1
|
Lai JC, Jiang YT, Liu S, Wang S, Cui W, Wang L. Protein acylations in cancer immunity: effects and therapeutic opportunities. Trends Pharmacol Sci 2025:S0165-6147(25)00101-4. [PMID: 40541517 DOI: 10.1016/j.tips.2025.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/20/2025] [Accepted: 05/21/2025] [Indexed: 06/22/2025]
Abstract
Acylations are conserved and dynamic modifications that control various biological processes, including gene transcription and protein biology, and have been tied to diseases, such as cancers. Due to their reversible characteristic, acylations exhibit great therapeutic potential through targeting of their regulatory enzymes and proteins. Recent studies have improved our understanding of the close interplay between acylations and the tumor immune microenvironment (TIME), showing the potential to improve antitumor immune responses via acylation manipulation. Herein, we review the effects of acylations, including acetylation, lactylation, palmitoylation, and some less well-known acylations on cancer immunity, and corresponding therapeutic opportunities. Specifically, we bring into focus diverse roles of different acylation-related enzymes, metabolites, or substrates to provide insights into targeting acylations to increase antitumor immunity and generate broader research enthusiasm.
Collapse
Affiliation(s)
- Jia-Cheng Lai
- Department of Pharmacology, Shenyang Pharmaceutical University; Shenyang, 110016, PR China; Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University; Benxi, 117004, PR China
| | - Yi-Ting Jiang
- Department of Pharmacology, Shenyang Pharmaceutical University; Shenyang, 110016, PR China; Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University; Benxi, 117004, PR China
| | - Shougeng Liu
- Department of Pharmacology, Shenyang Pharmaceutical University; Shenyang, 110016, PR China; Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University; Benxi, 117004, PR China
| | - Simeng Wang
- Department of Pharmacology, Shenyang Pharmaceutical University; Shenyang, 110016, PR China; Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University; Benxi, 117004, PR China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University; Shenyang, 110016, PR China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University; Shenyang, 110016, PR China; Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University; Benxi, 117004, PR China.
| |
Collapse
|
2
|
Zhang X, Ye X, Jin H. Oxidized Low-Density Lipoprotein as a Potential Target for Enhancing Immune Checkpoint Inhibitor Therapy in Microsatellite-Stable Colorectal Cancer. Antioxidants (Basel) 2025; 14:726. [PMID: 40563359 DOI: 10.3390/antiox14060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/26/2025] [Accepted: 06/10/2025] [Indexed: 06/28/2025] Open
Abstract
Oxidized low-density lipoprotein (oxLDL) exhibits differential expression in microsatellite-stable (MSS) and microsatellite instability-high (MSI) colorectal cancer (CRC), highlighting its potential therapeutic role in immune checkpoint inhibitor (ICI) resistance in MSS CRC. Elevated oxLDL levels in MSS CRC contribute to tumor progression and diminish ICI efficacy by modulating metabolic reprogramming and immunosuppressive mechanisms within the tumor microenvironment (TME) by activating receptors such as LOX-1 and CD36. oxLDL triggers signaling pathways, including NF-κB, PI3K/Akt, and MAPK, leading to the expansion of immunosuppressive cells like regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and M2 macrophages, while concurrently suppressing effector T cell functions. Additionally, oxLDL enhances oxidative stress and promotes fatty acid oxidation (FAO) and glycolytic metabolism, resulting in nutrient competition within the TME and establishing an immunosuppressive milieu, ultimately culminating in ICI resistance. This review systematically examines the disparities in oxLDL expression between MSS and MSI CRC and elucidates the molecular mechanisms through which oxLDL mediates ICI resistance. Furthermore, it explores potential therapeutic strategies targeting oxLDL, offering novel avenues to overcome immunotherapy resistance in MSS CRC.
Collapse
Affiliation(s)
- Xiaochun Zhang
- The Second Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - Xiaorui Ye
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - Heiying Jin
- The Second Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing 210017, China
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| |
Collapse
|
3
|
Chen X, Yuan Y, Zhou F, Li L, Pu J, Zeng Y, Jiang X. Lactylation: From Homeostasis to Pathological Implications and Therapeutic Strategies. MedComm (Beijing) 2025; 6:e70226. [PMID: 40443721 PMCID: PMC12122191 DOI: 10.1002/mco2.70226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 06/02/2025] Open
Abstract
Lactylation, a recently identified post-translational modification, represents a groundbreaking addition to the epigenetic landscape, revealing its pivotal role in gene regulation and metabolic adaptation. Unlike traditional modifications, lactylation directly links metabolic intermediates, such as lactate, to protein function and cellular behavior. Emerging evidence highlights the critical involvement of lactylation in diverse biological processes, including immune response modulation, cellular differentiation, and tumor progression. However, its regulatory mechanisms, biological implications, and disease associations remain poorly understood. This review systematically explores the enzymatic and nonenzymatic mechanisms underlying protein lactylation, shedding light on the interplay between cellular metabolism and epigenetic control. We comprehensively analyze its biological functions in normal physiology, such as immune homeostasis and tissue repair, and its dysregulation in pathological contexts, including cancer, inflammation, and metabolic disorders. Moreover, we discuss advanced detection technologies and potential therapeutic interventions targeting lactylation pathways. By integrating these insights, this review aims to bridge critical knowledge gaps and propose future directions for research. Highlighting lactylation's multifaceted roles in health and disease, this review provides a timely resource for understanding its clinical implications, particularly as a novel target for precision medicine in metabolic and oncological therapies.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan ProvinceThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingChina
| | - Yixiao Yuan
- Department of Medicine, UF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
| | - Fan Zhou
- Department of Hematologythe Second Hospital Affiliated to Kunming Medical UniversityKunmingChina
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingChina
| | - Jun Pu
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan ProvinceThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingChina
| | - Yong Zeng
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan ProvinceThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Xiulin Jiang
- Department of Medicine, UF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
4
|
Zhang J, Jin X, Hou Y, Gu B, Li H, Yi L, Wu W, Hu S. Comprehensive analysis of the critical role of the epithelial mesenchymal transition subtype - TAGLN-positive fibroblasts in colorectal cancer progression and immunosuppression. Cell Biosci 2025; 15:66. [PMID: 40413514 PMCID: PMC12102804 DOI: 10.1186/s13578-025-01405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 05/05/2025] [Indexed: 05/27/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays a pivotal role in tumor metastasis and immune suppression in colorectal cancer (CRC). However, the specific mechanisms of EMT and its relationship with the clinical prognosis and immunotherapy response in CRC patients remain unclear. In this study, we identified TAGLN-positive fibroblasts (TAGLN⁺Fib) as a cancer-associated fibroblast (CAF) subtype within the tumor microenvironment (TME) that promotes tumor metastasis and immune evasion. High EMT scores, strongly associated with TAGLN expression, were correlated with advanced tumor stages, poor prognosis, and resistance to immunotherapy. Functional experiments demonstrated that TAGLN knockdown significantly reduced CRC cell proliferation, migration, and EMT phenotypes in vitro and suppressed tumor growth in vivo. Furthermore, TAGLN⁺Fib closely interacted with MMP7-positive tumor epithelial cells and SPP1-positive macrophages, forming a pro-metastatic and immunosuppressive network. An EMT-TME risk model constructed using TAGLN⁺Fib exhibited robust predictive power for CRC prognosis and immunotherapy response. This study reveals the association of EMT scores with CRC prognosis and immunotherapy response, highlights TAGLN⁺Fib's critical role in tumor progression, and develops an EMT-TME risk model, offering insights for personalized CRC treatment and precision medicine.
Collapse
Affiliation(s)
- Junli Zhang
- Department of Blood transfusion, The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, No. 38 Shengli Road, Bengshan District, Bengbu City, Anhui Province, China
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Anhui, China
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, Anhui, 233030, China
| | - Xinxin Jin
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, Anhui, 233030, China
| | - Yachao Hou
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, Anhui, 233030, China
| | - Biao Gu
- Department of Blood transfusion, The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, No. 38 Shengli Road, Bengshan District, Bengbu City, Anhui Province, China
| | - Hongwei Li
- Department of Blood transfusion, The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, No. 38 Shengli Road, Bengshan District, Bengbu City, Anhui Province, China
| | - Li Yi
- Department of Blood transfusion, The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, No. 38 Shengli Road, Bengshan District, Bengbu City, Anhui Province, China
| | - Wenjuan Wu
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, Anhui, 233030, China.
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, 233030, China.
| | - Shangshang Hu
- Department of Blood transfusion, The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, No. 38 Shengli Road, Bengshan District, Bengbu City, Anhui Province, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, 233030, China.
| |
Collapse
|
5
|
Yang Y, Li S, To KKW, Zhu S, Wang F, Fu L. Tumor-associated macrophages remodel the suppressive tumor immune microenvironment and targeted therapy for immunotherapy. J Exp Clin Cancer Res 2025; 44:145. [PMID: 40380196 DOI: 10.1186/s13046-025-03377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/27/2025] [Indexed: 05/19/2025] Open
Abstract
Despite the significant advances in the development of immune checkpoint inhibitors (ICI), primary and acquired ICI resistance remains the primary impediment to effective cancer immunotherapy. Residing in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play a pivotal role in tumor progression by regulating diverse signaling pathways. Notably, accumulating evidence has confirmed that TAMs interplay with various cellular components within the TME directly or indirectly to maintain the dynamic balance of the M1/M2 ratio and shape an immunosuppressive TME, consequently conferring immune evasion and immunotherapy tolerance. Detailed investigation of the communication network around TAMs could provide potential molecular targets and optimize ICI therapies. In this review, we systematically summarize the latest advances in understanding the origin and functional plasticity of TAMs, with a focus on the key signaling pathways driving macrophage polarization and the diverse stimuli that regulate this dynamic process. Moreover, we elaborate on the intricate interplay between TAMs and other cellular constituents within the TME, that is driving tumor initiation, progression and immune evasion, exploring novel targets for cancer immunotherapy. We further discuss current challenges and future research directions, emphasizing the need to decode TAM-TME interactions and translate preclinical findings into clinical breakthroughs. In conclusion, while TAM-targeted therapies hold significant promise for enhancing immunotherapy outcomes, addressing key challenges-such as TAM heterogeneity, context-dependent plasticity, and therapeutic resistance-remains critical to achieving optimal clinical efficacy.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Sijia Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kenneth K W To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Shuangli Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
6
|
Yin Y, Luo M. Lactylation-related risk model for prognostication and therapeutic responsiveness in uterine corpus endometrial carcinoma. Discov Oncol 2025; 16:677. [PMID: 40327181 PMCID: PMC12055729 DOI: 10.1007/s12672-025-02524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Uterine corpus endometrial carcinoma (UCEC) is a prevalent gynecological cancer characterized by varied clinical outcomes and responses to treatment. Developing effective prognostic models is essential for guiding clinical decision-making. Recent research indicates that lactylation-a process impacting gene expression and immune responses-can affect tumor growth, metastasis, and immune evasion through histone modification. This study introduces a lactylation-related risk model aimed at predicting UCEC prognosis and providing insights into treatment efficacy. METHODS We analyzed transcriptomic data from The Cancer Genome Atlas (TCGA) for UCEC patients and identified two distinct lactylation-related patterns using consensus clustering. A risk model developed using Cox and Lasso regression has been studied for its ability to predict prognosis, immune cell infiltration, and treatment response. Additionally, we investigated the relationship between IGSF1 gene expression and clinical features. Gene Set Enrichment Analysis (GSEA) was performed to explore the function of the IGSF1 gene. RESULTS Two distinct lactylation-related clusters were identified, along with 156 differentially expressed genes between these clusters that are associated with the prognosis of UCEC. A risk model was developed based on three genes: IGSF1, ZFHX4, and SCGB2A1. This model effectively predicts clinical characteristics of UCEC patients, including immune cell infiltration, genetic variations, drug sensitivity, and response to immunotherapy. Notably, IGSF1 is linked to poor prognosis and is associated with immune activity, tumorigenesis, and cancer metabolism. CONCLUSIONS This study demonstrates that the lactylation-related risk model plays a crucial role in predicting prognosis and the efficacy of immunotherapy in UCEC, offering valuable insights for personalized treatment approaches.
Collapse
Affiliation(s)
- Yupeng Yin
- Department of Obstetrics and Gynecology, General Hospital of Southern Theatre Command, Guangzhou, 510010, China
| | - Min Luo
- Department of Obstetrics and Gynecology, General Hospital of Southern Theatre Command, Guangzhou, 510010, China.
- The First Clinical Medical College, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Xu Y, Zhang H, Nie D. Histone modifications and metabolic reprogramming in tumor-associated macrophages: a potential target of tumor immunotherapy. Front Immunol 2025; 16:1521550. [PMID: 40375990 PMCID: PMC12078272 DOI: 10.3389/fimmu.2025.1521550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/09/2025] [Indexed: 05/18/2025] Open
Abstract
Histone modifications, including methylation, acetylation, lactylation, phosphorylation, ubiquitination, SUMOylation, ADP-ribosylation, and crotonylation, critically regulate tumor-associated macrophages (TAMs) polarization by modulating gene expression and functional states. Reprogramming TAMs from M2 to M1 phenotypes through epigenetic targeting has emerged as a promising strategy to enhance anti-tumor immunity and improve the efficacy of cancer immunotherapy. This review explores the role of histone modifications in TAM biology, their interplay with metabolic reprogramming, and the opportunities and challenges in developing epigenetic-based therapies to advance cancer immunotherapy.
Collapse
Affiliation(s)
- Yiting Xu
- The Second Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Han Zhang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dengyun Nie
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Lu JJ, Ning Y, Hu WT, Sheng YR, Liu YK, Xie F, Li MQ, Zhu XY. Excess heme orchestrates progesterone resistance in uterine endometrial cancer through macrophage polarization and the IL-33/PAX8/PGR axis. Biomed Pharmacother 2025; 186:118008. [PMID: 40138919 DOI: 10.1016/j.biopha.2025.118008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
Progesterone is an important drug for hormone therapy in uterine endometrial cancer (UEC). However, the therapeutic efficacy of progestogen is often limited by resistance, and the underlying mechanism remains unknown. In this study, we observed heme metabolism is more active in progesterone-insensitive patients. Heme induced macrophages (Mφs) bias towards M2-like phenotype and downregulated the expression of IL-33, resulting in increased levels of Paired box gene 8 (PAX8). Further study showed PAX8 inhibited the transcriptional activity of PGR by binding to the PGR promoter region. In addition, PGR can also act as a transcriptional factor to regulate the transcription of autophagy-related gene 7 (ATG). Low expression of PGR decreases the transcriptional activity of ATG7 promoter, which decreases cell autophagy and promotes the progression of UEC. Overall, this study reveals the important interaction between heme metabolism, IL-33 and PGR in progesterone-insensitive UEC, and is promising to provide new therapeutic targets for overcoming progesterone resistance.
Collapse
Affiliation(s)
- Jia-Jing Lu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, PR China; Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, PR China
| | - Yan Ning
- Department of Pathology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, PR China
| | - Wen-Ting Hu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, PR China
| | - Yan-Ran Sheng
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, PR China
| | - Yu-Kai Liu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, PR China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Ming-Qing Li
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, PR China; Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| | - Xiao-Yong Zhu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, PR China; Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, PR China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, PR China.
| |
Collapse
|
9
|
Miri H, Rahimzadeh P, Hashemi M, Nabavi N, Aref AR, Daneshi S, Razzaghi A, Abedi M, Tahmasebi S, Farahani N, Taheriazam A. Harnessing immunotherapy for hepatocellular carcinoma: Principles and emerging promises. Pathol Res Pract 2025; 269:155928. [PMID: 40184729 DOI: 10.1016/j.prp.2025.155928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
HCC is considered as one of the leadin causes of death worldwide, with the ability of resistance towards therapeutics. Immunotherapy, particularly ICIs, have provided siginficant insights towards harnessing the immune system. The present review introduces the concepts and possibilities of immunotherapy for HCC treatment, emphasizing its underlying mechanisms and capacity to enhance patient results, focusing on both pre-clinical and clinical insights. The functions of TME and immune evasion mechanisms typical of HCC would be evaluated along with how contemporary immunotherapeutic approaches are designed to address these challenges. Furthermore, the clinical application of immunotherapy in HCC is discussed, emphasizing recent trial findings demonstrating the effectiveness and safety of drugs. In addition, the problems caused by immune evasion and resistance would be discussed to increase potential of immunotherapy along with combination therapy.
Collapse
Affiliation(s)
- Hossein Miri
- Faculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University Of Medical Sciences, Jiroft, Iran
| | - Alireza Razzaghi
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Maryam Abedi
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Sun Y, Wang H, Cui Z, Yu T, Song Y, Gao H, Tang R, Wang X, Li B, Li W, Wang Z. Lactylation in cancer progression and drug resistance. Drug Resist Updat 2025; 81:101248. [PMID: 40287994 DOI: 10.1016/j.drup.2025.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Lactate plays a crucial role as an energy substrate, metabolite, and signaling molecule in cancer. Lactate has long been considered a byproduct of glycolysis. Still, the lactate shuttle hypothesis has changed the lactate paradigm, revealing the implications of lactate in cellular metabolism and cellular communications that can transcend the compartment barrier and occur within and between different cells, tissues, and organs. Due to the Warburg effect, the tumor produces a large amount of lactate, thus creating a low-nutrition, hypoxic, and low-pH tumor microenvironment (TME). Consequently, immunosuppressive networks are built to acquire immune evasion potential and regulate tumor growth. Lactylation is a newly discovered post-translational modification of lysine residues with the capacity for transcriptional regulation via histone modification and modulation of non-histone protein functions, which links gene regulation to cellular metabolism by aberrant metabolism activity and epigenetic modification. There is growing evidence that lactylation plays a crucial role in cancer progression and drug resistance. Targeting lactylation enzymes or metabolic pathways has shown promising effects in suppressing cancer progression and drug resistance, highlighting the therapeutic potential of this modification. Therefore, in this review, we offer a systematic overview of lactate homeostasis in physiological and pathological processes as well as discuss the influence of lactylation in cancer progression and drug resistance and underlying molecular mechanisms, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Yuxiu Sun
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - He Wang
- Department of Breast Medicine 2, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhe Cui
- Laboratory Department, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Tingting Yu
- Department of Gynecology Surgery 4, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yuanming Song
- Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Haolai Gao
- First Clinical College, Liaoning University of Traditional Chinese Medicine Affiliated Hospital, Liaoning Provincial Traditional Chinese Medicine Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, China
| | - Ruihong Tang
- Medical Equipment Department, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Xinlei Wang
- Department of Interventional Therapy, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Binru Li
- Department of Thoracic Medicine 2, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Wenxin Li
- Second Ward of Hepatobiliary and Pancreatic Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhe Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
11
|
Wang D, Gao Y, Tan Y, Li N, Li X, Li J, Pan Y, Zhao X, Yan M, Wang Y. lncRNA Ubr5 promotes BMSCs apoptosis and inhibits their proliferation and osteogenic differentiation in weightless bone loss. Front Cell Dev Biol 2025; 13:1543929. [PMID: 40241795 PMCID: PMC11999945 DOI: 10.3389/fcell.2025.1543929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025] Open
Abstract
Background Weightless bone loss is a common pathological phenomenon in weightless environments, yet its specific molecular mechanism remain incompletely elucidated. The aim of this study was to systematically investigate the differential expression profiles of mRNAs and long noncoding RNAs (lncRNAs) to explore the molecular pathogenesis underlying weightless bone loss. Methods Transcriptome sequencing was performed on bone marrow mesenchymal stem cell (BMSCs) samples from the Ground control group and simulated microgravity (SMG) group using Illumina technology. Using the DESeq2 algorithm, we accurately identify and analyzed the differentially expressed genes (DEGs). Subsequently, the molecular functions and signaling pathways enriched by DEG were comprehensively analyzed by GO and KEGG. In addition, by constructing lncRNA-mRNA coexpression network, this study screened and verified key lncRNAs as potential genes to further explore their role in the occurrence and development of weightless bone loss. Results A total of 215 differentially expressed lncRNAs (DElncRNAs) and 381 differentially expressed mRNAs (DEmRNAs) were identified, in the SMG group. DEmRNAs were primarily involved in the cell response to mechanical stimulation, microtubule motility and TNF signaling pathway. Meanwhile, DElncRNAs are significantly enriched in cell differentiation, fatty acid metabolic process and biosynthesis of amino acids. In addition, the expression levels of related lncRNAs and mRNAs in weightless bone loss were verified via qRT-PCR. lncRNA-mRNA coexpression network found that lncRNA Ubr5 closely related to osteoblast proliferation and differentiation. Further experimental results revealed that knocking down lncRNA Ubr5 can promote the apoptosis of BMSCs and inhibit their proliferation and osteogenic differentiation. Conclusion This study revealed the molecular pathogenesis of weightless bone loss, identified lncRNA Ubr5 as a potential intervention target, and provided an important scientific basis and strategic guidance for the prevention and treatment of weightless bone loss.
Collapse
Affiliation(s)
- Dong Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Yuan Gao
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Na Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Xi Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Jiaxiang Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Yikai Pan
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Xingcheng Zhao
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Ming Yan
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| |
Collapse
|
12
|
Zhang W, Shan G, Bi G, Hu Z, Yi Y, Zeng D, Lin Z, Zhan C. Lactylation and regulated cell death. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119927. [PMID: 40023198 DOI: 10.1016/j.bbamcr.2025.119927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Lactylation, a newly identified post-translational modification, entails the attachment of lactate to lysine residues within proteins, profoundly modulating diverse cellular mechanisms underlying regulated cell death (RCD). This modification encompasses two primary categories: histone lactylation and non-histone lactylation. Histone lactylation assumes a pivotal regulatory function in the RCD process, primarily by modulating the transcriptional landscape of genes implicated in cell death. In contrast, non-histone lactylation exerts its influence by targeting transferases, transcription, cell cycle progression, death pathways, and metabolic processes that are intricately involved in RCD. This review provides a comprehensive overview of recent breakthroughs in understanding how lactylation regulates RCD, while also offering insights into potential avenues for future research, thereby deepening our comprehension of cellular fate determination.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Yanjun Yi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Dejun Zeng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China.
| |
Collapse
|
13
|
Zhu Z, Zheng X, Zhao P, Chen C, Xu G, Ke X. Potential of lactylation as a therapeutic target in cancer treatment (Review). Mol Med Rep 2025; 31:91. [PMID: 39950331 PMCID: PMC11836599 DOI: 10.3892/mmr.2025.13456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025] Open
Abstract
Post‑translational modifications (PTMs) of proteins influence their functionality by altering the structure of precursor proteins. These modifications are closely linked to tumor progression through the regulation of processes such as cell proliferation, apoptosis, angiogenesis and invasion. Tumors produce large amounts of lactic acid through aerobic glycolysis. Lactic acid not only serves an important role in cell metabolism, but also serves an important role in cell communication. Lactylation, a PTM involving lactate and lysine residues as substrates, serves as an epigenetic regulator that modulates intracellular signaling, gene expression and protein function, thereby serving a crucial role in tumorigenesis and progression. The identification of lactylation provides a key breakthrough in elucidating the interaction between tumor metabolic reprogramming and epigenetic modification. The present review primarily summarizes the occurrence of lactylation, its effect on tumor progression, drug resistance, the tumor microenvironment and gut microbiota, and its potential as a therapeutic target for cancer. The aim of the present review was to provide novel strategies for potential cancer therapies.
Collapse
Affiliation(s)
- Zhengfeng Zhu
- Department of Clinical Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xinzhe Zheng
- Department of Clinical Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Pengfei Zhao
- Department of Clinical Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Gang Xu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xixian Ke
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
14
|
Yi D, Zhou K, Pan Y, Cai H, Huang P. The lactylation modification of proteins plays a critical role in tumor progression. Front Oncol 2025; 15:1530567. [PMID: 40190564 PMCID: PMC11970033 DOI: 10.3389/fonc.2025.1530567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Lactylation modifications have been shown to be a novel type of protein post-translational modifications (PTMs), providing a new perspective for understanding the interaction between cellular metabolic reprogramming and epigenetic regulation. Studies have shown that lactylation plays an important role in the occurrence, development, angiogenesis, invasion and metastasis of tumors. It can not only regulate the phenotypic expression and functional polarization of immune cells, but also participate in the formation of tumor drug resistance through a variety of molecular mechanisms. In this review, we review the latest research progress of lactylation modification in tumors, focusing on its mechanism of action in angiogenesis, immune cell regulation in tumor microenvironment (TME), and tumor drug resistance, aiming to provide a theoretical basis and research ideas for the discovery of new therapeutic targets and methods. Through the in-depth analysis of lactylation modification, it is expected to open up a new research direction for tumor treatment and provide potential strategies for overcoming tumor drug resistance and improving clinical efficacy.
Collapse
Affiliation(s)
- Dehao Yi
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Zhou
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yinlong Pan
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huazhong Cai
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Pan Huang
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
Wu X, Liu C, Zhang C, Kuai L, Hu S, Jia N, Song J, Jiang W, Chen Q, Li B. The Role of Lactate and Lactylation in the Dysregulation of Immune Responses in Psoriasis. Clin Rev Allergy Immunol 2025; 68:28. [PMID: 40080284 DOI: 10.1007/s12016-025-09037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
Historically, lactate has been considered merely a metabolic byproduct. However, recent studies have revealed that lactate plays a much more dynamic role, acting as an immune signaling molecule that influences cellular communication, through the process of "lactate shuttling." Lactylation, a novel post-translational modification, is directly derived from lactate and represents an emerging mechanism through which lactate exerts its effects on cellular function. It has been shown to directly affect immune cells by modulating the activation of pro-inflammatory and anti-inflammatory pathways. This modification influences the expression of key immune-related genes, thereby impacting immune cell differentiation, cytokine production, and overall immune response. In this review, we focused on the role of lactate and lactylation in the dysregulation of immune responses in psoriasis and its relapse. Additionally, we discuss the potential applications of targeting lactate metabolism and lactylation modifications in the treatment of psoriasis, alongside the investigation of artificial intelligence applications in advancing lactate and lactylation-focused drug development, identifying therapeutic targets, and enabling personalized medical decision-making. The significance of this review lies in its comprehensive exploration of how lactate and lactylation contribute to immune dysregulation, offering a novel perspective for understanding the metabolic and epigenetic changes associated with psoriasis. By identifying the roles of these pathways in modulating immune responses, this review provides a foundation for the development of new therapeutic strategies that target these mechanisms.
Collapse
Affiliation(s)
- Xinxin Wu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Changya Liu
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Caiyun Zhang
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Le Kuai
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Sheng Hu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Ning Jia
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Wencheng Jiang
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Qilong Chen
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Bin Li
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
16
|
Zhang S, Zhang Y, Feng S, Han M, Wang Z, Qiao D, Tian J, Wang L, Du B, Zhang Z, Zhong J. Tumor-promoting effect and tumor immunity of SRSFs. Front Cell Dev Biol 2025; 13:1527309. [PMID: 40129567 PMCID: PMC11931056 DOI: 10.3389/fcell.2025.1527309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Serine/arginine-rich splicing factors (SRSFs) are a family of 12 RNA-binding proteins crucial for the precursor messenger RNA (pre-mRNA) splicing. SRSFs are involved in RNA metabolism events such as transcription, translation, and nonsense decay during the shuttle between the nucleus and cytoplasm, which are important components of genome diversity and cell viability. SRs recognize splicing elements on pre-mRNA and recruit the spliceosome to regulate splicing. In tumors, aberrant expression of SRSFs leads to aberrant splicing of RNA, affecting the proliferation, migration, and anti-apoptotic ability of tumor cells, highlighting the therapeutic potential of targeted SRSFs for the treatment of diseases. The body's immune system is closely related to the occurrence and development of tumor, and SRSFs can affect the function of immune cells in the tumor microenvironment by regulating the alternative splicing of tumor immune-related genes. We review the important role of SRSFs-induced aberrant gene expression in a variety of tumors and the immune system, and prospect the application of SRSFs in tumor. We hope that this review will inform future treatment of the disease.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Sijia Feng
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Miaomiao Han
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zixi Wang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Dan Qiao
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jiaqi Tian
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lan Wang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Baoshun Du
- Second Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, China
| | - Zheying Zhang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jiateng Zhong
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Henan Province Engineering Technology Research Center of Tumor diagnostic biomarkers and RNA interference drugs, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
17
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
18
|
Silagi ES, Nduka E, Pazyra-Murphy MF, Paiz JZ, Bhuiyan SA, Segal RA. Profiling local translatomes and RNA binding proteins of somatosensory neurons reveals specializations of individual axons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640799. [PMID: 40364912 PMCID: PMC12073832 DOI: 10.1101/2025.02.28.640799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Individual neurons have one or more axons that often extend long distances and traverse multiple microenvironments. However, it is not known how the composition of individual axons is established or locally modulated to enable neuronal function and plasticity. Here, we use spatial translatomics to identify local axonal translatomes in anatomically and functionally specialized neurons in the dorsal root ganglia (DRG). DRG neurons extend long central and peripheral axons in opposite directions and distinct microenvironments to enable somatosensation. Using Translating Ribosome Affinity Purification and RNA sequencing, we generated a comprehensive resource of mRNAs preferentially translated within each axon. Locally translated proteins include pain receptors, ion channels, and translational machinery, which establish distinct electrophysiologic properties and regenerative capacities for each axon. We identify RNA-binding proteins associated with sorting and transporting functionally related mRNAs. These findings provide resources for addressing how axonal translation shapes the spatial organization of neurons and enables subcellular neuroplasticity. HIGHLIGHTS Distinct mRNAs are localized to and translated in individual axons.Axonal translatomes govern regenerative capacity, translational machinery, and electrophysiology.The RBP, SFPQ, coordinates mRNA sorting towards peripheral somatosensory axons.Axonal translatome data can be explored at painseq.shinyapps.io/CompartmentTRAP/.
Collapse
|
19
|
Luo Y, Zhang N, Ye J, Wang Z, Zhou X, Liu J, Cai J, Li C, Chen L. Unveiling lactylation modification: A new hope for cancer treatment. Biomed Pharmacother 2025; 184:117934. [PMID: 39986235 DOI: 10.1016/j.biopha.2025.117934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025] Open
Abstract
This review article delves into the multifaceted role of lactylation modification in antitumor therapy, revealing the complex interplay between lactylation modification and the tumor microenvironment (TME), metabolic reprogramming, gene expression, and immunotherapy. As an emerging epigenetic modification, lactylation has a significant impact on the metabolic pathways of tumor cells, immune evasion, gene expression regulation, and sensitivity to chemotherapy drugs. Studies have shown that lactylation modification significantly alters the development and therapeutic response of tumors by affecting metabolites in the TME, immune cell functions, and signaling pathways. In the field of immunotherapy, the regulatory role of lactylation modification provides a new perspective and potential targets for tumor treatment, including modulating the sensitivity of tumors to immunotherapy by affecting the expression of immune checkpoint molecules and the infiltration of immune cells. Moreover, research progress on lactylation modification in various types of tumors indicates that it may serve as a biomarker to predict patients' responses to chemotherapy and immunotherapy. Overall, research on lactylation modification provides a theoretical foundation for the development of new tumor treatment strategies and holds promise for improving patient prognosis and quality of life. Future research will further explore the application potential of lactylation modification in tumor therapy and how to improve treatment efficacy by targeting lactylation modification.
Collapse
Affiliation(s)
- Yuxiang Luo
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Ning Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Jiarong Ye
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Zuao Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Xinchi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Jipeng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Jing Cai
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Chen Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Jiangxi 330006, China; Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi 330006, China.
| | - Leifeng Chen
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Precision Oncology Medicine Center,The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, People's Republic of China.
| |
Collapse
|
20
|
Zhang YZ, Ma Y, Ma E, Chen X, Zhang Y, Yin B, Zhao J. Sophisticated roles of tumor microenvironment in resistance to immune checkpoint blockade therapy in hepatocellular carcinoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:10. [PMID: 40051497 PMCID: PMC11883234 DOI: 10.20517/cdr.2024.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/13/2025] [Accepted: 02/21/2025] [Indexed: 03/09/2025]
Abstract
Hepatocellular carcinoma (HCC) remains a serious threat to global health, with rising incidence and mortality rates. Therapeutic options for advanced HCC are quite limited, and the overall prognosis remains poor. Recent advancements in immunotherapy, particularly immune-checkpoint blockade (ICB) targeting anti-PD1/PD-L1 and anti-CTLA4, have facilitated a paradigm shift in cancer treatment, demonstrating substantial survival benefits across various cancer types, including HCC. However, only a subset of HCC patients exhibit a favorable response to ICB therapy, and its efficacy is often hindered by the development of resistance. There are many studies to explore the underlying mechanisms of ICB response. In this review, we compiled the latest progression in immunotherapies for HCC and systematically summarized the sophisticated mechanisms by which components of the tumor microenvironment (TME) regulate resistance to ICB therapy. Additionally, we also outlined some scientific rationale strategies to boost antitumor immunity and enhance the efficacy of ICB in HCC. These insights may serve as a roadmap for future research and help improve outcomes for HCC patients.
Collapse
Affiliation(s)
- Yi-Zhe Zhang
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Authors contributed equally
| | - Yunshu Ma
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Authors contributed equally
| | - Ensi Ma
- Liver Transplantation Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Institute of Organ Transplantation, Fudan University, Shanghai 200040, China
| | - Xizhi Chen
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yue Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Baobing Yin
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Hepatobiliary surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
| | - Jing Zhao
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Hepatobiliary surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
- Cancer Metastasis Institute, Fudan University, Shanghai 201206, China
| |
Collapse
|
21
|
Xu R, Hao Y, Liu Y, Ji B, Tian W, Zhang W. Functional mechanisms and potential therapeutic strategies for lactylation in liver diseases. Life Sci 2025; 363:123395. [PMID: 39809380 DOI: 10.1016/j.lfs.2025.123395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Lactylation, a novel form of lactate-mediated protein post-translational modification (PTM), has been identified as a crucial regulator of gene expression and protein function through the modification of both histone and non-histone proteins. Liver disease is frequently characterized by a reprogramming of glucose metabolism and subsequent lactate accumulation. Recent research has implicated lactylation in a diverse array of hepatic pathologies, including liver injury, non-alcoholic fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Consequently, lactylation has emerged as a pivotal regulatory mechanism in liver disease pathogenesis. This review aims to elucidate the intricate regulatory and functional mechanisms underlying lactylation, synthesize recent advancements in its role in various liver diseases, and highlight its potential as a therapeutic target for future interventions in hepatic disorders.
Collapse
Affiliation(s)
- Rong Xu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Yitong Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Bai Ji
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Weibo Tian
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Wei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
22
|
Liao Z, Chen B, Yang T, Zhang W, Mei Z. Lactylation modification in cardio-cerebral diseases: A state-of-the-art review. Ageing Res Rev 2025; 104:102631. [PMID: 39647583 DOI: 10.1016/j.arr.2024.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Cardio-cerebral diseases (CCDs), encompassing conditions such as coronary heart disease, myocardial infarction, stroke, Alzheimer's disease, et al., represent a significant threat to human health and well-being. These diseases are often characterized by metabolic abnormalities and remodeling in the process of pathology. Glycolysis and hypoxia-induced lactate accumulation play critical roles in cellular energy dynamics and metabolic imbalances in CCDs. Lactylation, a post-translational modification driven by excessive lactate accumulation, occurs in both histone and non-histone proteins. It has been implicated in regulating protein function across various pathological processes in CCDs, including inflammation, angiogenesis, lipid metabolism dysregulation, and fibrosis. Targeting key proteins involved in lactylation, as well as the enzymes regulating this modification, holds promise as a therapeutic strategy to modulate disease progression by addressing these pathological mechanisms. This review provides a holistic picture of the types of lactylation and the associated modifying enzymes, highlights the roles of lactylation in different pathological processes, and synthesizes the latest clinical evidence and preclinical studies in a comprehensive view. We aim to emphasize the potential of lactylation as an innovative therapeutic target for preventing and treating CCD-related conditions.
Collapse
Affiliation(s)
- Zi Liao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Bei Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
23
|
Zeng Y, Huang Y, Tan Q, Peng L, Wang J, Tong F, Dong X. Influence of lactate in resistance to anti‑PD‑1/PD‑L1 therapy: Mechanisms and clinical applications (Review). Mol Med Rep 2025; 31:48. [PMID: 39670310 DOI: 10.3892/mmr.2024.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/01/2024] [Indexed: 12/14/2024] Open
Abstract
Metabolic reprogramming is a prominent characteristic of tumor cells, evidenced by heightened secretion of lactate, which is linked to tumor progression. Furthermore, the accumulation of lactate in the tumor microenvironment (TME) influences immune cell activity, including the activity of macrophages, dendritic cells and T cells, fostering an immunosuppressive milieu. Anti‑programmed cell death protein 1 (PD‑1)/programmed death‑ligand 1 (PD‑L1) therapy is associated with a prolonged survival time of patients with non‑small cell lung cancer. However, some patients still develop resistance to anti‑PD‑1/PD‑L1 therapy. Lactate is associated with resistance to anti‑PD‑1/PD‑L1 therapy. The present review summarizes what is known about lactate metabolism in tumor cells and how it affects immune cell function. In addition, the present review emphasizes the relationship between lactate secretion and immunotherapy resistance. The present review also explores the potential for targeting lactate within the TME to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Yi Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yu Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qiaoyun Tan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ling Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jian Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
24
|
Liao Y, Chen J, Yao H, Zheng T, Tu J, Chen W, Guo Z, Zou Y, Wen L, Xie X. Single-cell profiling of SLC family transporters: uncovering the role of SLC7A1 in osteosarcoma. J Transl Med 2025; 23:103. [PMID: 39844299 PMCID: PMC11752724 DOI: 10.1186/s12967-025-06086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Osteosarcoma is the most common malignant bone tumor in children and adolescents, characterized by high disability and mortality rates. Over the past three decades, therapeutic outcomes have plateaued, underscoring the critical need for innovative therapeutic targets. Solute carrier (SLC) family transporters have been implicated in the malignant progression of a variety of tumors, however, their specific role in osteosarcoma remains poorly understood. METHODS The single-cell sequencing data from GSE152048 and GSE162454, along with RNA-seq from the TARGET and GSE21257 cohorts, were utilized for the analysis in this study. LASSO regression analysis was conducted to identify prognostic genes and construct an SLC-related prognostic signature. Survival analysis and ROC analysis evaluated the validity of the prognostic signature. The ESTIMATE and CIBERSORT Packages were utilized to assess the immune infiltration status. Pseudotime and CellChat analyses were performed to investigate the relationship between SLC7A1, malignant phenotypes, and the immune microenvironment. CCK8 assays, EdU staining, colony formation assays, Transwell assays, and co-culture systems were used to assess the effects of SLC7A1 on cell proliferation, metastasis, and macrophage polarization. Finally, virtual docking identified potential drugs targeting SLC7A1. RESULTS SLCs displayed distinct expression patterns across various cell types within the osteosarcoma microenvironment, with myeloid cells exhibiting a preference for amino acid uptake. A prognostic model comprising nine genes was constructed via LASSO regression, with SLC7A1 showing the highest hazard ratio. Multiple analytical algorithms indicated that SLCs were associated with immune cell infiltration and immune checkpoint gene expression. Single-cell analysis indicated that SLC7A1 was predominantly expressed in osteosarcoma cells and correlated with various malignant tumor characteristics. SLC7A1 also regulate interactions between tumor cells and macrophages, as well as modulate macrophage function through multiple pathways. In vitro assays and survival analysis demonstrated that inhibition of SLC7A1 suppressed the malignant phenotype of osteosarcoma cells, with SLC7A1 expression correlating with poor prognosis. Co-culture models confirmed the involvement of SLC7A1 in macrophage polarization. Finally, virtual screening and CETSA identified Cepharanthine as potential inhibitors of SLC7A1. CONCLUSION SLC-related prognostic signatures can be utilized for the prognostic evaluation of osteosarcoma. Pharmacological inhibition of SLC7A1 may be a feasible therapeutic approach for osteosarcoma.
Collapse
Affiliation(s)
- Yan Liao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Junkai Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Hao Yao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Ting Zheng
- The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, 510620, China
| | - Jian Tu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Weidong Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - ZeHao Guo
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Yutong Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Lili Wen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
25
|
Liu Q, Liu Z, Zhang X, Zeng A, Song L. Revisiting of Cancer Immunotherapy: Insight from the Dialogue between Glycolysis and PD-1/PD-L1 Axis in the Tumor Microenvironment. Int J Biol Sci 2025; 21:1202-1221. [PMID: 39897050 PMCID: PMC11781164 DOI: 10.7150/ijbs.104079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
The interplay between metabolic pathways and immune escape has emerged as a captivating research area in oncobiology. Among these, the Warburg effect stands out as a hallmark metabolic reprogramming in cancer, characterized by elevated glucose utilization and excessive lactic acid production through anaerobic glycolysis. Key glycolytic enzymes not only fulfill the bioenergetic demands of cancer cells but also exhibit moonlighting roles, including regulation of epigenetic modifications, protein kinase activity, and immune escape mechanisms, thereby reshaping the tumor microenvironment. Tumor-specific vascular architecture facilitates lactate accumulation, which drives tumor progression by impairing immune cell function and acting as a signaling molecule to recruit immunosuppressive cells and modulate immune checkpoint pathways. The PD-1/PD-L1 co-stimulatory pathway plays a crucial role in negatively modulating the activation, proliferation, and cytokine secretion by T-lymphocytes. This review primarily focuses on elucidating the regulation and mechanisms underlying PD-1/PD-L1 signaling axis during glycolysis in tumor cells as well as surrounding cells. In the era of precision medicine, there is a particular interest in leveraging 18F-FDG PET/CT imaging as a valuable tool to assess PD-L1 expression status for more targeted therapeutic interventions. Additionally, the development of natural compounds capable of modulating metabolism opens new avenues for metabolism-based immunotherapy, though further studies are required to validate their in vivo efficacy.
Collapse
Affiliation(s)
- Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihan Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
26
|
Shu M, Lu D, Zhu Z, Yang F, Ma Z. Insight into the roles of lactylation in macrophages: functions and clinical implications. Clin Sci (Lond) 2025; 139:CS20242737. [PMID: 39876839 DOI: 10.1042/cs20242737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Lactylation, a post-translational modification, has been linked to gene transcription regulation through epigenetic modulation in various pathophysiological processes. The lactylation regulatory proteins, known as writers, erasers, and readers, govern their dynamics by adding, removing, and recognizing lactyl groups on proteins. Macrophages, as cells of the immune system, maintain homeostasis, responding dynamically to diverse internal and external stimuli. Emerging researches unveil that lactylation, through inducing macrophage activation and polarization, affects their functionality in pathological conditions such as inflammation, tumor microenvironment, and fibrosis. Evidence progressively indicates that lactate-driven alterations in lactylation levels within macrophages can influence the pathogenesis of numerous diseases. This review aims to systematically summarize the research progress of lactylation in macrophages, explore its functions and mechanisms by which lactylation contributes to the pathology of different disease phenotypes, and propose future research directions along with potential diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Min Shu
- School of Basic Medicine, Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou, Hubei 434023, China
| | - Dingci Lu
- School of Basic Medicine, Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou, Hubei 434023, China
| | - Ziyi Zhu
- School of Basic Medicine, Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou, Hubei 434023, China
| | - Fei Yang
- School of Basic Medicine, Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou, Hubei 434023, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Nanhuan Road 1, Jingzhou, Hubei 434023, China
| |
Collapse
|
27
|
Zhao L, Qi H, Lv H, Liu W, Zhang R, Yang A. Lactylation in health and disease: physiological or pathological? Theranostics 2025; 15:1787-1821. [PMID: 39897556 PMCID: PMC11780532 DOI: 10.7150/thno.105353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/11/2024] [Indexed: 02/04/2025] Open
Abstract
Lactate is an indispensable substance in various cellular physiological functions and plays regulatory roles in different aspects of energy metabolism and signal transduction. Lactylation (Kla), a key pathway through which lactate exerts its functions, has been identified as a novel posttranslational modification (PTM). Research indicates that Kla is an essential balancing mechanism in a variety of organisms and is involved in many key cellular biological processes through different pathways. Kla is closely related to disease development and represents a potential and important new drug target. In line with existing reports, we searched for newly discovered Kla sites on histone and nonhistone proteins; reviewed the regulatory mechanisms of Kla (particularly focusing on the enzymes directly involved in the reversible regulation of Kla, including "writers" (modifying enzymes), "readers" (modification-binding enzymes), and "erasers" (demodifying enzymes); and summarized the crosstalk between different PTMs to help researchers better understand the widespread distribution of Kla and its diverse functions. Furthermore, considering the "double-edged sword" role of Kla in both physiological and pathological contexts, this review highlights the "beneficial" biological functions of Kla in physiological states (energy metabolism, inflammatory responses, cell fate determination, development, etc.) and its "detrimental" pathogenic or inducive effects on pathological processes, particularly malignant tumors and complex nontumor diseases. We also clarify the molecular mechanisms of Kla in health and disease, and discuss its feasibility as a therapeutic target. Finally, we describe the detection technologies for Kla and their potential applications in diagnosis and clinical settings, aiming to provide new insights for the treatment of various diseases and to accelerate translation from laboratory research to clinical practice.
Collapse
Affiliation(s)
- Lijun Zhao
- Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shanxi 710032, China
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Haonan Qi
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Huiying Lv
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Wenyue Liu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Rui Zhang
- Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shanxi 710032, China
| | - Angang Yang
- Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Immunology, Fourth Military Medical University, Xi'an, Shanxi 710032, China
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
28
|
Bao C, Ma Q, Ying X, Wang F, Hou Y, Wang D, Zhu L, Huang J, He C. Histone lactylation in macrophage biology and disease: from plasticity regulation to therapeutic implications. EBioMedicine 2025; 111:105502. [PMID: 39662177 PMCID: PMC11697715 DOI: 10.1016/j.ebiom.2024.105502] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
Epigenetic modifications have been identified as critical molecular determinants influencing macrophage plasticity and heterogeneity. Among these, histone lactylation is a recently discovered epigenetic modification. Research examining the effects of histone lactylation on macrophage activation and polarization has grown substantially in recent years. Evidence increasingly suggests that lactate-mediated changes in histone lactylation levels within macrophages can modulate gene transcription, thereby contributing to the pathogenesis of various diseases. This review provides a comprehensive analysis of the role of histone lactylation in macrophage activation, exploring its discovery, effects, and association with macrophage diversity and phenotypic variability. Moreover, it highlights the impact of alterations in macrophage histone lactylation in diverse pathological contexts, such as inflammation, tumorigenesis, neurological disorders, and other complex conditions, and demonstrates the therapeutic potential of drugs targeting these epigenetic modifications. This mechanistic understanding provides insights into the underlying disease mechanisms and opens new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xihong Ying
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Fengsheng Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Yue Hou
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Dun Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Linsen Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jiapeng Huang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
29
|
Sun X, Dong H, Su R, Chen J, Li W, Yin S, Zhang C. Lactylation-related gene signature accurately predicts prognosis and immunotherapy response in gastric cancer. Front Oncol 2024; 14:1485580. [PMID: 39669362 PMCID: PMC11634757 DOI: 10.3389/fonc.2024.1485580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024] Open
Abstract
Background Gastric cancer (GC) is a malignant tumor associated with significant rates of morbidity and mortality. Hence, developing efficient predictive models and directing clinical interventions in GC is crucial. Lactylation of proteins is detected in gastric cancer tumors and is linked to the advancement of gastric cancer. Methods The The Cancer Genome Atlas (TCGA) was utilized to analyze the gene expression levels associated with lactylation. A genetic pattern linked to lactylation was created using Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression. The predictive ability of the model was evaluated and confirmed in the Gene Expression Omnibus (GEO) cohort, where patients were divided into two risk groups based on their scores. The study examined the relationship between gene expression and the presence of immune cells in the context of immunotherapy treatment. In vitro cytotoxicity assays, ELISA and PD-1 and PD-L1interaction assays were used to assess the expression of PD-L1 while knocking down SLC16A7. Results 29 predictive lactylation-related genes with differential expression were discovered. A signature consisting of three genes was developed and confirmed. Patients who had higher risk scores experienced worse clinical results. The group with lower risk showed increased Tumor Immune Dysfunction and Exclusion (TIDE) score and greater responsiveness to immunotherapy. The tumor tissues secrete more lactate acid than normal tissues and express more PD-L1 than normal tissues, that is, lactate acid promotes the immune evasion of tumor cells. In GC, the lactylation-related signature showed strong predictive accuracy. Utilizing both anti-lactylation and anti-PD-L1 may prove to be an effective approach for treating GC in clinical settings. We further proved that one of the lactate metabolism related genes, SCL16A7 could promote the expression of PD-L1 in GC cells. Conclusion The risk model not only provides a basis for better prognosis in GC patients, but also is a potential prognostic indicator to distinguish the molecular and immune characteristics, and the response from Immune checkpoint inhibitors (ICI) therapy and chemotherapy in GC.
Collapse
Affiliation(s)
- Xuezeng Sun
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Haifeng Dong
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Rishun Su
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jingyao Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wenchao Li
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
| | - Songcheng Yin
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|