1
|
Kumar T, Wang JG, Xu CH, Lu X, Mao J, Lin XQ, Kong CY, Li CJ, Li XJ, Tian CY, Ebid MHM, Liu XL, Liu HB. Genetic Engineering for Enhancing Sugarcane Tolerance to Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:1739. [PMID: 38999579 PMCID: PMC11244436 DOI: 10.3390/plants13131739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
Sugarcane, a vital cash crop, contributes significantly to the world's sugar supply and raw materials for biofuel production, playing a significant role in the global sugar industry. However, sustainable productivity is severely hampered by biotic and abiotic stressors. Genetic engineering has been used to transfer useful genes into sugarcane plants to improve desirable traits and has emerged as a basic and applied research method to maintain growth and productivity under different adverse environmental conditions. However, the use of transgenic approaches remains contentious and requires rigorous experimental methods to address biosafety challenges. Clustered regularly interspaced short palindromic repeat (CRISPR) mediated genome editing technology is growing rapidly and may revolutionize sugarcane production. This review aims to explore innovative genetic engineering techniques and their successful application in developing sugarcane cultivars with enhanced resistance to biotic and abiotic stresses to produce superior sugarcane cultivars.
Collapse
Affiliation(s)
- Tanweer Kumar
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
- Sugar Crops Research Institute, Agriculture, Fisheries and Co-Operative Department, Charsadda Road, Mardan 23210, Khyber Pakhtunkhwa, Pakistan
| | - Jun-Gang Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Chao-Hua Xu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Xin Lu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Jun Mao
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Xiu-Qin Lin
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Chun-Yan Kong
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Chun-Jia Li
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Xu-Juan Li
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Chun-Yan Tian
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Mahmoud H. M. Ebid
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
- Sugar Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Xin-Long Liu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Hong-Bo Liu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| |
Collapse
|
2
|
Verma KK, Song XP, Budeguer F, Nikpay A, Enrique R, Singh M, Zhang BQ, Wu JM, Li YR. Genetic engineering: an efficient approach to mitigating biotic and abiotic stresses in sugarcane cultivation. PLANT SIGNALING & BEHAVIOR 2022; 17:2108253. [PMID: 35959678 PMCID: PMC9377231 DOI: 10.1080/15592324.2022.2108253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stresses are the foremost limiting factors for crop productivity. Crop plants need to cope with adverse external pressure caused by various environmental conditions with their intrinsic biological mechanisms to keep their growth, development, and productivity. Climate-resilient, high-yielding crops need to be developed to maintain sustainable food supply. Over the last decade, understanding of the genetic complexity of agronomic traits in sugarcane has prompted the integrated application of genetic engineering to address specific biological questions. Genes for adaptation to environmental stress and yield enhancement traits are being determined and introgressed to develop elite sugarcane cultivars with improved characteristics through genetic engineering approaches. Here, we discuss the advancement to provide a reference for future sugarcane (Saccharum spp.) genetic engineering.
Collapse
Affiliation(s)
- Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences/ Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences/ Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Florencia Budeguer
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estacion Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Amin Nikpay
- Department of Plant Protection, Sugarcane and By-Products Development Company, Salman Farsi Agroindustry, AhwazIran
| | - Ramon Enrique
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estacion Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow–India
| | - Bao-Qing Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences/ Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Jian-Ming Wu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences/ Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences/ Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| |
Collapse
|
3
|
Iqbal A, Khan RS, Khan MA, Gul K, Jalil F, Shah DA, Rahman H, Ahmed T. Genetic Engineering Approaches for Enhanced Insect Pest Resistance in Sugarcane. Mol Biotechnol 2021; 63:557-568. [PMID: 33893996 DOI: 10.1007/s12033-021-00328-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Sugarcane (Saccharum officinarum), a sugar crop commonly grown for sugar production all over the world, is susceptible to several insect pests attack in addition to bacterial, fungal and viral infections leading to substantial reductions in its yield. The complex genetic makeup and lack of resistant genes in genome of sugarcane have made the conventional breeding a difficult and challenging task for breeders. Using pesticides for control of the attacking insects can harm beneficial insects, human and other animals and the environment as well. As alternative and effective strategy for control of insect pests, genetic engineering has been applied for overexpression of cry proteins, vegetative insecticidal proteins (vip), lectins and proteinase inhibitors (PI). In addition, the latest biotechnological tools such as host-induced gene silencing (HIGS) and CRISPR/Cas9 can be employed for sustainable control of insect pests in sugarcane. In this review overexpression of the cry, vip, lectins and PI genes in transgenic sugarcane and their disease resistance potential is described.
Collapse
Affiliation(s)
- Aneela Iqbal
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Raham Sher Khan
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan.
| | - Mubarak Ali Khan
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Karim Gul
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Fazal Jalil
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Daud Ali Shah
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University, Mardan, Pakistan
| | - Talaat Ahmed
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Shibao PYT, Santos-Júnior CD, Santiago AC, Mohan C, Miguel MC, Toyama D, Vieira MAS, Narayanan S, Figueira A, Carmona AK, Schiermeyer A, Soares-Costa A, Henrique-Silva F. Sugarcane cystatins: From discovery to biotechnological applications. Int J Biol Macromol 2020; 167:676-686. [PMID: 33285201 DOI: 10.1016/j.ijbiomac.2020.11.185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/01/2022]
Abstract
Phytocystatins are tight-binding cysteine protease inhibitors produced by plants. The first phytocystatin described was isolated from Oryza sativa and, since then, cystatins from several plant species were reported, including from sugarcane. Sugarcane cystatins were unraveled in Sugarcane EST project database, after sequencing of cDNA libraries from various sugarcane tissues at different developmental stages and six sugarcane cystatins were cloned, expressed and characterized (CaneCPI-1 to CaneCPI-6). These recombinant proteins were produced in different expression systems and inhibited several cysteine proteases, including human cathepsins B and L, which can be involved in pathologies, such as cancer. In this review, we summarize a comprehensive history of all sugarcane cystatins, presenting an updated phylogenetic analysis; chromosomal localization, and genomic organization. We also present protein docking of CaneCPI-5 in the active site of human cathepsin B, insights about canecystatins structures; recombinant expression in different systems, comparison of their inhibitory activities against human cysteine cathepsins B, K, L, S, V, falcipains from Plasmodium falciparum and a cathepsin L-like from the sugarcane weevil Sphenophorus levis; and enlighten their potential and current applications in agriculture and health.
Collapse
Affiliation(s)
- Priscila Yumi Tanaka Shibao
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Célio Dias Santos-Júnior
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, China
| | | | - Chakravarthi Mohan
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Mariana Cardoso Miguel
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Danyelle Toyama
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | | | - Subramonian Narayanan
- Genetic Transformation Laboratory, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Antonio Figueira
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Adriana K Carmona
- Department of Biophysics, Federal University of São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Andrea Soares-Costa
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Flavio Henrique-Silva
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil.
| |
Collapse
|
5
|
Padilla CS, Damaj MB, Yang ZN, Molina J, Berquist BR, White EL, Solís-Gracia N, Da Silva J, Mandadi KK. High-Level Production of Recombinant Snowdrop Lectin in Sugarcane and Energy Cane. Front Bioeng Biotechnol 2020; 8:977. [PMID: 33015000 PMCID: PMC7461980 DOI: 10.3389/fbioe.2020.00977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 01/11/2023] Open
Abstract
Sugarcane and energy cane (Saccharum spp. hybrids) are ideal for plant-based production of recombinant proteins because their high resource-use efficiency, rapid growth and efficient photosynthesis enable extensive biomass production and protein accumulation at a cost-effective scale. Here, we aimed to develop these species as efficient platforms to produce recombinant Galanthus nivalis L. (snowdrop) agglutinin (GNA), a monocot-bulb mannose-specific lectin with potent antiviral, antifungal and antitumor activities. Initially, GNA levels of 0.04% and 0.3% total soluble protein (TSP) (0.3 and 3.8 mg kg–1 tissue) were recovered from the culms and leaves, respectively, of sugarcane lines expressing recombinant GNA under the control of the constitutive maize ubiquitin 1 (Ubi) promoter. Co-expression of recombinant GNA from stacked multiple promoters (pUbi and culm-regulated promoters from sugarcane dirigent5-1 and Sugarcane bacilliform virus) on separate expression vectors increased GNA yields up to 42.3-fold (1.8% TSP or 12.7 mg kg–1 tissue) and 7.7-fold (2.3% TSP or 29.3 mg kg–1 tissue) in sugarcane and energy cane lines, respectively. Moreover, inducing promoter activity in the leaves of GNA transgenic lines with stress-regulated hormones increased GNA accumulation to 2.7% TSP (37.2 mg kg–1 tissue). Purification by mannose-agarose affinity chromatography yielded a functional sugarcane recombinant GNA with binding substrate specificity similar to that of native snowdrop-bulb GNA, as shown by enzyme-linked lectin and mannose-binding inhibition assays. The size and molecular weight of recombinant GNA were identical to those of native GNA, as determined by size-exclusion chromatography and MALDI-TOF mass spectrometry. This work demonstrates the feasibility of producing recombinant GNA at high levels in Saccharum species, with the long-term goal of using it as a broad-spectrum antiviral carrier molecule for hemopurifiers and in related therapeutic applications.
Collapse
Affiliation(s)
- Carmen S Padilla
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Mona B Damaj
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Zhong-Nan Yang
- Institute for Plant Gene Function, Department of Biology, Shanghai Normal University, Shanghai, China
| | - Joe Molina
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | | | - Earl L White
- MDx BioAnalytical Laboratory, Inc., College Station, TX, United States
| | - Nora Solís-Gracia
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Jorge Da Silva
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States.,Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States.,Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
6
|
Damaj MB, Jifon JL, Woodard SL, Vargas-Bautista C, Barros GOF, Molina J, White SG, Damaj BB, Nikolov ZL, Mandadi KK. Unprecedented enhancement of recombinant protein production in sugarcane culms using a combinatorial promoter stacking system. Sci Rep 2020; 10:13713. [PMID: 32792533 PMCID: PMC7426418 DOI: 10.1038/s41598-020-70530-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/21/2020] [Indexed: 11/09/2022] Open
Abstract
Plants represent a safe and cost-effective platform for producing high-value proteins with pharmaceutical properties; however, the ability to accumulate these in commercially viable quantities is challenging. Ideal crops to serve as biofactories would include low-input, fast-growing, high-biomass species such as sugarcane. The objective of this study was to develop an efficient expression system to enable large-scale production of high-value recombinant proteins in sugarcane culms. Bovine lysozyme (BvLz) is a potent broad-spectrum antimicrobial enzyme used in the food, cosmetics and agricultural industries. Here, we report a novel strategy to achieve high-level expression of recombinant proteins using a combinatorial stacked promoter system. We demonstrate this by co-expressing BvLz under the control of multiple constitutive and culm-regulated promoters on separate expression vectors and combinatorial plant transformation. BvLz accumulation reached 1.4% of total soluble protein (TSP) (10.0 mg BvLz/kg culm mass) in stacked multiple promoter:BvLz lines, compared to 0.07% of TSP (0.56 mg/kg) in single promoter:BvLz lines. BvLz accumulation was further boosted to 11.5% of TSP (82.5 mg/kg) through event stacking by re-transforming the stacked promoter:BvLz lines with additional BvLz expression vectors. The protein accumulation achieved with the combinatorial promoter stacking expression system was stable in multiple vegetative propagations, demonstrating the feasibility of using sugarcane as a biofactory for producing high-value proteins and bioproducts.
Collapse
Affiliation(s)
- Mona B Damaj
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA.
| | - John L Jifon
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843-2133, USA
| | - Susan L Woodard
- National Center for Therapeutics Manufacturing, Texas A&M University, 100 Discovery Drive, College Station, TX, 77843-4482, USA
| | - Carol Vargas-Bautista
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
- College of Medicine, Texas A&M University, 8447 Riverside Parkway, Bryan, TX, 77807, USA
| | - Georgia O F Barros
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Joe Molina
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
| | - Steven G White
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Bassam B Damaj
- Innovus Pharmaceuticals, Inc., 8845 Rehco Road, San Diego, CA, 92121, USA
| | - Zivko L Nikolov
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA.
| |
Collapse
|
7
|
Ferrara TFS, Schneider VK, Lima PS, Bronze FS, Machado MFM, Henrique-Silva F, Soares-Costa A, Carmona AK. Gene expression studies and molecular characterization of a cathepsin L-like from the Asian citrus psyllid Diaphorina citri, vector of Huanglongbing. Int J Biol Macromol 2020; 158:375-383. [PMID: 32360970 DOI: 10.1016/j.ijbiomac.2020.04.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/30/2022]
Abstract
Huanglongbing (HLB) is a devastating citrus disease associated with Candidatus Liberibacter asiaticus (CLas) and is transmitted by the psyllid Diaphorina citri Kuwayama. Diaphorina citri belongs to Hemiptera order, which has cysteine peptidases as the most abundant proteolytic enzymes present in digestive tract. As cysteine peptidases are involved in different insect development processes, this class of enzymes has acquired biotechnological importance. In this context, we identified a cathepsin L-like (DCcathL1) from the Diaphorina citri transcriptome database and expressed the enzyme in E. coli. Quantitative real-time RT-PCR was conducted to determine DCcathL1 gene expression in different parts and developmental phases of the insect. We observed that DCcathL1 expression in the gut was 2.59 and 2.87-fold higher than in the head and carcass, respectively. Furthermore, DCcathL1 expression was greater in eggs than in nymphs and adults, suggesting a putative role of the enzyme in the embryonic development. In addition, enzymatic inhibitory activity using four recombinant Citrus cystatins were performed. Among them, CsinCPI-2 was the strongest DCcathL1 inhibitor with a Ki value of 0.005 nM. Our results may contribute in the development of strategies for D. citri control, such as silencing the DCcathL1 gene and the use of transgenic plants that overexpress peptidase inhibitors.
Collapse
Affiliation(s)
- Taise F S Ferrara
- Departamento de Biofísica, Universidade Federal de São Paulo, 04039-032 São Paulo, Brazil
| | - Vanessa K Schneider
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905 São Paulo, Brazil
| | - Patricia Silva Lima
- Departamento de Biofísica, Universidade Federal de São Paulo, 04039-032 São Paulo, Brazil
| | - Fellipe S Bronze
- Departamento de Biofísica, Universidade Federal de São Paulo, 04039-032 São Paulo, Brazil
| | - Marcelo F M Machado
- Departamento de Biofísica, Universidade Federal de São Paulo, 04039-032 São Paulo, Brazil
| | - Flavio Henrique-Silva
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905 São Paulo, Brazil
| | - Andrea Soares-Costa
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905 São Paulo, Brazil.
| | - Adriana K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, 04039-032 São Paulo, Brazil.
| |
Collapse
|
8
|
Souza TP, Dias RO, Silva-Filho MC. Defense-related proteins involved in sugarcane responses to biotic stress. Genet Mol Biol 2017; 40:360-372. [PMID: 28222203 PMCID: PMC5452140 DOI: 10.1590/1678-4685-gmb-2016-0057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/27/2016] [Indexed: 11/22/2022] Open
Abstract
Sugarcane is one of the most important agricultural crops in the world. However, pathogen infection and herbivore attack cause constant losses in yield. Plants respond to pathogen infection by inducing the expression of several protein types, such as glucanases, chitinases, thaumatins, peptidase inhibitors, defensins, catalases and glycoproteins. Proteins induced by pathogenesis are directly or indirectly involved in plant defense, leading to pathogen death or inducing other plant defense responses. Several of these proteins are induced in sugarcane by different pathogens or insects and have antifungal or insecticidal activity. In this review, defense-related proteins in sugarcane are described, with their putative mechanisms of action, pathogen targets and biotechnological perspectives.
Collapse
Affiliation(s)
- Thais P Souza
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Renata O Dias
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Marcio C Silva-Filho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
9
|
Schneider VK, Soares-Costa A, Chakravarthi M, Ribeiro C, Chabregas SM, Falco MC, Henrique-Silva F. Transgenic sugarcane overexpressing CaneCPI-1 negatively affects the growth and development of the sugarcane weevil Sphenophorus levis. PLANT CELL REPORTS 2017; 36:193-201. [PMID: 27837261 DOI: 10.1007/s00299-016-2071-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/03/2016] [Indexed: 05/26/2023]
Abstract
Transgenic sugarcane expressing CaneCPI-1 exhibits resistance to Sphenophorus levis larvae. Transgenic plants have widely been used to improve resistance against insect attack. Sugarcane is an economically important crop; however, great losses are caused by insect attack. Sphenophorus levis is a sugarcane weevil that digs tunnels in the stem base, leading to the destruction of the crop. This insect is controlled inefficiently by chemical insecticides. Transgenic plants expressing peptidase inhibitors represent an important strategy for impairing insect growth and development. Knowledge of the major peptidase group present in the insect gut is critical when choosing the most effective inhibitor. S. levis larvae use cysteine peptidases as their major digestive enzymes, primarily cathepsin L-like activity. In this study, we developed transgenic sugarcane plants that overexpress sugarcane cysteine peptidase inhibitor 1 (CaneCPI-1) and assessed their potential through feeding bioassays with S. levis larvae. Cystatin overexpression in the transgenic plants was evaluated using semi-quantitative RT-PCR, RT-qPCR, and immunoblot assays. A 50% reduction of the average weight was observed in larvae that fed on transgenic plants in comparison to larvae that fed on non-transgenic plants. In addition, transgenic sugarcane exhibited less damage caused by larval attack than the controls. Our results suggest that the overexpression of CaneCPI-1 in sugarcane is a promising strategy for improving resistance against this insect.
Collapse
Affiliation(s)
- Vanessa Karine Schneider
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, Rodovia Washigton Luis, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Andrea Soares-Costa
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, Rodovia Washigton Luis, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Mohan Chakravarthi
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, Rodovia Washigton Luis, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Carolina Ribeiro
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, Rodovia Washigton Luis, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Sabrina Moutinho Chabregas
- Centro de Tecnologia Canavieira, Fazenda Santo Antônio, s/n, cp. 162, Piracicaba, SP, CEP 13400-970, Brazil
| | - Maria Cristina Falco
- Centro de Tecnologia Canavieira, Fazenda Santo Antônio, s/n, cp. 162, Piracicaba, SP, CEP 13400-970, Brazil
| | - Flavio Henrique-Silva
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, Rodovia Washigton Luis, Km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
10
|
Palaniswamy H, Syamaladevi DP, Mohan C, Philip A, Petchiyappan A, Narayanan S. Vacuolar targeting of r-proteins in sugarcane leads to higher levels of purifiable commercially equivalent recombinant proteins in cane juice. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:791-807. [PMID: 26183462 PMCID: PMC11389112 DOI: 10.1111/pbi.12430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 05/07/2023]
Abstract
Sugarcane is an ideal candidate for biofarming applications because of its large biomass, rapid growth rate, efficient carbon fixation pathway and a well-developed storage tissue system. Vacuoles occupy a large proportion of the storage parenchyma cells in the sugarcane stem, and the stored products can be harvested as juice by crushing the cane. Hence, for the production of any high-value protein, it could be targeted to the lytic vacuoles so as to extract and purify the protein of interest from the juice. There is no consensus vacuolar-targeting sequence so far to target any heterologous proteins to sugarcane vacuole. Hence, in this study, we identified an N-terminal 78-bp-long putative vacuolar-targeting sequence from the N-terminal domain of unknown function (DUF) in Triticum aestivum 6-SFT (sucrose: fructan 6-fructosyl transferase). In this study, we have generated sugarcane transgenics with gene coding for the green fluorescent protein (GFP) fused with the vacuolar-targeting determinants at the N-terminal driven by a strong constitutive promoter (Port ubi882) and demonstrated the targeting of GFP to the vacuoles. In addition, we have also generated transgenics with His-tagged β-glucuronidase (GUS) and aprotinin targeted to the lytic vacuole, and these two proteins were isolated and purified from the transgenic sugarcane and compared with commercially available protein samples. Our studies have demonstrated that the novel vacuolar-targeting determinant could localize recombinant proteins (r-proteins) to the vacuole in high concentrations and such targeted r-proteins can be purified from the juice with a few simple steps.
Collapse
Affiliation(s)
| | - Divya P Syamaladevi
- Sugarcane Breeding Institute (ICAR-SBI), Coimbatore, Tamilnadu, India
- Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, Telangana, India
| | | | - Anna Philip
- Sugarcane Breeding Institute (ICAR-SBI), Coimbatore, Tamilnadu, India
| | | | | |
Collapse
|
11
|
Soares-Costa A, Nakayama DG, Andrade LDF, Catelli LF, Bassi APG, Ceccato-Antonini SR, Henrique-Silva F. Industrial PE-2 strain of Saccharomyces cerevisiae: from alcoholic fermentation to the production of recombinant proteins. N Biotechnol 2014; 31:90-7. [DOI: 10.1016/j.nbt.2013.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 10/26/2022]
|
12
|
Cunha NB, Murad AM, Ramos GL, Maranhão AQ, Brígido MM, Araújo ACG, Lacorte C, Aragão FJL, Covas DT, Fontes AM, Souza GHMF, Vianna GR, Rech EL. Accumulation of functional recombinant human coagulation factor IX in transgenic soybean seeds. Transgenic Res 2011; 20:841-55. [PMID: 21069460 DOI: 10.1007/s11248-010-9461-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 10/24/2010] [Indexed: 12/12/2022]
Abstract
The seed-based production of recombinant proteins is an efficient strategy to achieve the accumulation, correct folding, and increased stability of these recombinant proteins. Among potential plant molecular farming systems, soybean [Glycine max (L.) Merrill] is a viable option for the production of recombinant proteins due to its high protein content, known regulatory sequences, efficient gene transfer protocols, and a scalable production system under greenhouse conditions. We report here the expression and stable accumulation of human coagulation factor IX (hFIX) in transgenic soybean seeds. A biolistic process was utilised to co-introduce a plasmid carrying the hFIX gene under the transcriptional control of the α' subunit of a β-conglycinin seed-specific promoter and an α-Coixin signal peptide in soybean embryonic axes from mature seeds. The 56-kDa hFIX protein was expressed in the transgenic seeds at levels of up to 0.23% (0.8 g kg(-1) seed) of the total soluble seed protein as determined by an enzyme-linked immunosorbent assay (ELISA) and western blot. Ultrastructural immunocytochemistry assays indicated that the recombinant hFIX in seed cotyledonary cells was efficiently directed to protein storage vacuoles. Mass spectrometry characterisation confirmed the presence of the hFIX recombinant protein sequence. Protein extracts from transgenic seeds showed a blood-clotting activity of up to 1.4% of normal plasma. Our results demonstrate the correct processing and stable accumulation of functional hFIX in soybean seeds stored for 6 years under room temperature conditions (22 ± 2°C).
Collapse
Affiliation(s)
- Nicolau B Cunha
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica (PqEB), Av. W5 Norte, Brasília, DF 70770-917, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|