1
|
Liu A, Zhang S, Wang W, Hou H, Dai Y, Li C, Zhang H. Effects of Different Pretreatments on Wheat Bran and Its Arabinoxylan Obtained by Sequential Extraction with Dilute Alkali and Alkali-Urea Mixture. Foods 2025; 14:696. [PMID: 40002139 PMCID: PMC11854628 DOI: 10.3390/foods14040696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Arabinoxylan (AX), an abundant and highly valuable component in wheat bran, has its structure and function influenced by the extraction method. A two-step extraction method, involving sequential extraction with a dilute alkali followed by a concentrated alkali-urea mixture, was employed to extract AX from wheat bran. This approach aimed to obtain AX with a high phenolic acid content while achieving a relatively high extraction yield. The dilute alkali extraction could effectively retain the phenolic acid content in the AX extract (≤89 μg/g). However, its yield and sugar content were relatively low. In contrast, the alkali-urea extraction could achieve a relatively high yield (≤55%) and sugar content (≤75%). Different pretreatments (defatting, deproteinization, and delignification) were performed before extraction, causing significant changes to the chemical composition and cell wall structural characteristics of destarched wheat bran, which, in turn, affected the yield and composition of the AX extracts. Deproteinization effectively increased the sugar content, phenolic acid content, and overall yield of the extracts. Different pretreatment and extraction methods significantly affected the DPPH radical scavenging rate and Fe2+ chelating rate of the AX extracts but had little impact on the ABTS radical scavenging rate. The antioxidant activity of AX extracted using alkali-urea was unexpectedly higher than that extracted using a dilute alkali. This suggests that the antioxidant activity of AX does not entirely depend on its phenolic acid content but is influenced by various other factors.
Collapse
Affiliation(s)
- Axiang Liu
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (A.L.); (S.Z.); (W.W.); (H.H.); (Y.D.)
- Engineering and Technology Center for Grain Processing of Shandong Province, Tai’an 271018, China
| | - Shengjie Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (A.L.); (S.Z.); (W.W.); (H.H.); (Y.D.)
- Engineering and Technology Center for Grain Processing of Shandong Province, Tai’an 271018, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (A.L.); (S.Z.); (W.W.); (H.H.); (Y.D.)
- Engineering and Technology Center for Grain Processing of Shandong Province, Tai’an 271018, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (A.L.); (S.Z.); (W.W.); (H.H.); (Y.D.)
- Engineering and Technology Center for Grain Processing of Shandong Province, Tai’an 271018, China
| | - Yangyong Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (A.L.); (S.Z.); (W.W.); (H.H.); (Y.D.)
- Engineering and Technology Center for Grain Processing of Shandong Province, Tai’an 271018, China
| | - Cheng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (A.L.); (S.Z.); (W.W.); (H.H.); (Y.D.)
- Engineering and Technology Center for Grain Processing of Shandong Province, Tai’an 271018, China
| | - Hui Zhang
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan 250022, China
| |
Collapse
|
2
|
Sunvittayakul P, Wonnapinij P, Wannitikul P, Phanthanong P, Changwitchukarn K, Suttangkakul A, Utthiya S, Phraemuang A, Kongsil P, Prommarit K, Ceballos H, Gomez LD, Kittipadakul P, Vuttipongchaikij S. Genome-wide association studies unveils the genetic basis of cell wall composition and saccharification of cassava pulp. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109312. [PMID: 39579720 DOI: 10.1016/j.plaphy.2024.109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Cassava (Manihot esculenta Crantz) is a key crop for starch and biofuels production. This study focuses on the polysaccharide composition and saccharification efficiency in cassava pulp through genome-wide association studies (GWAS), targeting the improvement of root characteristics for industrial use. We analyzed 135 partially inbred lines population, performing monosaccharide composition and saccharification analyses to reveal substantial variability in storage root biomass. Among 33 traits examined, 128 significant SNPs were associated with 23 biomass traits, highlighting a complex genetic architecture. Saccharification potential varied from 39 to 95 nmol Glu mg-1 h-1, with high broad-sense heritability for saccharification and several monosaccharide traits, indicating a strong genetic control. Our findings revealed that cassava pulp comprises similar proportions of pectin, hemicellulose, and cellulose in all genotypes. Correlation analysis showed significant associations between cellulose content and saccharification, suggesting that enhancing these traits can improve bioconversion efficiency. Negative correlations with glucose and glucuronic acid in hemicellulose and pectin fractions imply these components may inhibit saccharification. We identified 118 candidate genes associated with 21 traits, with many involved in stress responses affecting cell wall composition. This study verified 12 key candidate genes through sequence and expression analysis, including MANES_07G081200, a YTH domain-containing protein associated with saccharification. Several stress-response genes, such as MANES_04G118600 and MANES_09G174600, were linked to monosaccharide traits, suggesting that adaptive stress pathways influence biomass characteristics. This study provides insights into the genetic determinants of cassava pulp's saccharification and polysaccharide composition, aiding breeding efforts to develop cassava varieties optimized for industrial applications.
Collapse
Affiliation(s)
- Pongsakorn Sunvittayakul
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Pitchaporn Wannitikul
- Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Phongnapha Phanthanong
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Kanokpoo Changwitchukarn
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Anongpat Suttangkakul
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Supanut Utthiya
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Apimon Phraemuang
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Pasajee Kongsil
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies of Agriculture and Food (CASAF), Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Kamonchat Prommarit
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Hernan Ceballos
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Leonardo D Gomez
- Centre of Novel Agricultural Products (CNAP), Department of Biology, University of York, York, United Kingdom
| | - Piya Kittipadakul
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies of Agriculture and Food (CASAF), Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand; Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
3
|
Chen X, Yang S, Ouyang S, Yuan X, Song J, Ding S, Sha Y, Zhai R. Tuning Structural Characteristics of Corn Stover Through Ammonium and Sodium Sulfite (ASS) Pretreatment for Enhanced Enzymatic Hydrolysis. Appl Biochem Biotechnol 2024; 196:7940-7953. [PMID: 38668842 DOI: 10.1007/s12010-024-04964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 12/14/2024]
Abstract
The ammonia fiber expansion (AFEX) pretreatment of lignocellulosic biomass offers a significant advantage in terms of obtaining high glucan conversion, with the added benefit of ammonia being fully recyclable. However, despite the high efficiency of AFEX in pretreating lignocellulose, relatively high enzyme loading is still required for effective cellulose conversions. In this study, we have updated the AFEX pretreatment method; ammonia and sodium sulfite (ASS) can be used to produce a more digestible substrate. The results demonstrate that ASS-pretreated corn stover (CS) yields a higher fermentable sugar yield compared with AFEX pretreatment, even at lower enzyme loadings. Specifically, at an enzyme loading of 12 mg protein/g glucan, ASS-CS achieved 88.8% glucose and 80.6% xylose yield. Characterization analysis reveals that lignin underwent sulfonation during ASS pretreatment. This modification results in a more negative zeta potential for ASS-CS, indicating a reduction in nonproductive adsorption between lignin and cellulase through increased electrostatic repulsion.
Collapse
Affiliation(s)
- Xiangxue Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu District, Nanjing, 210094, Jiangsu Province, China
| | - Shizhong Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu District, Nanjing, 210094, Jiangsu Province, China
| | - Shuiping Ouyang
- School of Advanced Materials Engineering, Jiaxing Nanhu University, 572 South Yuexiu Road, Jiaxing, 314001, China
| | - Xinchuan Yuan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu District, Nanjing, 210094, Jiangsu Province, China
| | - Junlin Song
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu District, Nanjing, 210094, Jiangsu Province, China
| | - Shuai Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu District, Nanjing, 210094, Jiangsu Province, China
| | - Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu District, Nanjing, 210094, Jiangsu Province, China.
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu District, Nanjing, 210094, Jiangsu Province, China.
| |
Collapse
|
4
|
Lu H, Xue M, Nie X, Luo H, Tan Z, Yang X, Shi H, Li X, Wang T. Glycoside hydrolases in the biodegradation of lignocellulosic biomass. 3 Biotech 2023; 13:402. [PMID: 37982085 PMCID: PMC10654287 DOI: 10.1007/s13205-023-03819-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/15/2023] [Indexed: 11/21/2023] Open
Abstract
Lignocellulose is a plentiful and intricate biomass substance made up of cellulose, hemicellulose, and lignin. Cellulose and hemicellulose are polysaccharides characterized by different compositions and degrees of polymerization. As renewable resources, their applications are eco-friendly and can help reduce reliance on petrochemical resources. This review aims to illustrate cellulose, hemicellulose, and their structures and hydrolytic enzymes. To obtain desirable enzyme sources for the high hydrolysis of lignocellulose, highly stable, efficient and thermophilic enzyme sources, and new technologies, such as rational design and machine learning, have been introduced in detail. Generally, the efficient biodegradation of abundant natural biomass into fermentable sugars or other intermediates has great potential in practical applications. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03819-1.
Collapse
Affiliation(s)
- Honglin Lu
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Maoyuan Xue
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Xinling Nie
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 China
| | - Hongzheng Luo
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Zhongbiao Tan
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Xiao Yang
- Department of Poultry Science, The University of Georgia, Athens, GA 30602 USA
| | - Hao Shi
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 China
| | - Tao Wang
- Department of Microbiology, The University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
5
|
Hou Y, Wang S, Deng B, Ma Y, Long X, Qin C, Liang C, Huang C, Yao S. Selective separation of hemicellulose from poplar by hydrothermal pretreatment with ferric chloride and pH buffer. Int J Biol Macromol 2023; 251:126374. [PMID: 37595709 DOI: 10.1016/j.ijbiomac.2023.126374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 07/20/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
As an environmentally friendly lignocellulosic biomass separation technology, hydrothermal pretreatment (HP) has a strong application prospect. However, the low separation efficiency is a main factor limiting its application. In this study, the poplar components were separated using HP with ferric chloride and pH buffer (HFB). The optimal conditions were ferric chloride concentration of 0.10 M, reaction temperature of 150 °C, reaction time of 15 min and pH 1.9. The separation of hemicellulose was increased 34.03 % to 77.02 %. The pH buffering resulted in the highest cellulose and lignin retention yields compared to ferric chloride pretreatment (FC). The high efficiency separation of hemicellulose via HFB pretreatment inhibited the degradation of xylose. The hydrolysate was effectively reused for five times. The fiber crystallinity index reached 60.05 %, and the highest C/O ratio was obtained. The results provide theoretical support for improving the efficiency of HP and promoting its application.
Collapse
Affiliation(s)
- Yajun Hou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Shanshan Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Baojuan Deng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Yun Ma
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Xing Long
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
6
|
Li H, Wang Y, Zhao P, Guo L, Huang L, Li X, Gao W. Naturally and chemically acetylated polysaccharides: Structural characteristics, synthesis, activities, and applications in the delivery system: A review. Carbohydr Polym 2023; 313:120746. [PMID: 37182931 DOI: 10.1016/j.carbpol.2023.120746] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Acetylated polysaccharides refer to polysaccharides containing acetyl groups on sugar units. In the past, the acetylation modification of wall polysaccharides has been a hot research topic for scientists. However, in recent years, many studies have reported that acetylation-modified plant, animal, and microbial polysaccharide show great potential in delivery systems. From the latest perspective, this review systematically presents the different sources of naturally acetylated polysaccharides, the regularity of their modification, the chemical preparation of acetylation modifications, the biological activities and functions of acetylated polysaccharides, and the application in the delivery system. In nature, acetylated polysaccharides are extensively distributed in plants, microorganism, and animals. The level of acetylation modification, the distribution of chains, and the locations of acetylation modification sites differ between species. An increasing number of acetylated polysaccharides were prepared in the aqueous medium, which is safe, environment friendly, and low-cost. In addition to being necessary for plant growth and development, acetylated polysaccharides have immunomodulatory, antioxidant, and anticancer properties. The above-mentioned multiple sources, multifunctional and multi-active acetylated polysaccharides, make them an increasingly important part of delivery systems. We conclude by discussing the future directions for research and development and the potential uses for acetylated polysaccharides.
Collapse
|
7
|
Singh A, Tsai ML, Chen CW, Rani Singhania R, Kumar Patel A, Tambat V, Dong CD. Role of hydrothermal pretreatment towards sustainable biorefinery. BIORESOURCE TECHNOLOGY 2023; 367:128271. [PMID: 36351534 DOI: 10.1016/j.biortech.2022.128271] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Recently, the world is experiencing a shift from petroleum refineries to biorefineries due to fossil fuel depletion and environmental concerns. To achieve sustainable development of biorefineries and other components of the biofuel production process, eco-friendly and cost-effective approaches are necessary. Therefore, lignocellulosic biomass (LCB) must be exploited in biorefineries for the generation of a broad spectrum of products. The complex structure of LCB prevents its direct saccharification by enzymatic means, so pretreatment is necessary. There are several pretreatment technologies for disrupting the lignocellulosic structure, but hydrothermal pretreatment is the leading pretreatment technology for recovering hemicellulose fraction with a low number of inhibitors and an increased amount of cellulose. The severity of hydrothermal pretreatment plays a principal role in affecting cellulose, hemicellulose, and lignin structure. A detailed account of microwave-assisted hydrothermal pretreatment technologies and the cost-effectiveness, eco-friendliness, and upcoming challenges of this technology for commercialization with the probable solution is presented.
Collapse
Affiliation(s)
- Anusuiya Singh
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Vaibhav Tambat
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
8
|
Brenelli LB, Bhatia R, Djajadi DT, Thygesen LG, Rabelo SC, Leak DJ, Franco TT, Gallagher JA. Xylo-oligosaccharides, fermentable sugars, and bioenergy production from sugarcane straw using steam explosion pretreatment at pilot-scale. BIORESOURCE TECHNOLOGY 2022; 357:127093. [PMID: 35378280 DOI: 10.1016/j.biortech.2022.127093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the production of xylo-oligosaccharides (XOS) from sugarcane straw (SCS) using steam explosion (SE) pretreatment at pilot-scale, as well as co-production of fermentable sugars and lignin-rich residues for bioethanol and bioenergy, respectively. SE conditions 200 °C; 15 bar; 10 min led to 1) soluble XOS yields of up to 35 % (w/w) of initial xylan with ∼50 % of the recovered XOS corresponding to xylobiose and xylotriose, considered the most valuable sugars for prebiotic applications; 2) fermentable glucose yields from the enzymatic hydrolysis of SE-pretreated SCS of up to ∼78 %; 3) increase in the energy content of saccharified SCS residues (16 %) compared to the untreated material. From an integrated biorefinery perspective, it demonstrated the potential use of SCS for the production of value-added XOS ingredients as well as liquid and solid biofuel products.
Collapse
Affiliation(s)
- Lívia B Brenelli
- Interdisciplinary Center of Energy Planning, University of Campinas, Cora Coralina, 330, Campinas, São Paulo, Brazil; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Rakesh Bhatia
- Department of Agronomy and Plant Breeding, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Demi T Djajadi
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Lisbeth G Thygesen
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Sarita C Rabelo
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Avenida Universitária, 3780, Altos do Paraíso, São Paulo, Brazil
| | - David J Leak
- Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Telma T Franco
- School of Chemical Engineering, University of Campinas (UNICAMP), Av. Albert Einstein, Campinas, São Paulo 13083-852, Brazil
| | - Joe A Gallagher
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| |
Collapse
|