, achieving a dual integration efficiency of 25.5% in a NHEJ-deficient strain. These results highlight both the ease of use and general robustness of this system for rapid and flexible metabolic engineering in this non-conventional yeast. RNAP II-driven tRNA-gRNA-HDV ribozyme cassette built for K. marxianus genome editing. Gene integrations up to 7.6 kb were achieved with only 40 bp homology sequences. Recovery of growth-biased modifications achievable as extended outgrowth not required. Application (ZWF1 and GPD1 knockouts) increased polyketide specific titers. Expressing two unique gRNAs from one cassette enabled integrations at separate loci.
Collapse
|
7
|
Hanafy RA, Dagar SS, Griffith GW, Pratt CJ, Youssef NH, Elshahed MS. Taxonomy of the anaerobic gut fungi ( Neocallimastigomycota): a review of classification criteria and description of current taxa. Int J Syst Evol Microbiol 2022; 72. [PMID: 35776761 DOI: 10.1099/ijsem.0.005322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Members of the anaerobic gut fungi (Neocallimastigomycota) reside in the rumen and alimentary tract of larger mammalian and some reptilian, marsupial and avian herbivores. The recent decade has witnessed a significant expansion in the number of described Neocallimastigomycota genera and species. However, the difficulties associated with the isolation and maintenance of Neocallimastigomycota strains has greatly complicated comparative studies to resolve inter- and intra-genus relationships. Here, we provide an updated outline of Neocallimastigomycota taxonomy. We critically evaluate various morphological, microscopic and phylogenetic traits previously and currently utilized in Neocallimastigomycota taxonomy, and provide an updated key for quick characterization of all genera. We then synthesize data from taxa description manuscripts, prior comparative efforts and molecular sequence data to present an updated list of Neocallimastigomycota genera and species, with an emphasis on resolving relationships and identifying synonymy between recent and historic strains. We supplement data from published manuscripts with information and illustrations from strains in the authors' collections. Twenty genera and 36 species are recognized, but the status of 10 species in the genera Caecomyces, Piromyces, Anaeromyces and Cyllamyces remains uncertain due to the unavailability of culture and conferre (cf.) strains, lack of sequence data, and/or inadequacy of available microscopic and phenotypic data. Six cases of synonymy are identified in the genera Neocallimastix and Caecomyces, and two names in the genus Piromyces are rejected based on apparent misclassification.
Collapse
Affiliation(s)
- Radwa A Hanafy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Sumit S Dagar
- Bioenergy Group, Agharkar Research Institute, Pune, India
| | - Gareth W Griffith
- Institute of Biological, Environmental, and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, Wales, UK
| | - Carrie J Pratt
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
8
|
Dickey RM, Forti AM, Kunjapur AM. Advances in engineering microbial biosynthesis of aromatic compounds and related compounds. BIORESOUR BIOPROCESS 2021; 8:91. [PMID: 38650203 PMCID: PMC10992092 DOI: 10.1186/s40643-021-00434-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
Aromatic compounds have broad applications and have been the target of biosynthetic processes for several decades. New biomolecular engineering strategies have been applied to improve production of aromatic compounds in recent years, some of which are expected to set the stage for the next wave of innovations. Here, we will briefly complement existing reviews on microbial production of aromatic compounds by focusing on a few recent trends where considerable work has been performed in the last 5 years. The trends we highlight are pathway modularization and compartmentalization, microbial co-culturing, non-traditional host engineering, aromatic polymer feedstock utilization, engineered ring cleavage, aldehyde stabilization, and biosynthesis of non-standard amino acids. Throughout this review article, we will also touch on unmet opportunities that future research could address.
Collapse
Affiliation(s)
- Roman M Dickey
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA
| | - Amanda M Forti
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA
| | - Aditya M Kunjapur
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA.
| |
Collapse
|
9
|
Anaerobic Fungal Mevalonate Pathway Genomic Biases Lead to Heterologous Toxicity Underpredicted by Codon Adaptation Indices. Microorganisms 2021; 9:microorganisms9091986. [PMID: 34576881 PMCID: PMC8468974 DOI: 10.3390/microorganisms9091986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
Anaerobic fungi are emerging biotechnology platforms with genomes rich in biosynthetic potential. Yet, the heterologous expression of their biosynthetic pathways has had limited success in model hosts like E. coli. We find one reason for this is that the genome composition of anaerobic fungi like P. indianae are extremely AT-biased with a particular preference for rare and semi-rare AT-rich tRNAs in E coli, which are not explicitly predicted by standard codon adaptation indices (CAI). Native P. indianae genes with these extreme biases create drastic growth defects in E. coli (up to 69% reduction in growth), which is not seen in genes from other organisms with similar CAIs. However, codon optimization rescues growth, allowing for gene evaluation. In this manner, we demonstrate that anaerobic fungal homologs such as PI.atoB are more active than S. cerevisiae homologs in a hybrid pathway, increasing the production of mevalonate up to 2.5 g/L (more than two-fold) and reducing waste carbon to acetate by ~90% under the conditions tested. This work demonstrates the bioproduction potential of anaerobic fungal enzyme homologs and how the analysis of codon utilization enables the study of otherwise difficult to express genes that have applications in biocatalysis and natural product discovery.
Collapse
|