1
|
Khalili S, Mohseninia A, Liu C, Banister CE, Heine P, Khazan M, Morrison SE, Gokare P, Cowley GS, Weir BA, Pocalyko D, Bachman KE, Buckhaults PJ. Comprehensive genomic dependency landscape of a human colon cancer organoid. Commun Biol 2025; 8:436. [PMID: 40082551 PMCID: PMC11906589 DOI: 10.1038/s42003-025-07822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
Identifying genetic dependencies in human colon cancer could help identify effective treatment strategies. Genome-wide CRISPR-Cas9 dropout screens have the potential to reveal genetic dependencies, some of which could be exploited as therapeutic targets using existing drugs. In this study, we comprehensively characterized genetic dependencies present in a colon cancer organoid avatar, and validated tumor-specific selectivity of select pharmacologic agents. We conducted a genome-wide CRISPR dropout screen to elucidate the genetic dependencies that interacted with select driver somatic mutations. We found distinct genetic dependencies that interacted with WNT, MAPK, PI3K, TP53, and mismatch repair pathways and validated targets that could be exploited as treatments for this specific subtype of colon cancer. These findings demonstrate the utility of functional genomic screening in the context of personalized medicine.
Collapse
Affiliation(s)
| | | | | | | | - Paige Heine
- University of South Carolina, Columbia, SC, US
| | | | | | - Prashanth Gokare
- Janssen Research and Development, LLC Spring House, Spring House, PA, US
| | - Glenn S Cowley
- Janssen Research and Development, LLC Cambridge, Cambridge, MA, US
| | - Barbara A Weir
- Janssen Research and Development, LLC Cambridge, Cambridge, MA, US
| | - David Pocalyko
- Janssen Research and Development, LLC Spring House, Spring House, PA, US
| | - Kurtis E Bachman
- Janssen Research and Development, LLC Spring House, Spring House, PA, US
| | | |
Collapse
|
2
|
Rong Z, Xu J, Yang J, Wang W, Tang R, Zhang Z, Tan Z, Meng Q, Hua J, Liu J, Zhang B, Liang C, Yu X, Shi S. CircRREB1 Mediates Metabolic Reprogramming and Stemness Maintenance to Facilitate Pancreatic Ductal Adenocarcinoma Progression. Cancer Res 2024; 84:4246-4263. [PMID: 39288082 DOI: 10.1158/0008-5472.can-23-3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal tumor with limited treatment options and poor patient survival. Circular RNAs (circRNA) play crucial regulatory roles in the occurrence and development of various cancers, including PDAC. In this study, using circRNA sequencing of diverse PDAC samples, we identified circRREB1 as an oncogenic circRNA that is significantly upregulated in PDAC and is correlated with an unfavorable patient prognosis. Functionally, loss of circRREB1 markedly inhibited glycolysis and stemness, whereas elevated circRREB1 elicited the opposite effects. Mechanistically, circRREB1 interacted with PGK1, disrupting the association between PTEN and PGK1 and increasing PGK1 phosphorylation to activate glycolytic flux. Moreover, circRREB1 promoted WNT7B transcription by directly interacting with YBX1 and facilitating its nuclear translocation, consequently activating the Wnt/β-catenin signaling pathway to maintain PDAC stemness. Overall, these results highlight circRREB1 as a key regulator of metabolic and stemness properties of PDAC. Significance: CircRREB1 stimulates PGK1 to induce glycolysis and activates the Wnt/β-catenin signaling pathway to maintain stemness in pancreatic cancer, indicating the potential of circRREB1 as a biomarker and therapeutic target.
Collapse
MESH Headings
- Humans
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Mice
- Animals
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Glycolysis
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Wnt Signaling Pathway
- Phosphoglycerate Kinase/metabolism
- Phosphoglycerate Kinase/genetics
- Disease Progression
- Prognosis
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
- Mice, Nude
- Male
- Female
- Cell Proliferation
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- PTEN Phosphohydrolase/metabolism
- PTEN Phosphohydrolase/genetics
- Mice, Inbred BALB C
- Wnt Proteins/metabolism
- Wnt Proteins/genetics
- Metabolic Reprogramming
- Y-Box-Binding Protein 1
Collapse
Affiliation(s)
- Zeyin Rong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Jianhui Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Zifeng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Zhen Tan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
| |
Collapse
|
3
|
Gu Y, Wang Z, Liang G, Peng J, Zhang X, Yu T, Ding C, Li Z. SIRT7 stabilizes β-catenin and promotes canonical Wnt activation via upregulating FZD7. Life Sci 2024; 359:123240. [PMID: 39542206 DOI: 10.1016/j.lfs.2024.123240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
AIMS The dysregulated Wnt/β-Catenin signaling pathway leads to occurrence of various diseases, and abnormal activation of β-Catenin is a major characteristic of human HCC. FZD7 is a positive regulator of the Wnt/β-catenin signaling pathway, and its upregulation is related to increase of β-catenin expression and carcinogenesis in human HCC. However, mechanisms underlying FZD7 upregulation in HCC remain elusive. MAIN METHODS Nuclear cytosol fractionation, immunofluorescence and Top-Flash were used to detect the activation of β-Catenin. Protein half-life and ubiquitination assays were applied to evaluate protein stability. RNA-seq combined with qRT-PCR was used to evaluate differential gene expressions after SIRT7 knockdown. Wound healing and transwell assays were used to measure cancer cell migration. KEY FINDINGS SIRT7-mediated FZD7 expression is essential for stability and activation of β-catenin. Knockdown SIRT7 in HCC cells resulted in enhanced binding of β-catenin to the DC, decreased its stability, nuclear localization and activation. Knockdown FZD7 reversed SIRT7 overexpression mediated β-catenin stabilization and impairment of binding of β-catenin to the DC. At molecular level, SIRT7 promotes FZD7 expression via upregulating transcription factor PU.1, knockdown PU.1 abolished SIRT7-mediated upregulation of FZD7. Finally, we confirmed that FZD7 was responsible for SIRT7-mediated β-catenin stabilization and HCC cells migration. By using clinical samples, we observed strong positive correlations between SIRT7 and PU.1, FZD7, p-GSK3β and β-Catenin in human HCC. SIGNIFICANCE Our results thus revealed a previously undisclosed role of SIRT7 in regulating the canonical Wnt/β-catenin signaling pathway, thereby offering additional evidence that SIRT7 holds promise as a novel therapeutic target for human HCC.
Collapse
Affiliation(s)
- Yiying Gu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, and Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China; Xiangtan Central Hospital, The affiliated hospital of Hunan university, Hunan 411100, China
| | - Zhiqiang Wang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, and Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Gaoshuang Liang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, and Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Jinying Peng
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, and Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Xiangwen Zhang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, and Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Tingzi Yu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, and Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Cong Ding
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, and Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Zhuan Li
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, and Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China; Institute of Interdisciplinary Studies, Hunan Normal University, Hunan 410081, China.
| |
Collapse
|
4
|
Li Y, Huang L, Hu Q, Zheng K, Yan Y, Lan T, Zheng D, Lu Y. WNT7B promotes cancer progression via WNT/β-catenin signaling pathway and predicts a poor prognosis in oral squamous cell carcinoma. BMC Oral Health 2024; 24:1335. [PMID: 39487430 PMCID: PMC11529306 DOI: 10.1186/s12903-024-05113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND WNT7B is a glycoprotein that plays a crucial role in tumorigenesis. This study aimed to investigate the role of WNT7B in oral squamous cell carcinoma (OSCC). METHODS Bioinformatic databases, immunohistochemistry, a real-time polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay were used to detect WNT7B expression in OSCC. The clinical and prognostic importance of WNT7B expression was evaluated. WNT7B expression was examined in oral leukoplakia and carcinoma induced by 4-nitroquinoline 1-oxide in mice. Loss- and gain-of-function analyses were performed to elucidate the role of WNT7B in OSCC cells. Subcutaneous tumor model was established to observe the effects of WNT7B on tumor growth. Co-Immunoprecipitation was used to explore the Frizzled receptors that WNT7B may bind to. RESULTS WNT7B upregulated in OSCC and associated with lymph node metastasis, perineural invasion, and an unfavorable prognosis in patients with OSCC. A gradual increased in WNT7B expression during the malignant progression of OSCC. WNT7B promoted cell proliferation, migration, invasion, while silencing WNT7B abolished these effects. Knocking down the expression of WNT7B inhibits tumor growth in vivo. WNT7B functions by binding to the Frizzled 7 receptor and facilitates the nuclear translocation of β-catenin. CONCLUSIONS WNT7B contributes to the progression of OSCC by modulating the WNT/β-catenin signaling pathway. These findings highlight the potential of WNT7B as a novel prognostic biomarker and promising therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yang Li
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Middle Road, Fuzhou, 350000, China
- Department of Oral Pathology, College of Stomatology, Ningxia Medical University, South Sheng Li Street 804, Yinchuan, 750004, China
| | - Li Huang
- Department of Dentistry, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Qi Hu
- College of Humanities and Management, Ningxia Medical University, South Sheng Li Street 1160, Yinchuan, 750004, China
| | - Ke Zheng
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - Yuxiang Yan
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Middle Road, Fuzhou, 350000, China
| | - Ting Lan
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, China.
- Key Laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, China.
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, China.
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Middle Road, Fuzhou, 350000, China.
| |
Collapse
|
5
|
Jiang F, Chen Z, Wang X, Huang C, Li Y, Liu N. Activation of the WNT7B/β-Catenin Pathway Initiates GLUT1 Expression and Promotes Aerobic Glycolysis in Colorectal Cancer Cells. Nutr Cancer 2024; 77:311-323. [PMID: 39434562 DOI: 10.1080/01635581.2024.2418607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
Glucose is an important energy source for tumors, however the molecular mechanisms by which tumor cells regulate glucose uptake remain unclear. In this study, we aimed to investigate the regulation mechanism of the WNT7B/β-catenin pathway for glucose transporter 1 (GLUT1)-mediated glucose metabolism in colorectal cancer. Here, we found that WNT7B expression levels were significantly increased in colorectal cancer tissues and closely associated with the clinical stage and lymph node metastasis in patients with colorectal cancer. Next, we confirmed that WNT7B significantly increased the glucose consumption and lactic acid levels in SW480 cells by overexpressing WNT7B. Additionally, gene and protein levels of GLUT1 were increased in WNT7B-overexpressing SW480 cells. However, WNT7B knockdown reversed these effects. WNT7B also enhanced GLUT1-mediated cell proliferation, invasion, and migration. WNT7B overexpression inhibited the effect of glucose deprivation on apoptosis. The WNT/β-catenin signaling pathway inhibitor, LGK974, inhibited WNT7B secretion, leading to GLUT1 levels downregulation and promotion of cell apoptosis. Ectopic tumor xenograft model experiments revealed that WNT7B promoted tumor progression in mice. Overall, our results suggest that WNT7B promotes β-catenin entry into the nucleus to initiates GLUT1 transcription, increases glucose transport and consumption, and enhances aerobic glycolysis, thus promoting tumor progression in colorectal cancer cells.
Collapse
Affiliation(s)
- Fan Jiang
- Department of the Center of Gerontology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, Haikou, Hainan Province, People's Republic of China
| | - Zhiju Chen
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, Haikou, Hainan Province, People's Republic of China
| | - Xiang Wang
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, Haikou, Hainan Province, People's Republic of China
| | - Chuangyu Huang
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, Haikou, Hainan Province, People's Republic of China
| | - Yiwei Li
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, Haikou, Hainan Province, People's Republic of China
| | - Ning Liu
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan, Haikou, Hainan Province, People's Republic of China
| |
Collapse
|
6
|
He F, Zhao Z, Li Q, Li B. PVR(CD155) as a potential immunological, diagnostic, and prognostic biomarker for pancreatic adenocarcinoma. Asian J Surg 2024; 47:4409-4411. [PMID: 39127495 DOI: 10.1016/j.asjsur.2024.07.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Affiliation(s)
- Feng He
- Shanghai First People's Hospital Jiuquan Hospital (Jiuquan People's Hospital), Jiuquan, 735000, China.
| | - Zishan Zhao
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Qingyun Li
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Bo Li
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
7
|
Kong X, Xiong Y, Li L. LINC01605 promotes malignant phenotypes of cervical cancer via miR-149-3p/WNT7B axis. Gene 2024; 921:148518. [PMID: 38734188 DOI: 10.1016/j.gene.2024.148518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Long non-coding RNAs (LncRNA) play a pivotal role in the progression of various malignancies. Despite recent identification as an oncogene associated with tumorigenesis. The precise role of LINC01605 in cervical cancer (CC) remains unclear. Therefore, the objective of this study was to investigate the influence of LINC01605 on proliferation and invasion of CC cells, while also exploring its potential underlying mechanisms. METHODS The expression of LINC01605 in CC cell lines was analyzed using the TCGA database and qRT-PCR. Various assays, including CCK-8 and transwell analysis, were conducted on CC cells to assess the influence of LINC01605 on their proliferation, migration, and invasion capabilities. Bioinformatics and dual luciferase reporter gene assays were employed to analyze the target genes of LINC01605 and miR-149-3p. To further investigate the mechanism of action, transfection and investigation were performed using specific siRNA, miRNA mimics, or inhibitors. RESULTS The expression of LINC01605 exhibited a significant increase in CC cell lines, and this upregulation was associated with an unfavorable prognosis. Modulating the expression of LINC01605, either by down-regulating or up-regulating it, exerted suppressive or stimulatory effects on the growth and invasion of HeLa and Siha cells. LINC01605 functioned as a competitive endogenous RNA (ceRNA) for miR-149-3p, with WNT7B being identified as a target gene of miR-149-3p. The involvement of LINC01605 in CC development is facilitated by its ability to regulate the expression of WNT7B through sequestering miR-149-3p. CONCLUSION Our study demonstrates that LINC01605 acts as a competitive endogenous RNA in modulating the effects of WNT7B on the proliferation and invasion of CC cells by sequestering miR-149-3p. This research provides novel insights into the involvement of LINC01605 in the advancement of CC.
Collapse
Affiliation(s)
- Xiaoyu Kong
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yuanpeng Xiong
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Liping Li
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China; The First Hospital of Nanchang (also known as the Third Affiliated Hospital of Nanchang University), Nanchang, 330006, China.
| |
Collapse
|
8
|
Scimone C, Donato L, Alibrandi S, Conti A, Bortolotti C, Germanò A, Alafaci C, Vinci SL, D'Angelo R, Sidoti A. Methylome analysis of endothelial cells suggests new insights on sporadic brain arteriovenous malformation. Heliyon 2024; 10:e35126. [PMID: 39170526 PMCID: PMC11336478 DOI: 10.1016/j.heliyon.2024.e35126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Arteriovenous malformation of the brain (bAVM) is a vascular phenotype related to brain defective angiogenesis. Involved vessels show impaired expression of vascular differentiation markers resulting in the arteriolar to venule direct shunt. In order to clarify aberrant gene expression occurring in bAVM, here we describe results obtained by methylome analysis performed on endothelial cells (ECs) isolated from bAVM specimens, compared to human cerebral microvascular ECs. Results were validated by quantitative methylation-specific PCR and quantitative realtime-PCR. Differential methylation events occur in genes already linked to bAVM onset, as RBPJ and KRAS. However, among differentially methylated genes, we identified EPHB1 and several other loci involved in EC adhesion as well as in EC/vascular smooth muscle cell (VSMC) crosstalk, suggesting that only endothelial dysfunction might not be sufficient to trigger the bAVM phenotype. Moreover, aberrant methylation pattern was reported for many lncRNA genes targeting transcription factors expressed during neurovascular development. Among these, the YBX1 that was recently shown to target the arteridin coding gene. Finally, in addition to the conventional CpG methylation, we further considered the role of impaired CHG methylation, mainly occurring in brain at embryo stage. We showed as differentially CHG methylated genes are clustered in pathways related to EC homeostasis, as well as to VSMC-EC crosstalk, suggesting as impairment of this interaction plays a prominent role in loss of vascular differentiation, in bAVM phenotype.
Collapse
Affiliation(s)
- Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Alfredo Conti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Carlo Bortolotti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123, Bologna, Italy
| | - Antonino Germanò
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| | - Concetta Alafaci
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| | - Sergio Lucio Vinci
- Neuroradiology Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| |
Collapse
|
9
|
Hawkins HJ, Yacob BW, Brown ME, Goldstein BR, Arcaroli JJ, Bagby SM, Hartman SJ, Macbeth M, Goodspeed A, Danhorn T, Lentz RW, Lieu CH, Leal AD, Messersmith WA, Dempsey PJ, Pitts TM. Examination of Wnt signaling as a therapeutic target for pancreatic ductal adenocarcinoma (PDAC) using a pancreatic tumor organoid library (PTOL). PLoS One 2024; 19:e0298808. [PMID: 38598488 PMCID: PMC11006186 DOI: 10.1371/journal.pone.0298808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/30/2024] [Indexed: 04/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents at advanced stages and is refractory to most treatment modalities. Wnt signaling activation plays a critical role in proliferation and chemotherapeutic resistance. Minimal media conditions, growth factor dependency, and Wnt dependency were determined via Wnt inhibition for seven patient derived organoids (PDOs) derived from pancreatic tumor organoid libraries (PTOL). Organoids demonstrating response in vitro were assessed in vivo using patient-derived xenografts. Wnt (in)dependent gene signatures were identified for each organoid. Panc269 demonstrated a trend of reduced organoid growth when treated with ETC-159 in combination with paclitaxel or gemcitabine as compared with chemotherapy or ETC-159 alone. Panc320 demonstrated a more pronounced anti-proliferative effect in the combination of ETC-159 and paclitaxel but not with gemcitabine. Panc269 and Panc320 were implanted into nude mice and treated with ETC-159, paclitaxel, and gemcitabine as single agents and in combination. The combination of ETC-159 and paclitaxel demonstrated an anti-tumor effect greater than ETC-159 alone. Extent of combinatory treatment effect were observed to a lesser extent in the Panc320 xenograft. Wnt (in)dependent gene signatures of Panc269 and 320 were consistent with the phenotypes displayed. Gene expression of several key Wnt genes assessed via RT-PCR demonstrated notable fold change following treatment in vivo. Each pancreatic organoid demonstrated varied niche factor dependencies, providing an avenue for targeted therapy, supported through growth analysis following combinatory treatment of Wnt inhibitor and standard chemotherapy in vitro. The clinical utilization of this combinatory treatment modality in pancreatic cancer PDOs has thus far been supported in our patient-derived xenograft models treated with Wnt inhibitor plus paclitaxel or gemcitabine. Gene expression analysis suggests there are key Wnt genes that contribute to the Wnt (in)dependent phenotypes of pancreatic tumors, providing plausible mechanistic explanation for Wnt (in)dependency and susceptibility or resistance to treatment on the genotypic level.
Collapse
Affiliation(s)
- Hayley J. Hawkins
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Betelehem W. Yacob
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Monica E. Brown
- Section of Developmental Biology, Dept. of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Brandon R. Goldstein
- Section of Developmental Biology, Dept. of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - John J. Arcaroli
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Stacey M. Bagby
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Sarah J. Hartman
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Morgan Macbeth
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Andrew Goodspeed
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Thomas Danhorn
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Robert W. Lentz
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Christopher H. Lieu
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Alexis D. Leal
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Wells A. Messersmith
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Peter J. Dempsey
- Section of Developmental Biology, Dept. of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Todd M. Pitts
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
10
|
Ruan S, Wang H, Zhang Z, Yan Q, Chen Y, Cui J, Huang S, Zhou Q, Zhang C, Hou B. Identification and validation of stemness-based and ferroptosis-related molecular clusters in pancreatic ductal adenocarcinoma. Transl Oncol 2024; 41:101877. [PMID: 38262107 PMCID: PMC10832490 DOI: 10.1016/j.tranon.2024.101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with an extremely poor prognosis. Cancer stem cells (CSCs) are considered to be responsible for the poor survival, recurrence and therapy resistance of PDAC. Ferroptosis plays a crucial role in the sustain and survival of CSCs. Here, we employed a rigorous evaluation of multiple datasets to identify a novel stemness-based and ferroptosis-related genes (SFRGs) signature to access the potential prognostic application. This work we retrieved RNA-sequencing and clinical annotation data from the TCGA, ICGC, GTEx and GEO database, and acquired 26 stem cell gene sets and 259 ferroptosis genes from StemChecker database and FerrDb database, respectively. Based on consensus clustering and ssGSEA analysis, we identified two expression patterns of CSCs traits (C1 and C2). Then, WGCNA analysis was implemented to screen out hub module genes correlated with stemness. Furthermore, differential expression analysis, Pearson correlation analysis, and the Least absolute shrinkage and selection operator (LASSO) and Cox regression were performed to identify the SFRGs and to construct model. In addition, the differences in prognosis, tumor microenvironment (TME) components and therapy responses were evaluated between two risk groups. Finally, we verified the most influential marker ARNTL2 experimentally by western blot, qRT-PCR, sphere formation assay, mitoscreen assay, intracellular iron concentration determination and MDA determination assays. In conclusion, we developed a stemness-based and ferroptosis-related prognostic model, which could help predict overall survival for PDAC patients. Targeting ferroptosis may be a promising therapeutic strategy to inhibit PDAC progression by suppressing CSCs.
Collapse
Affiliation(s)
- Shiye Ruan
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hailiang Wang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Department of Hepatobiliary Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai 264400, China
| | - Zhongyan Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qian Yan
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine South China University of Technology, Guangzhou 51000, China
| | - Yubin Chen
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine South China University of Technology, Guangzhou 51000, China
| | - Jinwei Cui
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine South China University of Technology, Guangzhou 51000, China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qi Zhou
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong 516081, China.
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine South China University of Technology, Guangzhou 51000, China; Heyuan People's Hospital, Heyuan 517000, China.
| |
Collapse
|
11
|
Huang Y, Wang S, Zhang X, Yang C, Wang S, Cheng H, Ke A, Gao C, Guo K. Identification of Fasudil as a collaborator to promote the anti-tumor effect of lenvatinib in hepatocellular carcinoma by inhibiting GLI2-mediated hedgehog signaling pathway. Pharmacol Res 2024; 200:107082. [PMID: 38280440 DOI: 10.1016/j.phrs.2024.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Lenvatinib is a frontline tyrosine kinase inhibitor for patients with advanced hepatocellular carcinoma (HCC). However, just 25% of patients benefit from the treatment, and acquired resistance always develops. To date, there are neither effective medications to combat lenvatinib resistance nor accurate markers that might predict how well a patient would respond to the lenvatinib treatment. Thus, novel strategies to recognize and deal with lenvatinib resistance are desperately needed. In the current study, a robust Lenvatinib Resistance index (LRi) model to predict lenvatinib response status in HCC was first established. Subsequently, five candidate drugs (Mercaptopurine, AACOCF3, NU1025, Fasudil, and Exisulind) that were capable of reversing lenvatinib resistance signature were initially selected by performing the connectivity map (CMap) analysis, and fasudil finally stood out by conducting a series of cellular functional assays in vitro and xenograft mouse model. Transcriptomics revealed that the co-administration of lenvatinib and fasudil overcame lenvatinib resistance by remodeling the hedgehog signaling pathway. Mechanistically, the feedback activation of EGFR by lenvatinib led to the activation of the GLI2-ABCC1 pathway, which supported the HCC cell's survival and proliferation. Notably, co-administration of lenvatinib and fasudil significantly inhibited IHH, the upstream switch of the hedgehog pathway, to counteract GLI2 activation and finally enhance the effectiveness of lenvatinib. These findings elucidated a novel EGFR-mediated mechanism of lenvatinib resistance and provided a practical approach to overcoming drug resistance in HCC through meaningful drug repurposing strategies.
Collapse
Affiliation(s)
- Yilan Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China
| | - Siwei Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China; Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaojun Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sikai Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China
| | - Hongxia Cheng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China
| | - Aiwu Ke
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China.
| | - Chao Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China.
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China.
| |
Collapse
|
12
|
Ashrafizadeh M, Luo K, Zhang W, Reza Aref A, Zhang X. Acquired and intrinsic gemcitabine resistance in pancreatic cancer therapy: Environmental factors, molecular profile and drug/nanotherapeutic approaches. ENVIRONMENTAL RESEARCH 2024; 240:117443. [PMID: 37863168 DOI: 10.1016/j.envres.2023.117443] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/17/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
A high number of cancer patients around the world rely on gemcitabine (GEM) for chemotherapy. During local metastasis of cancers, surgery is beneficial for therapy, but dissemination in distant organs leads to using chemotherapy alone or in combination with surgery to prevent cancer recurrence. Therapy failure can be observed as a result of GEM resistance, threatening life of pancreatic cancer (PC) patients. The mortality and morbidity of PC in contrast to other tumors are increasing. GEM chemotherapy is widely utilized for PC suppression, but resistance has encountered its therapeutic impacts. The purpose of current review is to bring a broad concept about role of biological mechanisms and pathways in the development of GEM resistance in PC and then, therapeutic strategies based on using drugs or nanostructures for overcoming chemoresistance. Dysregulation of the epigenetic factors especially non-coding RNA transcripts can cause development of GEM resistance in PC and miRNA transfection or using genetic tools such as siRNA for modulating expression level of these factors for changing GEM resistance are suggested. The overexpression of anti-apoptotic proteins and survival genes can contribute to GEM resistance in PC. Moreover, supportive autophagy inhibits apoptosis and stimulates GEM resistance in PC cells. Increase in metabolism, glycolysis induction and epithelial-mesenchymal transition (EMT) stimulation are considered as other factors participating in GEM resistance in PC. Drugs can suppress tumorigenesis in PC and inhibit survival factors and pathways in increasing GEM sensitivity in PC. More importantly, nanoparticles can increase pharmacokinetic profile of GEM and promote its blood circulation and accumulation in cancer site. Nanoparticles mediate delivery of GEM with genes and drugs to suppress tumorigenesis in PC and increase drug sensitivity. The basic research displays significant connection among dysregulated pathways and GEM resistance, but the lack of clinical application is a drawback that can be responded in future.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Kuo Luo
- Department of Oncology, Chongqing Hyheia Hospital, Chongqing, 4001331, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
13
|
Ni Y, Jiang M, Wu Y, Xiao P, Wu A, Xia W, Tang C, Yang X, Tian K, Chen H, Huang R. Anoikis-related CTNND1 is associated with immuno-suppressive tumor microenvironment and predicts unfavorable immunotherapeutic outcome in non-small cell lung cancer. J Cancer 2024; 15:317-331. [PMID: 38169514 PMCID: PMC10758022 DOI: 10.7150/jca.89542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024] Open
Abstract
Background: Immunotherapy has greatly changed the treatment of advanced non-small cell lung cancer (NSCLC). Anoikis is a programmed cell death process associated with cancer. However, the correlation between anoikis-related genes and the tumor microenvironment (TME) features and immunotherapeutic outcome in NSCLC has not been fully explored. Methods: The bulk and single-cell transcriptome data of NSCLC were downloaded from TCGA and GEO databases. The distribution of anoikis-related genes on different cell types at the single-cell level was analyzed, and these genes specifically expressed by tumor cells and immunotherapy-related were further extracted. Next, the candidate gene CTNND1 was identified and its correlations with the TME features and immunotherapeutic outcome in NSCLC were explored in multiple public cohorts. Finally, an in-house cohort was used to determine the CTNND1 expression and immuno-correlation in NSCLC. Results: At single-cell atlas, we found that anoikis-related genes expressed specifically in tumor cells of NSCLC. By intersecting anoikis-related genes, immunotherapy-associated genes, and the genes expressed in tumor cells, we obtained a special biomarker CTNND1. In addition, cell-cell communication analysis revealed that CTNND1+ tumor cells communicated with immune subpopulations frequently. Moreover, we found that high expression of CTNND1 was related to immuno-suppressive status of NSCLC. The expression of CTNND1 and its immuno-correlation were also validated, and the results showed that CTNND1 was highly expressed in NSCLC tissues and tumors with high CTNND1 expression accompanied with low CD8+ T cells infiltration. Conclusions: Overall, our study reported that CTNND1 can be considered as a novel biomarker for the predication of immunotherapeutic responses and a potential target for NSCLC therapy.
Collapse
Affiliation(s)
- Yingchen Ni
- Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Mengna Jiang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yixuan Wu
- Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Pei Xiao
- Center for Non-Communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Anqi Wu
- Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Weiyi Xia
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Can Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xu Yang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Kai Tian
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Hong Chen
- Department of Respiratory Medicine, Nantong Fourth People's Hospital, Nantong, 226000, China
| | - Rongrong Huang
- Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| |
Collapse
|
14
|
Werner J, Boonekamp KE, Zhan T, Boutros M. The Roles of Secreted Wnt Ligands in Cancer. Int J Mol Sci 2023; 24:5349. [PMID: 36982422 PMCID: PMC10049518 DOI: 10.3390/ijms24065349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/17/2023] Open
Abstract
Wnt ligands are secreted signaling proteins that display a wide range of biological effects. They play key roles in stimulating Wnt signaling pathways to facilitate processes such as tissue homeostasis and regeneration. Dysregulation of Wnt signaling is a hallmark of many cancers and genetic alterations in various Wnt signaling components, which result in ligand-independent or ligand-dependent hyperactivation of the pathway that have been identified. Recently, research is focusing on the impact of Wnt signaling on the interaction between tumor cells and their micro-environment. This Wnt-mediated crosstalk can act either in a tumor promoting or suppressing fashion. In this review, we comprehensively outline the function of Wnt ligands in different tumor entities and their impact on key phenotypes, including cancer stemness, drug resistance, metastasis, and immune evasion. Lastly, we elaborate approaches to target Wnt ligands in cancer therapy.
Collapse
Affiliation(s)
- Johannes Werner
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Kim E. Boonekamp
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany
| | - Tianzuo Zhan
- Department of Medicine II, Medical Faculty Mannheim, Mannheim University Hospital, Heidelberg University, D-68167 Mannheim, Germany;
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, D-68167 Mannheim, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, 69120 Heidelberg, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, D-68167 Mannheim, Germany
| |
Collapse
|
15
|
Chen S, Ding H, Wang K, Guo K. Inhibition of Wnt7b reduces the proliferation, invasion, and migration of colorectal cancer cells. Mol Biol Rep 2023; 50:1415-1424. [PMID: 36472725 DOI: 10.1007/s11033-022-08106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Colorectal cancer is one of the most common gastrointestinal tumors. The role of Wnt7b as a ligand of the Wnt signaling pathway in colorectal cancer remains to be studied. Through bioinformatics online analysis, we found that Wnt7b is abnormally highly expressed in a variety of gastrointestinal tumors. This study mainly explored the effects of Wnt7b regulating the Wnt/β-catenin signaling pathway on the proliferation, migration, and invasion of SW480 cells in colorectal cancer. METHODS AND RESULTS Applying the TCGA data set, Wnt7b was found to be highly expressed in most gastrointestinal tumor samples. Real-time quantitative PCR(q-PCR), Western blotting(WB) results showed that Wnt7b was significantly higher expressed in colorectal cancer cell lines compared with normal intestinal epithelial cells. SW480 cells transfected with the sh-Wnt7b showed successful knockdown of Wnt7b. MTT colorimetry showed the proliferation ability of sh-Wnt7b group decreased significantly compared with the non-transfected group. The results of double staining flow cytometry showed that the sh-Wnt7b group had more apoptosis. Cell scratch test showed that the cell migration rate of sh-wnt7b group considerably reduced. The Transwell invasion experiment demonstrated that the number of cell invasions in the sh-Wnt7b group decreased significantly. After SW480 cells was transfected with sh-Wnt7b, the protein levels of β-catenin, CCND1, and CD44 in this group of cells were detected to be reduced by WB, and the same results were obtained by q-PCR detection of mRNA. CONCLUSION Wnt7b is highly expressed in colorectal cancer cells, which may affect the proliferation, migration, and invasion of colorectal cancer cells by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Siyang Chen
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, 430065, Wuhan, China
| | - Hui Ding
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, 430065, Wuhan, China
| | - Kaiyun Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, 430065, Wuhan, China
| | - Kaiwen Guo
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, 430065, Wuhan, China.
| |
Collapse
|
16
|
Zhang C, Atri P, Nallasamy P, Parte S, Rauth S, Nimmakayala RK, Marimuthu S, Chirravuri-Venkata R, Bhatia R, Halder S, Shah A, Cox JL, Smith L, Kumar S, Foster JM, Kukreja RC, Seshacharyulu P, Ponnusamy MP, Batra SK. Small molecule inhibitor against onco-mucins disrupts Src/FosL1 axis to enhance gemcitabine efficacy in pancreatic ductal adenocarcinoma. Cancer Lett 2022; 551:215922. [PMID: 36285687 PMCID: PMC10124158 DOI: 10.1016/j.canlet.2022.215922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
Mucin MUC4 is an aberrantly expressed oncogene in pancreatic ductal adenocarcinoma (PDAC), yet no pharmacological inhibitors have been identified to target MUC4. Here, we adapted an in silico screening method using the Cancer Therapeutic Response Database (CTRD) to Identify Small Molecule Inhibitors against Mucins (SMIMs). We identified Bosutinib as a candidate drug to target oncogenic mucins among 126 FDA-approved drugs from CTRD screening. Functionally, Bosutinib treatment alone/and in combination with gemcitabine (Gem)/5' fluorouracil (5FU) reduced in vitro viability, migration, and colony formation in multiple PDAC cell lines as well as human PDAC organoid prolifertaion and growth and in vivo xenograft growth. Further, biochemical and molecular analyses showed that Bosutinib exhibited these functional effects by downregulating MUC4 mucin at both transcript and translation levels in a dose- and time-dependent manner. Mechanistically, global transcriptome analysis in PDAC cells upon treatment with Bosutinib revealed disruption of the Src-ERK/AKT-FosL1 pathway, leading to decreased expression of MUC4 and MUC5AC mucins. Taken together, Bosutinib is a promising, novel, and highly potent SMIMs to target MUC4/MUC5AC mucins. This mucin-targeting effect of Bosutinib can be exploited in the future with cytotoxic agents to treat mucinous tumors.
Collapse
Affiliation(s)
- Chunmeng Zhang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Surgical Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saravanakumar Marimuthu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Rakesh Bhatia
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sushanta Halder
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lynette Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jason M Foster
- Department of Surgical Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, 23298-0204, USA
| | | | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
17
|
Mirzaei S, Paskeh MDA, Entezari M, Mirmazloomi SR, Hassanpoor A, Aboutalebi M, Rezaei S, Hejazi ES, Kakavand A, Heidari H, Salimimoghadam S, Taheriazam A, Hashemi M, Samarghandian S. SOX2 function in cancers: Association with growth, invasion, stemness and therapy response. Biomed Pharmacother 2022; 156:113860. [DOI: 10.1016/j.biopha.2022.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022] Open
|
18
|
Liu LJ, Lv Z, Xue X, Xing ZY, Zhu F. Canonical WNT Signaling Activated by WNT7B Contributes to L-HBs-Mediated Sorafenib Resistance in Hepatocellular Carcinoma by Inhibiting Mitophagy. Cancers (Basel) 2022; 14:5781. [PMID: 36497264 PMCID: PMC9741164 DOI: 10.3390/cancers14235781] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death globally, with hepatitis B virus (HBV) infection accounting for over half of all cases. HBV leads to the development of HCC according to a body of literature. Our previous research and other studies also suggest that HBV causes chemotherapeutic treatment resistance, however, the mechanism is uncertain. The WNT family, which encodes secreted signaling molecules, has been linked to carcinogenesis in a variety of malignancies, including HCC. However, little is known regarding WNT7B, a WNT ligand, in the development of HCC and HBV-induced chemoresistance. In this study, the bioinformatics analysis and immunohistochemistry (IHC) staining of clinical samples revealed that WNT7B was overexpressed in HBV-associated HCC tissues versus nontumor liver tissues, which was related to HCC patient survival. Further study in vitro showed that WNT7B and its receptor frizzled-4 (FZD4) were upregulated in response to large hepatitis B surface antigens (L-HBs). L-HBs increased canonical WNT signaling in HCC cells through WNT7B/FZD4. According to functional experiments, WNT7B enhanced the cell proliferation and metastasis in HCC. In vivo and in vitro studies investigated whether L-HBs induced sorafenib resistance by WNT7B in HCC. Interestingly, L-HBs suppressed sorafenib-induced mitophagy by increasing WNT7B/CTNNB1 signaling, resulting in chemoresistance. The findings revealed that WNT7B could be a promising molecular therapeutic target as well as a predictor of sorafenib resistance in HBV-related HCC. The suppression of HBV structural proteins such as L-HBs may play a crucial role in systemic chemotherapy resistance in HBV-associated HCC.
Collapse
Affiliation(s)
| | | | | | | | - Fan Zhu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|
19
|
Zhang Z, Xu Y. FZD7 accelerates hepatic metastases in pancreatic cancer by strengthening EMT and stemness associated with TGF-β/SMAD3 signaling. Mol Med 2022; 28:82. [PMID: 35854234 PMCID: PMC9295360 DOI: 10.1186/s10020-022-00509-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background Metastasis of malignant tumors accelerates systemic failure and hastens the deaths of pancreatic cancer patients. During the metastatic process, the physical translocation of cancer cells from the primary lesion to distant organs and is crucial. CSCs properties, such as self-renewal and multiple-direction differentiation capacity are essential for colonization in the microenvironment of distant organs and metastatic lesion formation. It is widely believed that EMT can cause cancer cells to penetrate blood vessels by undergoing phenotypic and cytoskeletal changes, so that they can infiltrate surrounding tissue and disseminate from the primary tumor to the blood circulation, where they are termed circulating tumor cells (CTCs), while CTCs often exhibit stemness properties. Accumulating evidence demonstrates that some EMT-related transcription factors are essential for CSCs self-renewal, so cancer cells that have undergone EMT typically acquire increased stemness properties. Abnormal activation of the WNT signaling pathway can drive a series of gene transcripts to promote EMT in multiple types of cancer, and among different Frizzled receptors of WNT signaling pathway, FZD7 expression is associated with distant organ metastasis, advanced clinical stages, and poor clinical prognosis. Objective of this study is to demonstrate that high FZD7 expression in pancreatic cancer can accelerate hepatic metastases and elucidate the related molecular mechanisms. Methods The expression of Frrizled receptor 7 (FZD7) in pancreatic ductal adenocarcinoma (PDAC) and relating survival rate were analyzed by bioinformatics, histochemistry assay and follow-up study. In vitro, FZD7 expression was silenced by lentiviral vectors carrying short hair RNA (shRNA) or upregulated by overexpression plasmid. Then, Wound-healing and Transwell experiment was used to analyze the abilities of migration and invasion; the levels of epithelial-to-mesenchymal transition (EMT) relating phenotype proteins, stemness relating phenotype proteins, and signaling molecular proteins were measured by Western-blot; cell stemness was evaluated by sphere forming ability of cells in suspension culture and detecting the proportion of CD24+CD44+ cells with flow cytometry. TGF-β1 was used to induce EMT, and observe the effect of shRNA silencing FZD7 on which. Results High level of FZD7 expression in pancreatic cancer samples was associated with earlier hepatic metastasis. In vitro upregulation FZD7 can enable pancreatic cancer cells to obtain stronger migration and invasion ability and higher mesenchymal phenotype, and vice versa; the proportion of cancer stem cell (CSC) was also positively correlated with the level of FZD7; cells forming spheres in suspension culture showed stronger migration and invasion ability and higher level of mesenchymal phenotype than normal adherent cultured cells; the level of FZD7 was positively correlated with the level of activated β-catenin. Silencing FZD7 expression can attenuate EMT induced by TGF-β1 stimulating, and TGF-β1 stimulating can also upregulate stemness phenotype expression, such as ABCG2, CD24, and CD44 by mediating of FZD7. Conclusions High FZD7 expression in pancreatic cancer can accelerates hepatic metastases by promoting EMT and strengthening cell stemness, and FZD7 can work through the canonical Wingless-type (WNT) signaling pathway and participate in TGF-β/SMAD3 signaling pathway also.
Collapse
Affiliation(s)
- Zhongbo Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping, Shenyang, 110001, Liaoning, People's Republic of China
| | - Yuanhong Xu
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping, Shenyang, 110001, Liaoning, People's Republic of China.
| |
Collapse
|
20
|
Larasati Y, Boudou C, Koval A, Katanaev VL. Unlocking the Wnt pathway: Therapeutic potential of selective targeting FZD 7 in cancer. Drug Discov Today 2021; 27:777-792. [PMID: 34915171 DOI: 10.1016/j.drudis.2021.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/09/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
The Wnt signaling is of paramount pathophysiological importance. Despite showing promising anticancer activities in pre-clinical studies, current Wnt pathway inhibitors face complications in clinical trials resulting from on-target toxicity. Hence, the targeting of pathway component(s) that are essential for cancer but dispensable for normal physiology is key to the development of a safe Wnt signaling inhibitor. Frizzled7 (FZD7) is a Wnt pathway receptor that is redundant in healthy tissues but crucial in various cancers. FZD7 modulates diverse aspects of carcinogenesis, including cancer growth, metastasis, maintenance of cancer stem cells, and chemoresistance. In this review, we describe state-of-the-art knowledge of the functions of FZD7 in carcinogenesis and adult tissue homeostasis. Next, we overview the development of small molecules and biomolecules that target FZD7. Finally, we discuss challenges and possibilities in developing FZD7-selective antagonists.
Collapse
Affiliation(s)
- Yonika Larasati
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Cédric Boudou
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia.
| |
Collapse
|