1
|
Zhang A, Liu W, Can C, Guo X, Jia H, Wei Y, Wu H, Yang X, Ji C, Ma D. Immune-related genetic single-nucleotide polymorphisms contribute to prognosis and response to chemotherapy in patients with acute lymphoblastic leukemia. Inflamm Res 2025; 74:73. [PMID: 40299016 DOI: 10.1007/s00011-025-02014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/19/2025] [Indexed: 04/30/2025] Open
Abstract
The immune system is essential for immuno-surveillance and the generation of anti-tumor immunity. However, the role of immune-related single-nucleotide polymorphisms (SNPs) in the susceptibility and progression of acute lymphoblastic leukemia (ALL) is currently unknown. Here, we selected and analyzed 28 immune-related SNPs in 201 ALL patients and 228 healthy controls. We uncovered five important SNPs related to ALL susceptibility, including in TGFB1(rs1800469), GATA3 (rs3824662), TNFA (rs1800629), PARP1 (rs1805414), and IL6R (rs2228145). PARP1 (rs1805414) and GATA3 (rs3824662) were also associated with the ALL immunophenotype. Additionally, STAT3 (rs744166) and TMPRSS2 (rs12329760) significantly contributed to the susceptibility of Philadelphia chromosome-positive (Ph+) ALL. More importantly, MAVS (rs7269320) and NF-KBIA (rs2233406) were remarkably associated with the overall survival (OS) of ALL patients. Furthermore, ITGAM (rs4597342), PTPN22 (rs2488457), STAT5B (rs6503691), and MAVS (rs7269320) were significantly associated with the progression-free survival (PFS) of ALL patients. In the training cohort, we built a prognostic classifier, which identified five features. The five selected SNPs were related to GATA3, IL-6R, ITGAM, PTPN22, and STAT1. Moreover, the five SNP-based classifiers demonstrated a higher accuracy in predicting the OS and the PFS. In addition, we found that the mRNA expression of GATA3 gene was significantly higher in ALL patients than in healthy controls. GATA3 mRNA expression were also elevated in ALL patients with CA and AA genotypes. Our findings suggest that immune-related genetic polymorphisms contribute to the prognosis and treatment of ALL and could also serve as a valuable disease predictor.
Collapse
Affiliation(s)
- Amin Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Wancheng Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Can Can
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Xiaodong Guo
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Hexiao Jia
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yihong Wei
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Hanyang Wu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Xinyu Yang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Nakahara Y, Kouro T, Motoyama S, Miura M, Fujita K, Igarashi Y, Higashijima N, Matsuo N, Himuro H, Wei F, Horaguchi S, Tsuji K, Mano Y, Komahashi M, Saito H, Azuma K, Sasada T. Circulating IL-6 and not its circulating signaling components sIL-6R and sgp130 demonstrate clinical significance in NSCLC patients treated with immune checkpoint inhibitors. Front Cell Dev Biol 2024; 11:1324898. [PMID: 38469154 PMCID: PMC10926441 DOI: 10.3389/fcell.2023.1324898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 03/13/2024] Open
Abstract
Introduction: Clinical roles of plasma IL-6 levels have been reported in patients with various cancers, including non-small cell lung cancer (NSCLC), treated with immune checkpoint inhibitors (ICIs). However, the roles of other IL-6 signaling components, soluble IL-6 receptor (sIL-6R) and soluble gp130 (sgp130), in the plasma have not been elucidated. Methods: Blood was collected from 106 patients with NSCLC before initiation of ICI treatment (anti-PD-1 or anti-PD-L1 antibody). Plasma levels of IL-6, sIL-6R, sgp130, and their complexes were assessed by Cox regression hazard model to evaluate their clinical significance. The clinical role of IL-6 or IL-6R genetic polymorphisms was also analyzed. Results: Cox regression analysis showed that higher plasma IL-6 levels significantly predicted unfavorable overall survival (OS; hazard ratio [HR] 1.34, 95% confidence interval [CI] 1.05-1.68, p = 0.012) in NSCLC patients treated with ICIs. However, plasma sIL-6R and sgp130 levels showed no prognostic significance (p = 0.882 and p = 0.934, respectively). In addition, the estimated concentrations of binary IL-6:sIL-6R and ternary IL-6:sIL-6R:sgp130 complexes and their ratios (binary/ternary complex) were not significantly associated with OS (p = 0.647, p = 0.727, and p = 0.273, respectively). Furthermore, the genetic polymorphisms of IL-6 (-634G>C) and IL-6R (48892A>C) showed no clinical role by Kaplan-Meier survival analysis (p = 0.908 and p = 0.639, respectively). Discussion: These findings demonstrated the clinical significance of plasma levels of IL-6, but not of other IL-6 signaling components, sIL-6R and sgp130, suggesting that classical IL-6 signaling, but not trans-signaling, may be related to anti-tumor immune responses in cancer patients treated with ICIs.
Collapse
Affiliation(s)
- Yoshiro Nakahara
- Department of Respiratory Medicine, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Taku Kouro
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Satoru Motoyama
- Department of Comprehensive Cancer Control, Akita University Graduate School of Medicine, Akita, Japan
- Division of Esophageal Surgery, Akita University Hospital, Akita, Japan
- Department of Gastroenterological Surgery, Japanese Red Cross Akita Hospital, Akita, Japan
| | - Masatomo Miura
- Department of Pharmacy, Akita University Hospital, Akita, Japan
| | - Kazuma Fujita
- Department of Pharmacy, Akita University Hospital, Akita, Japan
| | - Yuka Igarashi
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Naoko Higashijima
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Norikazu Matsuo
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hidetomo Himuro
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Feifei Wei
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Shun Horaguchi
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Kayoko Tsuji
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Yasunobu Mano
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Mitsuru Komahashi
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Haruhiro Saito
- Department of Respiratory Medicine, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tetsuro Sasada
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| |
Collapse
|