1
|
An S, An J, Lee D, Kang HN, Kang S, Ahn CH, Syahputra RA, Ribeiro RIMA, Kim B. Natural Products for Melanoma Therapy: From Traditional Medicine to Modern Drug Discovery. PLANTS (BASEL, SWITZERLAND) 2025; 14:951. [PMID: 40265853 PMCID: PMC11946750 DOI: 10.3390/plants14060951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Melanoma, a type of skin cancer originating from melanocytes, represents a significant public health concern according to the World Health Organization. It is one of the most commonly diagnosed cancers worldwide, particularly affecting populations in Europe and North America, with an increasing incidence in Asia. The rise emphasizes the need for diversified treatment approaches. Conventional treatments for melanoma, including immunotherapy, chemotherapy, and targeted therapies like the FDA-approved Opdivo and Relatlimab, often come with severe side effects and high relapse rates. Consequently, natural products have gained considerable attention for their potential to enhance therapeutic outcomes and reduce adverse effects. This systematic review evaluates the anti-cancer properties of natural products against melanoma, examining 52 studies from PubMed and Google Scholar. Our analysis focuses on the antioxidant, anti-angiogenesis, anti-metastatic, and apoptosis-inducing activities of these compounds, also discussing the regulatory factors involved. The findings advocate for intensified research into natural products as complementary agents in melanoma treatment, aiming to improve efficacy and patient quality of life. Further in vitro, in vivo, and clinical trials are essential to validate their effectiveness and integrate them into standard care protocols.
Collapse
Affiliation(s)
- Soojin An
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.A.); (J.A.); (D.L.); (S.K.); (C.-H.A.)
| | - Jeongeun An
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.A.); (J.A.); (D.L.); (S.K.); (C.-H.A.)
| | - Dain Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.A.); (J.A.); (D.L.); (S.K.); (C.-H.A.)
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea;
| | - Sojin Kang
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.A.); (J.A.); (D.L.); (S.K.); (C.-H.A.)
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.A.); (J.A.); (D.L.); (S.K.); (C.-H.A.)
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia;
| | - Rosy Iara Maciel A. Ribeiro
- Laboratory of Experimental Pathology, Federal University of São João del Rei-CCO/UFSJ, Divinópolis 35501-296, Brazil;
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.A.); (J.A.); (D.L.); (S.K.); (C.-H.A.)
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Hao Y, Lin X, Liu W, Jiang T, Zhang X, Yang S, Huang Y, Lai W, Fu C, Zhang Z. Development of nanofiber facial mask inspired by the multi-function of dried ginger (Zingiberis Rhizoma) essential oil. Sci Rep 2025; 15:402. [PMID: 39747620 PMCID: PMC11697445 DOI: 10.1038/s41598-024-84571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Plant extracts, especially herbal extracts, are in line with the cosmetics development trend of natural and safe in today's world. Dried ginger essential oil (DGEO) is a fragrant oily liquid extracted from the dried roots of Zingiber officinale Rosc. This research investigated DGEO could effectively inhibit Staphylococcus aureus and Propionibacterium acnes. And delay skin aging in mice by down-regulating the expression of TNF-α and the production of MMP-1. These indicates that DGEO has antibacterial and anti-aging effects, and has the potential in beauty and skin care. However, DGEO is easy to volatilize, so it is lack of stability, and the application of DGEO is greatly limited. Therefore, we aim to improve the stability of DGEO and expand its application in facial mask. To achieve this, DGEO was firstly complexed with the β-cyclodextrin (β-CD) to prepare DGEO-β-CD-IC. Then, electrospinning was used to make DGEO-βCD-IC into a nanofiber facial mask. In this process, we found that the thermal stability of DGEO-βCD-IC was significantly improved, and the degradation process was slower than that of physical mixture. During the preparation of the nanofiber mask, DGEO did not undergo a chemical reaction. And the fibers of facial mask were evenly distributed, with smooth surfaces and tight structures. Its diameter was between 90 and 110 nm. And the facial mask had good hydrophilic performance and moisturizing efficacy. It could increase the skin water content by 47.82% on average. What's more, the safety tests showed that the facial mask was mild and safe. These results show that we improve the stability of DGEO and successfully develop a promising application prospects nanofiber mask. This work may enrich the use of herbal extracts in skincare products.
Collapse
Affiliation(s)
- Yiwen Hao
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xia Lin
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Wenwen Liu
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Tinghongyang Jiang
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xing Zhang
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Shasha Yang
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - You Huang
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Wenjing Lai
- Chengdu Institute of Food Inspection, Chengdu, China.
| | - Chaomei Fu
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| | - Zhen Zhang
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| |
Collapse
|
3
|
Wang F, Liu H, Huang Z, Zhang Y, Lu Y, Zhou Y. Evaluation of Whitening Effects and Identification of Potentially Active Compounds Based on Untargeted Metabolomic Analysis in Different Chrysanthemum Cultivar Extracts. Antioxidants (Basel) 2024; 13:1557. [PMID: 39765885 PMCID: PMC11673076 DOI: 10.3390/antiox13121557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Chrysanthemum is a traditional Chinese medicinal herb. Chrysanthemum extracts are rich in bioactive compounds; however, there are few reports evaluating the whitening effects of organic chrysanthemum extracts. This study assessed the antioxidant and whitening effects of organic extracts from the petals of five chrysanthemum cultivars from Guangdong, China. Significant differences were observed among the five cultivars across various parameters, including IC50 values for tyrosinase inhibition activity, DPPH and ABTS values, UV absorption, and SPF values. Additionally, there were notable variations in total flavonoid, total phenolic, and chlorogenic acid contents. The BJ cultivar extract exhibited strong antioxidant capacity and superior whitening effects, containing the highest levels of total flavonoids, total phenolics, and chlorogenic acid. Correlation analysis indicated a significant relationship between total flavonoid content and IC50 of DPPH, and between chlorogenic acid and both IC50 of ABTS and SPF. Untargeted metabolomic analysis of three representative cultivars (BJ, WYHJ, and JSHJ) identified 22 compounds potentially related to antioxidant and whitening effects. Compounds significantly correlated with multiple antioxidant or whitening indicators (p < 0.05, r > 0.8) included tangeritin, hydroquinone, eupatilin, quercetin 3-(6″-malonyl-glucoside), biochanin A, and cyanidin 3-glucoside. These compounds may play crucial roles in the antioxidant and whitening effects of chrysanthemum extracts. The results highlight the promising antioxidant and whitening properties of chrysanthemum extracts, with certain genotypes, such as BJ, showing potential as superior raw material sources.
Collapse
Affiliation(s)
- Fenglan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (F.W.)
- Zhonghua Modern Agriculture Research Institute, Huadu District, Guangzhou 510800, China
| | - Huiya Liu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (F.W.)
| | - Zifeng Huang
- Dongguan Research Center of Agricultural Sciences, Dongguan 523086, China
| | - Yangyang Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (F.W.)
| | - Yitong Lu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (F.W.)
| | - Yiwei Zhou
- Guangdong Provincial Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
4
|
Kim HJ, Hong JH. Multiplicative Effects of Essential Oils and Other Active Components on Skin Tissue and Skin Cancers. Int J Mol Sci 2024; 25:5397. [PMID: 38791435 PMCID: PMC11121510 DOI: 10.3390/ijms25105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Naturally derived essential oils and their active components are known to possess various properties, ranging from anti-oxidant, anti-inflammatory, anti-bacterial, anti-fungal, and anti-cancer activities. Numerous types of essential oils and active components have been discovered, and their permissive roles have been addressed in various fields. In this comprehensive review, we focused on the roles of essential oils and active components in skin diseases and cancers as discovered over the past three decades. In particular, we opted to highlight the effectiveness of essential oils and their active components in developing strategies against various skin diseases and skin cancers and to describe the effects of the identified essential-oil-derived major components from physiological and pathological perspectives. Overall, this review provides a basis for the development of novel therapies for skin diseases and cancers, especially melanoma.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
5
|
Hasan MR, Alotaibi BS, Althafar ZM, Mujamammi AH, Jameela J. An Update on the Therapeutic Anticancer Potential of Ocimum sanctum L.: "Elixir of Life". Molecules 2023; 28:1193. [PMID: 36770859 PMCID: PMC9919305 DOI: 10.3390/molecules28031193] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 01/27/2023] Open
Abstract
In most cases, cancer develops due to abnormal cell growth and subsequent tumour formation. Due to significant constraints with current treatments, natural compounds are being explored as potential alternatives. There are now around 30 natural compounds under clinical trials for the treatment of cancer. Tulsi, or Holy Basil, of the genus Ocimum, is one of the most widely available and cost-effective medicinal plants. In India, the tulsi plant has deep religious and medicinal significance. Tulsi essential oil contains a valuable source of bioactive compounds, such as camphor, eucalyptol, eugenol, alpha-bisabolene, beta-bisabolene, and beta-caryophyllene. These compounds are proposed to be responsible for the antimicrobial properties of the leaf extracts. The anticancer effects of tulsi (Ocimum sanctum L.) have earned it the title of "queen of herbs" and "Elixir of Life" in Ayurvedic treatment. Tulsi leaves, which have high concentrations of eugenol, have been shown to have anticancer properties. In a various cancers, eugenol exerts its antitumour effects through a number of different mechanisms. In light of this, the current review focuses on the anticancer benefits of tulsi and its primary phytoconstituent, eugenol, as apotential therapeutic agent against a wide range of cancer types. In recent years, tulsi has gained popularity due to its anticancer properties. In ongoing clinical trials, a number of tulsi plant compounds are being evaluated for their potential anticancer effects. This article discusses anticancer, chemopreventive, and antioxidant effects of tulsi.
Collapse
Affiliation(s)
- Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ziyad Mohammed Althafar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ahmed Hussain Mujamammi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Jafar Jameela
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| |
Collapse
|
6
|
Chrysanthemum boreale Makino Inhibits Oxidative Stress-Induced Neuronal Damage in Human Neuroblastoma SH-SY5Y Cells by Suppressing MAPK-Regulated Apoptosis. Molecules 2022; 27:molecules27175498. [PMID: 36080264 PMCID: PMC9457777 DOI: 10.3390/molecules27175498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress has been demonstrated to play a pivotal role in the pathological processes of many neurodegenerative diseases. In the present study, we demonstrated that Chrysanthemum boreale Makino extract (CBME) suppresses oxidative stress-induced neurotoxicity in human neuroblastoma SH-SY5Y cells and elucidated the underlying molecular mechanism. Our observations revealed that CBME effectively protected neuronal cells against H2O2-induced cell death by preventing caspase-3 activation, Bax upregulation, Bcl-2 downregulation, activation of three mitogen-activated protein kinases (MAPKs), cAMP response element-binding protein (CREB) and NF-κB phosphorylation, and iNOS induction. These results provide evidence that CBME has remarkable neuroprotective properties in SH-SY5Y cells against oxidative damage, suggesting that the complementary or even alternative role of CBME in preventing and treating neurodegenerative diseases is worth further studies.
Collapse
|
7
|
Silva A, Lima L, Morais A, Lienou L, Watanabe Y, Joaquim D, Morais S, Alves D, Pereira A, Santos A, Alves B, Padilha D, Gastal E, Figueiredo J. Oocyte in vitro maturation with eugenol improves the medium antioxidant capacity and total cell number per blastocyst. Theriogenology 2022; 192:109-115. [DOI: 10.1016/j.theriogenology.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
|
8
|
Zhang W, Jiang Y, Chen F, Guan Z, Wei G, Chen X, Zhang C, Köllner TG, Chen S, Chen F, Chen F. Dynamic regulation of volatile terpenoid production and emission from Chrysanthemum morifolium capitula. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:11-21. [PMID: 35453029 DOI: 10.1016/j.plaphy.2022.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/09/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Flower-associated communities consist of both mutualistic and antagonistic organisms. We have limited knowledge on how flowers regulate volatiles to balance their defense against antagonists and the attraction of beneficial organisms necessary for reproductive success. Asteraceae is the largest family among flowering plants. Its representatives are characterized by unique inflorescence called capitulum, which has been reduced to a reproduction unit resembling a single flower. Here, we chose Chrysanthemum morifolium, a model species of Asteraceae, to investigate how the capitulum balances the accumulation and emission of floral terpenoid volatiles that are implicated in defense and pollinator attraction, respectively. Our results showed that the capitula of C. morifolium produce and emit complex mixtures of monoterpenoids and sesquiterpenoids. The highest concentrations of terpenoids were detected in the bud stage of the capitula. In contrast, the capitulum reached the highest emission level prior to full blooming. The disc florets were the dominant organs of terpenoid accumulation and emission in the full-openness stage. To understand the molecular basis of volatile terpenoid biosynthesis in C. morifolium, experiments were designed to study terpene synthase (TPS) genes, which are pivotal for terpene biosynthesis. Eight CmCJTPS genes were identified in the transcriptomes of C. morifolium, and the proteins encoded by five genes were found to be biochemically functional. CmCJTPS5 and CmCJTPS8 were the multi-product enzymes catalyzing the monoterpenoid and sesquiterpenoid formation, which closely matched the major terpenoids produced in the flower heads. The five functional terpene synthase genes exhibited similar temporal expression patterns but diverse spatial expression levels, suggesting tissue-specific functions. Altogether, our results illustrate the dynamic patterns of accumulation and emission of floral volatile terpenoids implicated in defense and attracting pollinators in C. morifolium, for which both the regulation of TPS gene expression and the regulation of release may play critical roles.
Collapse
Affiliation(s)
- Wanbo Zhang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yifan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fei Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyong Guan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guo Wei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Chi Zhang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745, Jena, Germany
| | - Sumei Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
9
|
Comparative Analysis of Chemical Composition andAntibacterial and Anti-Inflammatory Activities of theEssential Oils from Chrysanthemum morifolium ofDifferent Flowering Stages and Different Parts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5954963. [PMID: 35707466 PMCID: PMC9192287 DOI: 10.1155/2022/5954963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
The inflorescence of Chrysanthemum morifolium Ramat., a well-known traditional Chinese herb, has been proved to have a certain inhibitory effect on some bacteria; however, its main components and acne bacteria inhibition effect remain to be elucidated. In this study, GC-MS was used to analyze the components of different flowering stages and different parts and to study the inhibitory effects of six essential oils on S. aureus and P. acnes and their alleviating effects on THP-1 cell inflammation. GC-MS combined with relative retention index method analyzed results stated that the 5 samples of C. morifolium to detect the 124 kinds of volatile components, including (E)-tibetin spiroether, are first detected in the volatile oil of the C. morifolium, and the content of (E)-tibetin spiroether is higher in immature inflorescence of C. morifolium and decreases as it extends its flowering period. Furthermore, the research results of inhibiting common acne-causing bacteria showed that the bacteriostatic effect of essential oils from JH at different flowering stages was better than that from JM and TJ, while the bacteriostatic effect of essential oil from stem and leaf of C. morifolium (SLC) at different parts was better than the roots of C. morifolium (RC). Finally, it was proved that the essential oil from SLC and C. morifolium could alleviate the inflammation of THP-1 cells induced by P. acnes. In conclusion, the antibacterial and anti-inflammatory effects of C. morifolium essential oil may be related to heterospiroolefins compounds, and the antibacterial activity decreases with the prolongation of flowering stage. It was suggested that volatile oil from C. morifolium and SLC could be used as effective components of antibacterial and anti-inflammatory cosmetics.
Collapse
|
10
|
Silva RF, Lima LF, Ferreira ACA, Silva AFB, Alves DR, Alves BG, Oliveira AC, Morais SM, Rodrigues APR, Santos RR, Figueiredo JR. Eugenol Improves Follicular Survival and Development During in vitro Culture of Goat Ovarian Tissue. Front Vet Sci 2022; 9:822367. [PMID: 35573397 PMCID: PMC9096615 DOI: 10.3389/fvets.2022.822367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the effects of different concentrations (10, 20, or 40 μM) of eugenol (EUG 10, EUG 20, or EUG 40), ascorbic acid (50 μg/mL; AA) or anethole (300 μg/mL; ANE 300) on the in-vitro survival and development of goat preantral follicles and oxidative stress in the cultured ovarian tissue. Ovarian fragments from five goats were cultured for 1 or 7 days in Alpha Minimum Essential Medium (α-MEM+) supplemented or not with AA, ANE 300, EUG 10, EUG 20 or EUG 40. On day 7 of culture, when compared to MEM, the addition of EUG 40 had increased the rate of follicular development, as observed by a decrease in the proportion of primordial follicles alongside with an increase in the rate of normally developing follicles. Furthermore, EUG 40 significantly increased both follicular and oocyte diameters. Subsequently, ovarian fragments from three goats were cultured for 1 or 7 days in α-MEM+ supplemented or not with AA, ANE 300 or EUG 40. All tested antioxidants, except ANE 300, were able to significantly decrease the levels of reactive oxygen species in the ovarian tissue, but EUG 40 could most efficiently neutralize free radicals. All ovarian tissues cultured in the presence of antioxidants, especially EUG 40, presented a significant decrease in H3K4me3 labeling, indicating a silencing of genes that play a role in the inhibition of follicular activation and apoptosis induction. When compared to cultured control tissues, both EUG 40 and ANE 300 significantly increased the intensity of calreticulin labeling in growing follicles. The mRNA relative expression of ERP29 and KDM3A was significantly increased when the culture medium was supplemented with EUG 40, indicating a response to ER stress experienced during culture. In conclusion, EUG 40 improved in-vitro follicle survival, activation and development and decreased ROS production, ER stress and histone lysine methylation in goat ovarian tissue.
Collapse
Affiliation(s)
- R. F. Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
- *Correspondence: R. F. Silva
| | - L. F. Lima
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
| | - Anna C. A. Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
| | - A. F. B. Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
| | - D. R. Alves
- Natural Product Chemistry Laboratory, State University of Ceara, Fortaleza, Brazil
| | - B. G. Alves
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
| | - A. C. Oliveira
- Superior Institute of Biomedical Science, State University of Ceará, Fortaleza, Brazil
| | - Selene M. Morais
- Natural Product Chemistry Laboratory, State University of Ceara, Fortaleza, Brazil
| | - Ana Paula R. Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
| | | | - J. R. Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
| |
Collapse
|
11
|
Kim MJ, Kim DH, Kwak HS, Yu IS, Um MY. Protective Effect of Chrysanthemum boreale Flower Extracts against A2E-Induced Retinal Damage in ARPE-19 Cell. Antioxidants (Basel) 2022; 11:antiox11040669. [PMID: 35453354 PMCID: PMC9024556 DOI: 10.3390/antiox11040669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
In age-related macular degeneration, N-retinylidene-N-retinylethanolamine (A2E) accumulates in retinal pigment epithelium (RPE) cells and generates oxidative stress, which further induces cell death. Polyphenols are well known for their antioxidant and beneficial effects on vision. Chrysanthemum boreale Makino (CB) flowers, which contain flavonoids, have antioxidant activity. We hypothesized that polyphenols in ethanolic extracts of CB (CBE) and its fractions suppressed A2E-mediated ARPE-19 cell damage, a human RPE cell line. CBE is rich in polyphenols, shows antioxidant activity, and suppresses intracellular accumulation of A2E and cell death induced by A2E. Among the five fractions, the polyphenol content and antioxidant effect were in the order of the ethyl acetate fraction (EtOAc) > butanol fraction (BuOH) > hexane fraction (Hex) > dichloromethane fraction (CH2Cl2) > water fraction (H2O). In contrast, the inhibitory ability of A2E accumulation and A2E-induced cell death was highest in H2O, followed by BuOH. In the correlation analysis, polyphenols in the H2O and BuOH fractions had a significant positive correlation with antioxidant effects, but no significant correlation with cell damage caused by A2E. Our findings suggest that substances other than polyphenols present in CBE can suppress the effects of A2E, and further research is needed.
Collapse
Affiliation(s)
- Min Jung Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (I.-S.Y.); (M.Y.U.)
- Correspondence: ; Tel.: +82-63-219-9380
| | - Dong Hee Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (I.-S.Y.); (M.Y.U.)
| | - Han Sub Kwak
- Research Division of Food Convergence, Korea Food Research Institute, Wanju 55365, Korea;
| | - In-Sun Yu
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (I.-S.Y.); (M.Y.U.)
| | - Min Young Um
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (I.-S.Y.); (M.Y.U.)
| |
Collapse
|
12
|
Luo Y, Wang J, Li S, Wu Y, Wang Z, Chen S, Chen H. Discovery and identification of potential anti-melanogenic active constituents of Bletilla striata by zebrafish model and molecular docking. BMC Complement Med Ther 2022; 22:9. [PMID: 34996448 PMCID: PMC8742349 DOI: 10.1186/s12906-021-03492-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bletilla striata is the main medicine of many skin whitening classic formulas in traditional Chinese medicine (TCM) and is widely used in cosmetic industry recently. However, its active ingredients are still unclear and its fibrous roots are not used effectively. The aim of the present study is to discover and identify its potential anti-melanogenic active constituents by zebrafish model and molecular docking. METHODS The antioxidant activities were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2'-azino-bis-(3-ethylbenthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and ferric reducing antioxidant power (FRAP) assay. The anti-melanogenic activity was assessed by tyrosinase inhibitory activity in vitro and melanin inhibitory in zebrafish. The chemical profiles were performed by ultra-high-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Meanwhile, the potential anti-melanogenic active constituents were temporary identified by molecular docking. RESULTS The 95% ethanol extract of B. striata fibrous roots (EFB) possessed the strongest DPPH, ABTS, FRAP and tyrosinase inhibitory activities, with IC50 5.94 mg/L, 11.69 mg/L, 6.92 mmol FeSO4/g, and 58.92 mg/L, respectively. In addition, EFB and 95% ethanol extract of B. striata tuber (ETB) significantly reduced the melanin synthesis of zebrafish embryos in a dose-dependent manner. 39 chemical compositions, including 24 stilbenoids were tentatively identified from EFB and ETB. Molecular docking indicated that there were 83 (including 60 stilbenoids) and 85 (including 70 stilbenoids) compounds exhibited stronger binding affinities toward tyrosinase and adenylate cyclase. CONCLUSION The present findings supported the rationale for the use of EFB and ETB as natural skin-whitening agents in pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Yiyuan Luo
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, 315100, China
| | - Juan Wang
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, 315100, China
| | - Shuo Li
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, 315100, China
| | - Yue Wu
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, 315100, China
| | - Zhirui Wang
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, 315100, China
| | - Shaojun Chen
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, 315100, China
| | - Hongjiang Chen
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, 315100, China.
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| |
Collapse
|
13
|
Zari AT, Zari TA, Hakeem KR. Anticancer Properties of Eugenol: A Review. Molecules 2021; 26:molecules26237407. [PMID: 34885992 PMCID: PMC8659182 DOI: 10.3390/molecules26237407] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Conventional cancer treatments have shown several unfavourable adverse effects, as well as an increase in anticancer drug resistance, which worsens the impending cancer therapy. Thus, the emphasis is currently en route for natural products. There is currently great interest in the natural bioactive components from medicinal plants possessing anticancer characteristics. For example, clove (Syzygium aromaticum L.) (Family Myrtaceae) is a highly prized spice that has been historically utilized as a food preservative and for diverse medical uses. It is reckoned amongst the valued sources of phenolics. It is indigenous to Indonesia but currently is cultivated in various places of the world. Among diverse active components, eugenol, the principal active component of S. aromaticum, has optimistic properties comprising antioxidant, anti-inflammatory, and anticancer actions. Eugenol (4-allyl-2-methoxyphenol) is a musky oil that is mainly obtained from clove. It has long been utilized all over the world as a result of its broad properties like antioxidant, anticancer, anti-inflammatory, and antimicrobial activities. Eugenol continues to pique investigators’ interest because of its multidirectional activities, which suggests it could be used in medications to treat different ailments. Anticancer effects of eugenol are accomplished by various mechanisms like inducing cell death, cell cycle arrest, inhibition of migration, metastasis, and angiogenesis on several cancer cell lines. Besides, eugenol might be utilized as an adjunct remedy for patients who are treated with conventional chemotherapy. This combination leads to a boosted effectiveness with decreased toxicity. The present review focuses on the anticancer properties of eugenol to treat several cancer types and their possible mechanisms.
Collapse
|
14
|
Zhan J, He F, Cai H, Wu M, Xiao Y, Xiang F, Yang Y, Ye C, Wang S, Li S. Composition and antifungal mechanism of essential oil from Chrysanthemum morifolium cv. Fubaiju. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Wani MR, Shadab GGHA. Antioxidant thymoquinone and eugenol alleviate TiO 2 nanoparticle-induced toxicity in human blood cells in vitro. Toxicol Mech Methods 2021; 31:619-629. [PMID: 34219618 DOI: 10.1080/15376516.2021.1949083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are used extensively in a variety of commercial, industrial, and medical products, due to which human exposure is inevitable. This study aimed to explore the potential of eugenol and thymoquinone (TQ), two well-known antioxidants, in counteracting the NP-induced toxicity in human blood cells in vitro. Fresh lymphocytes and erythrocytes were isolated from volunteer human blood donors and incubated with 50 μg/mL of TiO2 NPs in the presence and absence of 50 μM of TQ and 20 μg/mL of eugenol for 3 h. Results showed that NP-treatment-induced hemolysis, oxidative stress, lactate dehydrogenase (LDH) leakage, and reduced ATPase activity in the erythrocytes. In the lymphocytes treated with NPs alone (50 μg/mL), cytotoxicity in MTT assay and DNA damage in comet assay were observed; in addition, mitochondrial membrane potential collapsed and ADP/ATP ratio increased indicating mitochondrial function impairment. However, in the presence of antioxidants, all these NP-induced changes were mitigated significantly. The results were more significant when both antioxidants eugenol and TQ were given together. Thus, it seems that antioxidants eugenol and TQ can be used as a protective agent against TiO2 NP-induced toxicity.
Collapse
Affiliation(s)
- Mohammad Rafiq Wani
- Department of Zoology, Section of Genetics, Cytogenetics and Molecular Toxicology Laboratory, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - G G Hammad Ahmad Shadab
- Department of Zoology, Section of Genetics, Cytogenetics and Molecular Toxicology Laboratory, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
16
|
Fakhri S, Tomas M, Capanoglu E, Hussain Y, Abbaszadeh F, Lu B, Hu X, Wu J, Zou L, Smeriglio A, Simal-Gandara J, Cao H, Xiao J, Khan H. Antioxidant and anticancer potentials of edible flowers: where do we stand? Crit Rev Food Sci Nutr 2021; 62:8589-8645. [PMID: 34096420 DOI: 10.1080/10408398.2021.1931022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Edible flowers are attracting special therapeutic attention and their administration is on the rise. Edible flowers play pivotal modulatory roles on oxidative stress and related interconnected apoptotic/inflammatory pathways toward the treatment of cancer. In this review, we highlighted the phytochemical content and therapeutic applications of edible flowers, as well as their modulatory potential on the oxidative stress pathways and apoptotic/inflammatory mediators, resulting in anticancer effects. Edible flowers are promising sources of phytochemicals (e.g., phenolic compounds, carotenoids, terpenoids) with several therapeutic effects. They possess anti-inflammatory, anti-diabetic, anti-microbial, anti-depressant, anxiolytic, anti-obesity, cardioprotective, and neuroprotective effects. Edible flowers potentially modulate oxidative stress by targeting erythroid nuclear transcription factor-2/extracellular signal-regulated kinase/mitogen-activated protein kinase (Nrf2/ERK/MAPK), reactive oxygen species (ROS), nitric oxide (NO), malondialdehyde (MDA) and antioxidant response elements (AREs). As the interconnected pathways to oxidative stress, inflammatory mediators, including tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukins (ILs) as well as apoptotic pathways such as Bcl-2-associated X protein (Bax), Bcl-2, caspase and cytochrome C are critical targets of edible flowers in combating cancer. In this regard, edible flowers could play promising anticancer effects by targeting oxidative stress and downstream dysregulated pathways.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Yaseen Hussain
- Control release drug delivery system, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xiaolan Hu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Jianlin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
17
|
Antitumor effect of Melaleuca alternifolia essential oil and its main component terpinen-4-ol in combination with target therapy in melanoma models. Cell Death Dis 2021; 7:127. [PMID: 34059622 PMCID: PMC8165351 DOI: 10.1038/s41420-021-00510-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/22/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023]
Abstract
Essential oils (EOs) have been recently emerging for their promising biological activities in preventing tumorigenesis or progression of different tumor histotypes, including melanoma. In this study, we investigated the antitumor activity of a panel of EOs in different tumor models. The ability of Melaleuca alternifolia (tea tree oil) and its main component, terpinen-4-ol, to sensitize the target therapy currently used for melanoma treatment was also assessed. Our results demonstrated that EOs differently affect the viability of human cancer cells and led us to select six EOs effective in melanoma and lung cancer cells, without toxic effects in human fibroblasts. When combined with dabrafenib and/or trametinib, Melaleuca alternifolia synergistically reduced the viability of melanoma cells by activating apoptosis. Through machine learning classification modeling, α-terpineol, tepinolene, and terpinen-4-ol, three components of Melaleuca alternifolia, were identified as the most likely relevant components responsible for the EO's antitumor effect. Among them, terpinen-4-ol was recognized as the Melaleuca alternifolia component responsible for its antitumor and proapoptotic activity. Overall, our study holds promise for further analysis of EOs as new anticancer agents and supports the rationale for their use to improve target therapy response in melanoma.
Collapse
|
18
|
Anti-Melanogenic Effects of Paederia foetida L. Extract via MAPK Signaling-Mediated MITF Downregulation. COSMETICS 2021. [DOI: 10.3390/cosmetics8010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, in order to explore the anti-melanogenic effect of PFE (Paederia foetida L. extract) and suggest its availability, B16F10 cells, which are murine melanoma cells, were stimulated with alpha-Melanocyte-stimulating hormone (α-MSH) to conduct an in vitro experiment. Treatment with PFE in B16F10 cells with activated melanogenesis due to stimulants showed that PFE significantly inhibits melanin content as well as intracellular tyrosinase activity within a range that does not cause cytotoxicity. In addition, Western blot assay demonstrated that PFE strongly inhibited the protein expression of not only tyrosinase-related protein (TRP)-1, -2, and tyrosinase, but also microphthalmia-associated transcription factor (MITF). Moreover, mechanism studies have shown that PFE processing inhibited the activation of melanin production by regulating the phosphorylation of each mitogen-activated protein kinase (MAPK) family in the MAPK signaling pathway. To test the biocompatibility of PFE on human skin, a primary skin irritation test was performed. The results revealed that PFE did not have any side effects on human skin. These findings suggest that PFE holds great potential as a skin whitening agent and in the prevention of hyperpigmentation disorders.
Collapse
|
19
|
Di Martile M, Garzoli S, Ragno R, Del Bufalo D. Essential Oils and Their Main Chemical Components: The Past 20 Years of Preclinical Studies in Melanoma. Cancers (Basel) 2020; 12:cancers12092650. [PMID: 32948083 PMCID: PMC7565555 DOI: 10.3390/cancers12092650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In the last years, targeted therapy and immunotherapy modified the landscape for metastatic melanoma treatment. These therapeutic approaches led to an impressive improvement in patients overall survival. Unfortunately, the emergence of drug resistance and side effects occurring during therapy strongly limit the long-term efficacy of such treatments. Several preclinical studies demonstrate the efficacy of essential oils as antitumoral agents, and clinical trials support their use to reduce side effects emerging during therapy. In this review we have summarized studies describing the molecular mechanism through which essential oils induce in vitro and in vivo cell death in melanoma models. We also pointed to clinical trials investigating the use of essential oils in reducing the side effects experienced by cancer patients or those undergoing anticancer therapy. From this review emerged that further studies are necessary to validate the effectiveness of essential oils for the management of melanoma. Abstract The last two decades have seen the development of effective therapies, which have saved the lives of a large number of melanoma patients. However, therapeutic options are still limited for patients without BRAF mutations or in relapse from current treatments, and severe side effects often occur during therapy. Thus, additional insights to improve treatment efficacy with the aim to decrease the likelihood of chemoresistance, as well as reducing side effects of current therapies, are required. Natural products offer great opportunities for the discovery of antineoplastic drugs, and still represent a useful source of novel molecules. Among them, essential oils, representing the volatile fraction of aromatic plants, are always being actively investigated by several research groups and show promising biological activities for their use as complementary or alternative medicine for several diseases, including cancer. In this review, we focused on studies reporting the mechanism through which essential oils exert antitumor action in preclinical wild type or mutant BRAF melanoma models. We also discussed the latest use of essential oils in improving cancer patients’ quality of life. As evidenced by the many studies listed in this review, through their effect on apoptosis and tumor progression-associated properties, essential oils can therefore be considered as potential natural pharmaceutical resources for cancer management.
Collapse
Affiliation(s)
- Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
- Correspondence: (M.D.M.); (D.D.B.); Tel.: +39-0652666891 (M.D.M.); +39-0652662575 (D.D.B.)
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drugs, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.G.); (R.R.)
| | - Rino Ragno
- Department of Chemistry and Technologies of Drugs, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.G.); (R.R.)
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
- Correspondence: (M.D.M.); (D.D.B.); Tel.: +39-0652666891 (M.D.M.); +39-0652662575 (D.D.B.)
| |
Collapse
|
20
|
Ethanolic Extract of Moringa oleifera Leaves Influences NF-κB Signaling Pathway to Restore Kidney Tissue from Cobalt-Mediated Oxidative Injury and Inflammation in Rats. Nutrients 2020; 12:nu12041031. [PMID: 32283757 PMCID: PMC7230732 DOI: 10.3390/nu12041031] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to describe the protective efficacy of Moringa oleifera ethanolic extract (MOEE) against the impact of cobalt chloride (CoCl2) exposure on the rat’s kidney. Fifty male rats were assigned to five equal groups: a control group, a MOEE-administered group (400 mg/kg body weight (bw), daily via gastric tube), a CoCl2-intoxicated group (300 mg/L, daily in drinking water), a protective group, and a therapeutic co-administered group that received MOEE prior to or following and concurrently with CoCl2, respectively. The antioxidant status indices (superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH)), oxidative stress markers (hydrogen peroxide (H2O2), 8-hydroxy-2-deoxyguanosine (8-OHdG), and malondialdehyde (MDA)), and inflammatory response markers (nitric oxide (NO), tumor necrosis factor (TNF-α), myeloperoxidase (MPO), and C-reactive protein (CRP)) were evaluated. The expression profiles of pro-inflammatory cytokines (nuclear factor-kappa B (NF-kB) and interleukin-6 (IL-6)) were also measured by real-time quantitative polymerase chain reaction (qRT-PCR). The results showed that CoCl2 exposure was associated with significant elevations of oxidative stress and inflammatory indices with reductions in the endogenous tissue antioxidants’ concentrations. Moreover, CoCl2 enhanced the activity of the NF-κB inflammatory-signaling pathway that plays a role in the associated inflammation of the kidney. MOEE ameliorated CoCl2-induced renal oxidative damage and inflammatory injury with the suppression of the mRNA expression pattern of pro-inflammatory cytokine-encoding genes. MOEE is more effective when it is administered with CoCl2 exposure as a prophylactic regimen. In conclusion, MOEE administration exhibited protective effects in counteracting CoCl2-induced renal injury in rats.
Collapse
|
21
|
Zhao N, Su X, Wang Y, Chen J, Zhuang W. Traditional Chinese Herbal Medicine for Whitening. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20905148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Melanin is the chief pigment responsible for the pigmentation of human skin. Increasing evidence indicates that traditional Chinese drugs with skin-whitening effects are attracting the attention of consumers and researchers because they are perceived to be milder, safer, and healthier than synthetic alternatives. This commentary summarizes the current research on Chinese herbal medicines that inhibit melanin and their biological activities. The findings presented in this study suggest that these traditional Chinese herbal medicines might be potential candidates for novel skin-whitening agents.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Xiaoming Su
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Yueyang Wang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| |
Collapse
|
22
|
Eugenol prevents fMLF-induced superoxide anion production in human neutrophils by inhibiting ERK1/2 signaling pathway and p47phox phosphorylation. Sci Rep 2019; 9:18540. [PMID: 31811262 PMCID: PMC6898361 DOI: 10.1038/s41598-019-55043-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Eugenol is a polyphenol extracted from Syzygium aromaticum essential oil. It is known to have anti-inflammatory and chemoprotective properties as well as a potent anti-oxidant activity due the presence of its phenolic group. In this study, we examined the effects of eugenol on neutrophil superoxide production, a key process involved in innate immunity and inflammation. Superoxide anion generationin human neutrophils was measured by cytochrome c reduction assay. Western blotting was used to analyze the phosphorylation of, p47phox, MAPKinases (p38 and ERK1/2), MEK1/2 and Raf, key proteins involved in the activation of NADPH oxidase. Pretreatment of neutrophils by increasing concentrations (2.5 µg/mL–20 µg/mL) of eugenol for 30 min, inhibited significantly (p < 0.001) superoxide anion generation induced by the chemotactic peptide formyl-Met-Leu-Phe (fMLF) with an IC50 of 5 µg/mL. Phorbolmyristate acetate (PMA)-stimulated O2− production was affected only at the highest eugenol concentration (20 µg/mL). Results showed that eugenol decreased the phosphorylation of p47phox onSer-345 and Ser-328, the translocation of p47phox to the membranesand the phosphorylation of Raf, MEK1/2 and ERK1/2 proteins. Taken together, our results suggest that eugenol inhibits the generation of superoxide anion by neutrophils via the inhibition of Raf/MEK/ERK1/2/p47phox-phosphorylation pathway.
Collapse
|
23
|
Chemical Composition and Antimicrobial Effectiveness of Ocimum gratissimum L. Essential Oil Against Multidrug-Resistant Isolates of Staphylococcus aureus and Escherichia coli. Molecules 2019; 24:molecules24213864. [PMID: 31717766 PMCID: PMC6864855 DOI: 10.3390/molecules24213864] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
The study investigated the antimicrobial activity of the essential oil extract of Ocimum gratissimum L. (EOOG) against multiresistant microorganisms in planktonic and biofilm form. Hydrodistillation was used to obtain the EOOG, and the analysis of chemical composition was done by gas chromatography coupled with mass spectrometry (GC/MS) and flame ionization detection (GC/FID). EOOG biological activity was verified against isolates of Staphylococcus aureus and Escherichia coli, using four strains for each species. The antibacterial action of EOOG was determined by disk diffusion, microdilution (MIC/MBC), growth curve under sub-MIC exposure, and the combinatorial activity with ciprofloxacin (CIP) and oxacillin (OXA) were determined by checkerboard assay. The EOOG antibiofilm action was performed against the established biofilm and analyzed by crystal violet, colony-forming unit count, and SEM analyses. EOOG yielded 1.66% w/w, with eugenol as the major component (74.83%). The MIC was 1000 µg/mL for the most tested strains. The growth curve showed a lag phase delay for both species, mainly S. aureus, and reduced the growth level of E. coli by half. The combination of EOOG with OXA and CIP led to an additive action for S. aureus. A significant reduction in biofilm biomass and cell viability was verified for S. aureus and E. coli. In conclusion, EOOG has relevant potential as a natural alternative to treat infections caused by multiresistant strains.
Collapse
|
24
|
Ryu Y, Lee D, Jung SH, Lee KJ, Jin H, Kim SJ, Lee HM, Kim B, Won KJ. Sabinene Prevents Skeletal Muscle Atrophy by Inhibiting the MAPK-MuRF-1 Pathway in Rats. Int J Mol Sci 2019; 20:ijms20194955. [PMID: 31597276 PMCID: PMC6801606 DOI: 10.3390/ijms20194955] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022] Open
Abstract
Chrysanthemum boreale Makino essential oil (CBMEO) has diverse biological activities including a skin regenerating effect. However, its role in muscle atrophy remains unknown. This study explored the effects of CBMEO and its active ingredients on skeletal muscle atrophy using in vitro and in vivo models of muscle atrophy. CBMEO reversed the size decrease of L6 myoblasts under starvation. Among the eight monoterpene compounds of CBMEO without cytotoxicity for L6 cells, sabinene induced predominant recovery of reductions of myotube diameters under starvation. Sabinene diminished the elevated E3 ubiquitin ligase muscle ring-finger protein-1 (MuRF-1) expression and p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase1/2 (ERK1/2) phosphorylations in starved myotubes. Moreover, sabinene decreased the increased level of reactive oxygen species (ROS) in myotubes under starvation. The ROS inhibitor antagonized expression of MuRF-1 and phosphorylation of MAPKs, which were elevated in starved myotubes. In addition, levels of muscle fiber atrophy and MuRF-1 expression in gastrocnemius from fasted rats were reduced after administration of sabinene. These findings demonstrate that sabinene, a bioactive component from CBMEO, may attenuate skeletal muscle atrophy by regulating the activation mechanism of ROS-mediated MAPK/MuRF-1 pathways in starved myotubes, probably leading to the reverse of reduced muscle fiber size in fasted rats.
Collapse
Affiliation(s)
- Yunkyoung Ryu
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Donghyen Lee
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Seung Hyo Jung
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Kyung-Jin Lee
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Hengzhe Jin
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Su Jung Kim
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Hwan Myung Lee
- Department of Cosmetic Science, College of Life and Health Sciences, Hoseo University, 20 Hoseo-ro79beon-gil, Hoseo-ro, Baebang-eup, Asan 31499, Korea.
| | - Bokyung Kim
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Kyung-Jong Won
- Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
25
|
Variation in Chemical Composition and Biological Activities of Flos Chrysanthemi indici Essential Oil under Different Extraction Methods. Biomolecules 2019; 9:biom9100518. [PMID: 31546663 PMCID: PMC6843213 DOI: 10.3390/biom9100518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/24/2022] Open
Abstract
Flos Chrysanthemi indici, an important medicinal and aromatic plant in China, is considered to have many different preservative and pharmacological properties. Considering the capability of essential oils (EOs), the present study is conducted to compare different extraction methods in order to improve yield and biological activities. Hydro-distillation (HD), steam-distillation (SD), solvent-free microwave extraction (SFME), and supercritical fluid extraction (SFE) are employed to prepare EOs from Flos Chrysanthemi indici. A total of 71 compounds are assigned by gas chromatography/mass spectrometry (GC–MS) in comparison with retention indices. These include 32 (HD), 16 (SD), 31 (SFME) and 38 (SFE) compounds. Major constituents of EOs differ according to the extraction methods were heptenol, tricosane, camphor, borneol, and eucalyptol. EOs extracted by SFME exhibit higher antioxidant activity. All EOs show varying degrees of antimicrobial activity, with minimum inhibitory concentration (MIC) ranging from 0.0625 to 0.125 mg/mL and SFME and SFE prove to be efficient extraction methods. EOs alter the hyphal morphology of Alternaria alternata, with visible bumps forming on the mycelium. Overall, these results indicate that the extraction method can significantly influence the composition and biological activity of EOs and SFME and SFE are outstanding methods to extract EOs with high yield and antimicrobial activity.
Collapse
|
26
|
Evaluation of antidiabetic, dermatoprotective, neuroprotective and antioxidant activities of Chrysanthemum fontanesii flowers and leaves extracts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Frankincense essential oil suppresses melanoma cancer through down regulation of Bcl-2/Bax cascade signaling and ameliorates heptotoxicity via phase I and II drug metabolizing enzymes. Oncotarget 2019; 10:3472-3490. [PMID: 31191820 PMCID: PMC6544398 DOI: 10.18632/oncotarget.26930] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/03/2019] [Indexed: 12/19/2022] Open
Abstract
Melanoma is a deadly form of malignancy and according to the World Health Organization 132,000 new cases of melanoma are diagnosed worldwide each year. Surgical resection and chemo/drug treatments opted for early and late stage of melanoma respectively, however detrimental post surgical and chemotherapy consequences are inevitable. Noticeably melanoma drug treatments are associated with liver injuries such as hepatitis and cholestasis which are very common. Alleviation of these clinical manifestations with better treatment options would enhance prognosis status and patients survival. Natural products which induce cytotoxicity with minimum side effects are of interest to achieve high therapeutic efficiency. In this study we investigated anti-melanoma and hepatoprotective activities of frankincense essential oil (FEO) in both in vitro and in vivo models. Pretreatment with FEO induce a significant (p < 0.05) dose-dependent reduction in the cell viability of mouse (B16-F10) and human melanoma (FM94) but not in the normal human epithelial melanocytes (HNEM). Immunoblot analysis showed that FEO induces down regulation of Bcl-2 and up regulation of BAX in B16-F10 cells whereas in FM94 cells FEO induced dose-dependent cleavage of caspase 3, caspase 9 and PARP. Furthermore, FEO (10 μg/ml) treatment down regulated MCL1 in a time-dependent manner in FM94 cells. In vivo toxicity analysis reveals that weekly single dose of FEO (1200 mg/kg body weight) did not elicit detrimental effect on body weight during four weeks of experimental period. Histology of tissue sections also indicated that there were no observable histopathologic differences in the brain, heart, liver, and kidney compare to control groups. FEO (300 and 600 mg/kg body weight) treatments significantly reduced the tumor burden in C57BL/6 mice melanoma model. Acetaminophen (750 mg/kg body weight) was used to induce hepatic injury in Swiss albino mice. Pre treatment with FEO (250 and 500 mg/kg body weight) for seven days retained hematology (complete blood count), biochemical parameters (AST, ALT, ALK, total bilirubin, total protein, glucose, albumin/globulin ratio, cholesterol and triglyceride), and the level of phase I and II drug metabolizing enzymes (cytochrome P450, cytochromeb5, glutathione-S-transferase) which were obstructed by the administration of acetaminophen. Further liver histology showed that FEO treatments reversed the damages (central vein dilation, hemorrhage, and nuclei condensation) caused by acetaminophen. In conclusion, FEO elicited marked anti-melanoma in both in vitro and in vivo with a significant heptoprotection.
Collapse
|
28
|
An Overview on the Anti-inflammatory Potential and Antioxidant Profile of Eugenol. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3957262. [PMID: 30425782 PMCID: PMC6217746 DOI: 10.1155/2018/3957262] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
The bioactive compounds found in foods and medicinal plants are attractive molecules for the development of new drugs with action against several diseases, such as those associated with inflammatory processes, which are commonly related to oxidative stress. Many of these compounds have an appreciable inhibitory effect on oxidative stress and inflammatory response, and may contribute in a preventive way to improve the quality of life through the use of a diet rich in these compounds. Eugenol is a natural compound that has several pharmacological activities, action on the redox status, and applications in the food and pharmaceutical industry. Considering the importance of this compound, the present review discusses its anti-inflammatory and antioxidant properties, demonstrating its mechanisms of action and therapeutic potential for the treatment of inflammatory diseases.
Collapse
|