1
|
Mulligan M, Boudreau MW, Bouwens BA, Lee Y, Carrell HW, Zhu J, Mousses S, Shapiro DJ, Nelson ER, Fan TM, Hergenrother PJ. Single Dose of a Small Molecule Leads to Complete Regressions of Large Breast Tumors in Mice. ACS CENTRAL SCIENCE 2025; 11:228-238. [PMID: 40028352 PMCID: PMC11869136 DOI: 10.1021/acscentsci.4c01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 03/05/2025]
Abstract
Patients with estrogen receptor α positive (ERα+) breast cancer typically undergo surgical resection, followed by 5-10 years of treatment with adjuvant endocrine therapy. This prolonged intervention is associated with a host of undesired side effects that reduce patient compliance, and ultimately therapeutic resistance and disease relapse/progression are common. An ideal anticancer therapy would be effective against recurrent and refractory disease with minimal dosing; however, there is little precedent for marked tumor regression with a single dose of a small molecule therapeutic. Herein we report ErSO-TFPy as a small molecule that induces quantitative or near-quantitative regression of tumors in multiple mouse models of breast cancer with a single dose. Importantly, this effect is robust and independent of tumor size with eradication of even very large tumors (500-1500 mm3) observed. Mechanistically, these tumor regressions are a consequence of rapid induction of necrotic cell death in the tumor and are immune cell independent. If successfully translated to human cancer patients, the benefits of such an anticancer drug that is effective with a single dose would be significant.
Collapse
Affiliation(s)
- Michael
P. Mulligan
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew W. Boudreau
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brooke A. Bouwens
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Biochemistry, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yoongyeong Lee
- Department
of Comparative Biosciences, University of
Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Hunter W. Carrell
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Junyao Zhu
- Department
of Biochemistry, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Spyro Mousses
- Systems
Oncology, Scottsdale, Arizona 85255, United States
| | - David J. Shapiro
- Department
of Biochemistry, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center
at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Erik R. Nelson
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center
at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Division
of Nutritional Sciences, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute
for Advanced Science and Technology, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Timothy M. Fan
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center
at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Veterinary Clinical Medicine, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Paul J. Hergenrother
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center
at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Reinhold WC, Marangoni E, Elloumi F, Montagne R, Varma S, Wang Y, Rezai K, Morriset L, Dahmani A, El Botty R, Huguet L, Mizunuma M, Takebe N, Huguet S, Luna A, Pommier Y. Acetalax and Bisacodyl for the Treatment of Triple-Negative Breast Cancer: A Combined Molecular and Preclinical Study. CANCER RESEARCH COMMUNICATIONS 2025; 5:375-388. [PMID: 39932272 PMCID: PMC11869203 DOI: 10.1158/2767-9764.crc-24-0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/02/2024] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
SIGNIFICANCE Acetalax and bisacodyl represent a prospective novel drug mechanism-of-action type, affect mitochondrial function and affect tumor growth in vivo. Their activity may be predicted by TRPM4 but with more accuracy adding other genes in multivariate analysis for triple negative breast cancer (TNBC). Acetalax has a biphasic mean half-life of 5.8 hours.
Collapse
Affiliation(s)
- William C. Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Elisabetta Marangoni
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Fathi Elloumi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Remi Montagne
- CBIO-Centre for Computational Biology, Institut Curie, INSERM, Mines ParisTech, Paris, France
| | - Sudhir Varma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- HiThru Analytics LLC, Princeton, New Jersey
| | - Yanghsin Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- ICF International Inc., Fairfax, Virginia
| | - Keyvan Rezai
- Institut Curie, Département de Radio-Pharmacologie, Saint-Cloud, France
| | - Ludivine Morriset
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Ahmed Dahmani
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Rania El Botty
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Léa Huguet
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Makito Mizunuma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Naoko Takebe
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Samuel Huguet
- Institut Curie, Département de Radio-Pharmacologie, Saint-Cloud, France
| | - Augustin Luna
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- Computational Biology Branch, National Library of Medicine, NIH, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
3
|
Mizunuma M, Redon CE, Saha LK, Tran AD, Dhall A, Sebastian R, Taniyama D, Kruhlak MJ, Reinhold WC, Takebe N, Pommier Y. Acetalax (Oxyphenisatin Acetate, NSC 59687) and Bisacodyl Cause Oncosis in Triple-Negative Breast Cancer Cell Lines by Poisoning the Ion Exchange Membrane Protein TRPM4. CANCER RESEARCH COMMUNICATIONS 2024; 4:2101-2111. [PMID: 39041239 PMCID: PMC11322923 DOI: 10.1158/2767-9764.crc-24-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Triple-negative breast cancer (TNBC) is clinically aggressive and relatively unresponsive to current therapies. Therefore, the development of new anticancer agents is needed to satisfy clinical needs. Oxyphenisatin acetate (Acetalax), which had been used as a laxative, has recently been reported to have anticancer activity in murine models. In this study, we demonstrate that Acetalax and its diphenolic laxative structural analogue bisacodyl (Dulcolax) exhibit potent antiproliferative activity in TNBC cell lines and cause oncosis, a nonapoptotic cell death characterized by cellular and nuclear swelling and cell membrane blebbing, leading to mitochondrial dysfunction, ATP depletion, and enhanced immune and inflammatory responses. Mechanistically, we provide evidence that transient receptor potential melastatin member 4 (TRPM4) is poisoned by Acetalax and bisacodyl in MDA-MB468, BT549, and HS578T TNBC cells. MDA-MB231 and MDA-MB436 TNBC cells without endogenous TRPM4 expression as well as TRPM4-knockout TNBC cells were found to be Acetalax- and bisacodyl-resistant. Conversely, ectopic expression of TRPM4 sensitized MDA-MB231 and MDA-MB436 cells to Acetalax. TRPM4 was also lost in cells with acquired Acetalax resistance. Moreover, TRPM4 is rapidly degraded by the ubiquitin-proteasome system upon acute exposure to Acetalax and bisacodyl. Together, these results demonstrate that TRPM4 is a previously unknown target of Acetalax and bisacodyl and that TRPM4 expression in cancer cells is a predictor of Acetalax and bisacodyl efficacy and could be used for the clinical development of these drugs as anticancer agents. SIGNIFICANCE Acetalax and bisacodyl kill cancer cells by causing oncosis following poisoning of the plasma membrane sodium transporter TRPM4 and represent a new therapeutic approach for TNBC.
Collapse
Affiliation(s)
- Makito Mizunuma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Christophe E. Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Liton Kumar Saha
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Andy D. Tran
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anjali Dhall
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daiki Taniyama
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael J. Kruhlak
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William C. Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Naoko Takebe
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
Boudreau MW, Hergenrother PJ. Evolution of 3-(4-hydroxyphenyl)indoline-2-one as a scaffold for potent and selective anticancer activity. RSC Med Chem 2022; 13:711-725. [PMID: 35814932 PMCID: PMC9215341 DOI: 10.1039/d2md00110a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Development of targeted anticancer modalities has prompted a new era in cancer treatment that is notably different from the age of radical surgery and highly toxic chemotherapy. Behind each effective compound is a rich and complex history from first identification of chemical matter, detailed optimization, and mechanistic investigations, ultimately leading to exciting molecules for drug development. Herein we review the history and on-going journey of one such anticancer scaffold, the 3-(4-hydroxyphenyl)indoline-2-ones. With humble beginnings in 19th century Bavaria, we review this scaffold's synthetic history and anticancer optimization, including its recent demonstration of tumor eradication of drug-resistant, estrogen receptor-positive breast cancer. Compounds containing the 3-(4-hydroxyphenyl)indoline-2-one pharmacophore are emerging as intriguing candidates for the treatment of cancer.
Collapse
Affiliation(s)
- Matthew W Boudreau
- Dept. of Chemistry, Carl R. Woese Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Paul J Hergenrother
- Dept. of Chemistry, Carl R. Woese Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
5
|
Molecular biological mechanism of action in cancer therapies: Juglone and its derivatives, the future of development. Biomed Pharmacother 2022; 148:112785. [PMID: 35272138 DOI: 10.1016/j.biopha.2022.112785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 11/20/2022] Open
Abstract
Juglone (5 - hydroxy - 1, 4 - naphthalene diketone) is a kind of natural naphthoquinone, present in the roots, leaves, nut-hulls, bark and wood of walnut trees. Recent studies have found that Juglone has special significance in the treatment of cancer, which plays a significant role in the resistance of cancer cell proliferation, induction of cancer cell apoptosis, induction of autophagy, anti-angiogenesis and inhibition of cancer cell migration and invasion, etc. Additionally, its derivatives also play a tumor suppressive effect. In conclusion, Juglone and its derivatives have been identified as effective anticancer drugs. This paper reviews action mechanisms of Juglone and its derivatives in cancer treatment.
Collapse
|
6
|
Boudreau MW, Mulligan MP, Shapiro DJ, Fan TM, Hergenrother PJ. Activators of the Anticipatory Unfolded Protein Response with Enhanced Selectivity for Estrogen Receptor Positive Breast Cancer. J Med Chem 2022; 65:3894-3912. [PMID: 35080871 PMCID: PMC9067622 DOI: 10.1021/acs.jmedchem.1c01730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Approximately 75% of breast cancers are estrogen receptor alpha-positive (ERα+), and targeting ERα directly with ERα antagonists/degraders or indirectly with aromatase inhibitors is a successful therapeutic strategy. However, such treatments are rarely curative and development of resistance is universal. We recently reported ErSO, a compound that induces ERα-dependent cancer cell death through a mechanism distinct from clinically approved ERα drugs, via hyperactivation of the anticipatory unfolded protein response. ErSO has remarkable tumor-eradicative activity in multiple ERα+ tumor models. While ErSO has promise as a new drug, it has effects on ERα-negative (ERα-) cells in certain contexts. Herein, we construct modified versions of ErSO and identify variants with enhanced differential activity between ERα+ and ERα- cells. We report ErSO-DFP, a compound that maintains antitumor efficacy, has enhanced selectivity for ERα+ cancer cells, and is well tolerated in rodents. ErSO-DFP and related compounds represent an intriguing new class for the treatment of ERα+ cancers.
Collapse
Affiliation(s)
- Matthew W. Boudreau
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States,Carl R. Woese Institute for Genomic, Biology University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael P. Mulligan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David J. Shapiro
- Cancer Center at Illinois and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Timothy M. Fan
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States
| | - Paul J. Hergenrother
- Department of Chemistry and Cancer, Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States,Carl R. Woese Institute for Genomic Biology University of Illinois at, Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Urbina-Jara LK, Martinez-Ledesma E, Rojas-Martinez A, Rodriguez-Recio FR, Ortiz-Lopez R. DNA Repair Genes as Drug Candidates for Early Breast Cancer Onset in Latin America: A Systematic Review. Int J Mol Sci 2021; 22:13030. [PMID: 34884835 PMCID: PMC8657579 DOI: 10.3390/ijms222313030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
The prevalence of breast cancer in young women (YWBC) has increased alarmingly. Significant efforts are being made to elucidate the biological mechanisms concerning the development, prognosis, and pathological response in early-onset breast cancer (BC) patients. Dysfunctional DNA repair proteins are implied in BC predisposition, progression, and therapy response, underscoring the need for further analyses on DNA repair genes. Public databases of large patient datasets such as METABRIC, TCGA, COSMIC, and cancer cell lines allow the identification of variants in DNA repair genes and possible precision drug candidates. This study aimed at identifying variants and drug candidates that may benefit Latin American (LA) YWBC. We analyzed pathogenic variants in 90 genes involved in DNA repair in public BC datasets from METABRIC, TCGA, COSMIC, CCLE, and COSMIC Cell Lines Project. Results showed that reported DNA repair germline variants in the LA dataset are underrepresented in large databases, in contrast to other populations. Additionally, only six gene repair variants in women under 50 years old from the study population were reported in BC cell lines. Therefore, there is a need for new approaches to study DNA repair variants reported in young women from LA.
Collapse
Affiliation(s)
| | | | | | | | - Rocio Ortiz-Lopez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico; (L.K.U.-J.); (E.M.-L.); (A.R.-M.); (F.R.R.-R.)
| |
Collapse
|
8
|
Giacobbe DR, Magnasco L, Sepulcri C, Mikulska M, Koehler P, Cornely OA, Bassetti M. Recent advances and future perspectives in the pharmacological treatment of Candida auris infections. Expert Rev Clin Pharmacol 2021; 14:1205-1220. [PMID: 34176393 DOI: 10.1080/17512433.2021.1949285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Candida auris is responsible for hospital outbreaks worldwide. Some C. auris isolates may show concomitant resistance to azoles, echinocandins, and polyenes, thereby possibly leaving clinicians with few therapeutic options. AREAS COVERED Antifungal agents both in early and in late phases of clinical development showing anti-C. auris activity. EXPERT OPINION The research on antifungal agents active against C. auris has made important steps forward in recent years: (i) the development of drugs with novel mechanisms of action, such as ibrexafungerp and fosmanogepix, could provide a valid option against C. auris strains resistant to one or more older antifungals, including pan-resistant strains; (ii) rezafungin could allow once weekly administration of an active drug in the case of echinocandin-susceptible isolates, providing an effective outpatient treatment, while at the same time relieving selective pressure on novel classes; (iii) the development of oral formulations could allow step-down therapy and/or early discharge, or even to avoid hospitalization in mild or noninvasive diseases; (iv) according to available data, these novel agents show a good safety profile and a low potential for drug-drug interactions.
Collapse
Affiliation(s)
- Daniele R Giacobbe
- Department of Health Sciences, University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | - Laura Magnasco
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | - Chiara Sepulcri
- Department of Health Sciences, University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | - Malgorzata Mikulska
- Department of Health Sciences, University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Matteo Bassetti
- Department of Health Sciences, University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| |
Collapse
|
9
|
Rooney J, Ryan N, Liu J, Houtman R, van Beuningen R, Hsieh JH, Chang G, Chen S, Christopher Corton J. A Gene Expression Biomarker Identifies Chemical Modulators of Estrogen Receptor α in an MCF-7 Microarray Compendium. Chem Res Toxicol 2021; 34:313-329. [PMID: 33405908 PMCID: PMC10683854 DOI: 10.1021/acs.chemrestox.0c00243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Identification of chemicals that affect hormone-regulated systems will help to predict endocrine disruption. In our previous study, a 46 gene biomarker was found to be an accurate predictor of estrogen receptor (ER) α modulation in chemically treated MCF-7 cells. Here, potential ERα modulators were identified using the biomarker by screening a microarray compendium consisting of ∼1600 gene expression comparisons representing exposure to ∼1200 chemicals. A total of ∼170 chemicals were identified as potential ERα modulators. In the Connectivity Map 2.0 collection, 75 and 39 chemicals were predicted to activate or suppress ERα, and they included 12 and six known ERα agonists and antagonists/selective ERα modulators, respectively. Nineteen and eight of the total number were also identified as active in an ERα transactivation assay carried out in an MCF-7-derived cell line used to screen the Tox21 10K chemical library in agonist or antagonist modes, respectively. Chemicals predicted to modulate ERα in MCF-7 cells were examined further using global and targeted gene expression in wild-type and ERα-null cells, transactivation assays, and cell-free ERα coregulator interaction assays. Environmental chemicals classified as weak and very weak agonists were confirmed to activate ERα including apigenin, kaempferol, and oxybenzone. Novel activators included digoxin, nabumetone, ivermectin, and six progestins. Novel suppressors included emetine, mifepristone, niclosamide, and proscillaridin. Our strategy will be useful to identify environmentally relevant ERα modulators in future high-throughput transcriptomic screens.
Collapse
Affiliation(s)
- John Rooney
- Center for Computational Toxicology and Exposure, US-EPA, Research Triangle Park, NC 27711
- Present address: Integrated Lab Services, Research Triangle Park, NC
| | - Natalia Ryan
- Center for Computational Toxicology and Exposure, US-EPA, Research Triangle Park, NC 27711
- Present address: Bayer Crop Science, Research Triangle Park, NC
| | - Jie Liu
- Center for Computational Toxicology and Exposure, US-EPA, Research Triangle Park, NC 27711
| | - René Houtman
- PamGene International B.V., Den Bosch, The Netherlands
- Present address: Precision Medicine Lab, Oss, The Netherlands
| | | | - Jui-Hua Hsieh
- Kelly Government Solutions, Research Triangle Park, North Carolina
| | - Gregory Chang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte,California 91010
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte,California 91010
| | - J. Christopher Corton
- Center for Computational Toxicology and Exposure, US-EPA, Research Triangle Park, NC 27711
| |
Collapse
|
10
|
Iyer KR, Camara K, Daniel-Ivad M, Trilles R, Pimentel-Elardo SM, Fossen JL, Marchillo K, Liu Z, Singh S, Muñoz JF, Kim SH, Porco JA, Cuomo CA, Williams NS, Ibrahim AS, Edwards JE, Andes DR, Nodwell JR, Brown LE, Whitesell L, Robbins N, Cowen LE. An oxindole efflux inhibitor potentiates azoles and impairs virulence in the fungal pathogen Candida auris. Nat Commun 2020; 11:6429. [PMID: 33353950 PMCID: PMC7755909 DOI: 10.1038/s41467-020-20183-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Candida auris is an emerging fungal pathogen that exhibits resistance to multiple drugs, including the most commonly prescribed antifungal, fluconazole. Here, we use a combinatorial screening approach to identify a bis-benzodioxolylindolinone (azoffluxin) that synergizes with fluconazole against C. auris. Azoffluxin enhances fluconazole activity through the inhibition of efflux pump Cdr1, thus increasing intracellular fluconazole levels. This activity is conserved across most C. auris clades, with the exception of clade III. Azoffluxin also inhibits efflux in highly azole-resistant strains of Candida albicans, another human fungal pathogen, increasing their susceptibility to fluconazole. Furthermore, azoffluxin enhances fluconazole activity in mice infected with C. auris, reducing fungal burden. Our findings suggest that pharmacologically targeting Cdr1 in combination with azoles may be an effective strategy to control infection caused by azole-resistant isolates of C. auris.
Collapse
Affiliation(s)
- Kali R Iyer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kaddy Camara
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
- Clark+Elbing LLP, Boston, MA, USA
| | | | - Richard Trilles
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | | | - Jen L Fossen
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Karen Marchillo
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shakti Singh
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, CA, USA
| | - José F Muñoz
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sang Hu Kim
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - John A Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Ashraf S Ibrahim
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - John E Edwards
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lauren E Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Role of the AMPK/ACC Signaling Pathway in TRPP2-Mediated Head and Neck Cancer Cell Proliferation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4375075. [PMID: 33274210 PMCID: PMC7683127 DOI: 10.1155/2020/4375075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
Transient receptor potential polycystic 2 (TRPP2) exerts vital roles in various types of cancer; however, its underlying mechanisms remain largely unknown. This study is aimed at investigating whether knockdown of TRPP2 affected the AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) signaling pathway and the proliferation of HN-4, cell line originating from human oral and hypopharyngeal squamous cell carcinoma. In addition, the interactions among AMPK/ACC, AMPK/protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2α (eIF2α) and TRPP2/PERK/eIF2α signaling pathways, and their association with cell proliferation were also explored. The results showed that the relative expression levels of phosphorylated (p)-ACC, p-PERK, and p-eIF2α in HN-4 cells were significantly increased following treatment with 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and significantly decreased in cells treated with compound C. Therefore, consistent with previous studies, the AMPK/ACC and AMPK/PERK/eIF2α signaling pathways were upregulated and downregulated following treatment with an AMPK agonist and inhibitor, respectively. Furthermore, TRPP2 knockdown decreased p-PERK and p-eIF2α expression levels and increased those of p-AMPK and p-ACC. Additionally, knockdown of TRPP2 increased HN-4 cell proliferation, while treatment with an AMPK inhibitor or agonist increased or inhibited TRPP2-specific siRNA-mediated cell proliferation, respectively. In conclusion, silencing of TRPP2 expression increased HN-4 cell proliferation via inhibiting the PERK/eIF2α signaling pathway, while the AMPK/ACC signaling pathway was possibly activated by a feedback mechanism to reduce enhanced cell proliferation.
Collapse
|
12
|
Lawrence DW, Willard PA, Cochran AM, Matchett EC, Kornbluth J. Natural Killer Lytic-Associated Molecule (NKLAM): An E3 Ubiquitin Ligase With an Integral Role in Innate Immunity. Front Physiol 2020; 11:573372. [PMID: 33192571 PMCID: PMC7658342 DOI: 10.3389/fphys.2020.573372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Natural Killer Lytic-Associated Molecule (NKLAM), also designated RNF19B, is a unique member of a small family of E3 ubiquitin ligases. This 14-member group of ligases has a characteristic cysteine-rich RING-IBR-RING (RBR) domain that mediates the ubiquitination of multiple substrates. The consequence of substrate ubiquitination varies, depending on the type of ubiquitin linkages formed. The most widely studied effect of ubiquitination of proteins is proteasome-mediated substrate degradation; however, ubiquitination can also alter protein localization and function. Since its discovery in 1999, much has been deciphered about the role of NKLAM in innate immune responses. We have discerned that NKLAM has an integral function in both natural killer (NK) cells and macrophages in vitro and in vivo. NKLAM expression is required for each of these cell types to mediate maximal killing activity and cytokine production. However, much remains to be determined. In this review, we summarize what has been learned about NKLAM expression, structure and function, and discuss new directions for investigation. We hope that this will stimulate interest in further exploration of NKLAM.
Collapse
Affiliation(s)
- Donald W Lawrence
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Paul A Willard
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Allyson M Cochran
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Emily C Matchett
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States.,St. Louis VA Health Care System, St. Louis, MO, United States
| |
Collapse
|
13
|
Rajapakse VN, Luna A, Yamade M, Loman L, Varma S, Sunshine M, Iorio F, Sousa FG, Elloumi F, Aladjem MI, Thomas A, Sander C, Kohn KW, Benes CH, Garnett M, Reinhold WC, Pommier Y. CellMinerCDB for Integrative Cross-Database Genomics and Pharmacogenomics Analyses of Cancer Cell Lines. iScience 2018; 10:247-264. [PMID: 30553813 PMCID: PMC6302245 DOI: 10.1016/j.isci.2018.11.029] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/11/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
CellMinerCDB provides a web-based resource (https://discover.nci.nih.gov/cellminercdb/) for integrating multiple forms of pharmacological and genomic analyses, and unifying the richest cancer cell line datasets (the NCI-60, NCI-SCLC, Sanger/MGH GDSC, and Broad CCLE/CTRP). CellMinerCDB enables data queries for genomics and gene regulatory network analyses, and exploration of pharmacogenomic determinants and drug signatures. It leverages overlaps of cell lines and drugs across databases to examine reproducibility and expand pathway analyses. We illustrate the value of CellMinerCDB for elucidating gene expression determinants, such as DNA methylation and copy number variations, and highlight complexities in assessing mutational burden. We demonstrate the value of CellMinerCDB in selecting drugs with reproducible activity, expand on the dominant role of SLFN11 for drug response, and present novel response determinants and genomic signatures for topoisomerase inhibitors and schweinfurthins. We also introduce LIX1L as a gene associated with mesenchymal signature and regulation of cellular migration and invasiveness.
Collapse
Affiliation(s)
- Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Augustin Luna
- cBio Center, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA.
| | - Mihoko Yamade
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Lisa Loman
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Margot Sunshine
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; General Dynamics Information Technology Inc., 3211 Jermantown Road, Fairfax, VA 22030, USA
| | - Francesco Iorio
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Fabricio G Sousa
- Centro De Estudos Em Células Tronco, Terapia Celular E Genética Toxicológica, Programa De Pós-Graduação Em Farmácia, Universidade Federal De Mato Grosso Do Sul, Campo Grande, MS 79070-900, Brazil
| | - Fathi Elloumi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; General Dynamics Information Technology Inc., 3211 Jermantown Road, Fairfax, VA 22030, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chris Sander
- cBio Center, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Kurt W Kohn
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mathew Garnett
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - William C Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|