1
|
Wang Y, Jiang Y, Li M, Xiao Y, Zhao Q, Zeng J, Wei S, Chen S, Zhao Y, Du F, Chen Y, Deng S, Shen J, Li X, Li W, Wang F, Sun Y, Gu L, Xiao Z, Wang S, Wu X. Rosavin derived from Rhodiola alleviates colitis in mice through modulation of Th17 differentiation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156318. [PMID: 39647466 DOI: 10.1016/j.phymed.2024.156318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 09/25/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Rosavin (RSV) is a naturally occurring compound isolated from Rhodiola species. While RSV has been reported with pharmacological activities of anti-oxidation, anti-inflammation, anti-stress and immunomodulation, its effect on colitis and the underlying mechanisms remain unclear. PURPOSE This study aims to investigate whether and how RSV alleviated colitis in mice. STUDY DESIGN AND METHODS The protective effect of RSV (50, 100, 200 mg/kg, p.o.) was investigated in dextran sulfate sodium (DSS) mediated mouse models of acute and chronic colitis. Alterations in fecal microbiota were evaluated by 16S rRNA sequencing. Pseudo germ-free mice achieved by antibiotics treatment were applied to assess the RSV-mediated functional role of gut microbiota in colitis. RNA sequencing was performed to determine RSV-induced colonic response. Primary T cell culture was conducted to examine the effect of RSV on Th17 and Treg differentiation. Whole blood assay, dual luciferase reporter assay, and molecular docking methods were applied to investigate the mechanisms and targets of RSV in Th17 regulation. RESULTS Oral RSV significantly relieved DSS-mediated acute and chronic colitis in mice, which recovered body weight loss, reduced disease activity index, alleviated colon injury, inhibited inflammation, suppressed the apoptosis of intestinal epithelia, and maintained intestinal barrier function. Moreover, RSV specifically regulated intestinal microbiota by recovering DSS-mediated microbial changes and elevating beneficial microbes such as Lactobacillus and Akkermansia. Antibiotics treatment experiment showed that the protective role of RSV was at least partially dependent on gut microbiota; however, in vitro incubation showed that RSV did not directly promote the growth of Lactobacillus and Akkermansia strains. Further analysis showed that RSV-mediated genetic alterations in colon were enriched in pathways related to lymphocyte regulation. Additionally, RSV regulated the balance of Th17/Treg in colitis mice. Importantly, RSV inhibited the differentiation of Th17 cell in vitro, suppressed the production of IL-17 by Th17 cells, and downregulated Rorc encoding RORγt and its downstream Il17. RSV significantly inhibited the RORγt transcription activity and bound to its ligand binding domain. CONCLUSION RSV alleviates murine colitis through regulating intestinal immunity. Notably, RSV is identified as a novel regulator of Th17 cells that inhibits RORγt-mediated Th17 differentiation. These findings potentiate the Rhodiola-derived natural chemicals as novel anti-colitis agents.
Collapse
Affiliation(s)
- Yi Wang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; Sichuan Fifth People's Hospital, Chengdu, Sichuan 610015, China
| | - Yu Jiang
- Department of Gerontology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646100, China
| | - Mingxing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China
| | - Yaqin Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Qianyun Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Jiuping Zeng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Shulin Wei
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | | | - Yueshui Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China
| | - Fukuan Du
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China
| | - Yu Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China
| | - Shuai Deng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China
| | - Jing Shen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China
| | - Xiaobing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Wanping Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Fang Wang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Yuhong Sun
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Li Gu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; South Sichuan Institute of Translational Medicine, Luzhou 646100, China; Gulin County Hospital of Traditional Chinese Medicine, Luzhou 646500, China.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Xu Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646100, China; Department of Paediatric Care, Luzhou People's Hospital, Luzhou, Sichuan 646000, China.
| |
Collapse
|
2
|
Qiao Z, Li Z, Shi Y, Yi J, Zhu J, Kang Q, Hao L, Zhao C, Lu J. Radiation protection of sodium alginate and its regulatory effect on intestinal microflora in mice. Int J Biol Macromol 2024; 280:135809. [PMID: 39306170 DOI: 10.1016/j.ijbiomac.2024.135809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Prolonged or high-dose exposure to ionizing radiation (IR) can cause damage to normal tissues of the body. Therefore, it is imperative to find effective radiation protective agents to mitigate IR-induced damage. This study evaluated the effects of sodium alginate (SA) on the radiation protection and modulatory effects of gut microorganisms using a 60Coγ-induced damage model in mice. Results showed that SA could reduce the damage of hematopoietic system; and alleviate the oxidative damage in irradiated mice by inhibiting the content of malondialdehyde (MDA) and increasing the activities of superoxide dismutase (SOD) and glutathione (GSH) in serum, spleen, jejunum and liver. Moreover, SA treatment ameliorated IR-induced small intestine lesions and alleviated liver injury. This was consistent with decreased levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and tumor necrosis factor-α (TNF-α), and increased levels of interferon-γ (IFN-γ) and interleukin-2 (IL-2) after SA treatment. Furthermore, SA treatment reversed IR-induced gut dysbiosis, elevated the Firmicutes/Bacteroidetes ratio, increased the beneficial bacteria and reduced the pathogenic bacteria in the small intestine. In conclusion, the present study demonstrated that SA exerted good radioprotective effect by improving hematopoietic system, alleviating oxidative stress, attenuating liver injury and inflammatory response, and modulating the intestinal microbiota in irradiated mice.
Collapse
Affiliation(s)
- Zhangning Qiao
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China
| | - Zhiying Li
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China
| | - Yanling Shi
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China
| | - Juanjuan Yi
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China
| | - Jiaqing Zhu
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China
| | - Qiaozhen Kang
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China
| | - Limin Hao
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China; Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing, China
| | - Changcheng Zhao
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China.
| | - Jike Lu
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China.
| |
Collapse
|
3
|
Luo H, Guo M, Li M, Zhao Y, Shen J, Du F, Chen Y, Deng S, Sun Y, Gu L, Li W, Li X, Chen M, Xiao Z, Wang S, Wu X. Protective Effect of Rosavin Against Intestinal Epithelial Injury in Colitis Mice and Intestinal Organoids. J Inflamm Res 2024; 17:6023-6038. [PMID: 39247835 PMCID: PMC11380858 DOI: 10.2147/jir.s474368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Rhodiola species have been utilized as functional foods in Asia and Europe for promoting health. Research has demonstrated that Rhodiola has the potential to alleviate inflammatory bowel disease (IBD) in animal models. However, the specific active components and the underlying mechanism for ameliorating intestinal damage remain unclear. This study aims to explore the relieving effect of Rosavin (Rov), a known active constituent of Rhodiola, in IBD and the regulatory mechanisms. Methods The therapeutic effect of Rov was evaluated using a murine model of acute colitis induced by dextran sulfate sodium salt (DSS). Inflammatory cytokines and neutrophil activation markers were measured by corresponding kits. Immunohistochemistry, immunofluorescence, TUNEL, and EdU assays were applied to investigate the tight conjunction proteins expression, epithelial marker expression, number of apoptotic cells, and epithelial proliferation, respectively. The protection effect of Rov on gut epithelial injury was assessed using TNF-α-induced intestinal organoids. Additinally, RNA sequencing was applied to observe the genetic alteration profile in these intestinal organoids. Results Oral administration of Rov significantly attenuated weight loss and restored colon length in mice. Notably, Rov treatment led to decreased levels of pro-inflammatory cytokines and neutrophil activation markers while increasing anti-inflammatory factors. Importantly, Rov restored intestinal despair by increasing the number of Lgr5+ stem cells, Lyz1+ Paneth cells and Muc2+ goblet cells in intestines of colitis mice, displaying reduced epithelial apoptosis and recovered barrier function. In TNF-α-induced intestinal organoids, Rov facilitated epithelial cell differentiation and protected against TNF-α-induced damage. RNA sequencing revealed upregulation in the gene expression associated with epithelial cells (including Lgr5+, Lyz1+ and Muc2+ cells) proliferation and defensin secretion, unveiling the protective mechanisms of Rov on the intestinal epithelial barrier. Discussion Rov holds potential as a natural prophylactic agent against IBD, with its protective action on the intestinal epithelium being crucial for its therapeutic efficacy.
Collapse
Affiliation(s)
- Haoming Luo
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
- Department of Pharmacy, Three Gorges University Hospital of Traditional Chinese Medicine & Yichang Hospital of Traditional Chinese Medicine, Yichang, Hubei, 443003, People's Republic of China
| | - Miao Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Mingxing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Yueshui Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Jing Shen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Fukuan Du
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Yu Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Shuai Deng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Yuhong Sun
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Li Gu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Wanping Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Xiaobing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Meijuan Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
- Department of Pharmacy, Gulin County Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, 646500, People's Republic of China
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan, 621000, People's Republic of China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Xu Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People's Republic of China
- Department of Paediatric Care, Luzhou People's Hospital, Luzhou, Sichuan, 646000, People's Republic of China
| |
Collapse
|
4
|
Wang QL, Zhang PX, Shen R, Xu M, Han L, Shi X, Zhou ZR, Yang JY, Liu JQ. Determination of arbutin in vitro and in vivo by LC-MS/MS: Pre-clinical evaluation of natural product arbutin for its early medicinal properties. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118232. [PMID: 38670407 DOI: 10.1016/j.jep.2024.118232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arbutin is a naturally occurring glucoside extracted from plants, known for its antioxidant and tyrosinase inhibiting properties. It is widely used in cosmetic and pharmaceutical industries. With in-depth study of arbutin, its application in disease treatment is expanding, presenting promising development prospects. However, reports on the metabolic stability, plasma protein binding rate, and pharmacokinetic properties of arbutin are scarce. AIM OF THE STUDY The aim of this study is to enrich the data of metabolic stability and pharmacokinetics of arbutin through the early pre-clinical evaluation, thereby providing some experimental basis for advancing arbutin into clinical research. MATERIALS AND METHODS We developed an efficient and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determining arbutin in plasma. We investigated the metabolic and pharmacokinetic properties of arbutin through in vitro metabolism assay, cytochrome enzymes P450 (CYP450) inhibition studies, plasma protein binding rate analysis, Caco-2 cell permeability tests, and rat pharmacokinetics to understand its in vivo performance. RESULTS In vitro studies show that arbutin is stable, albeit with some species differences. It exhibits low plasma protein binding (35.35 ± 11.03% ∼ 40.25 ± 2.47%), low lipophilicity, low permeability, short half-life (0.42 ± 0.30 h) and high oral bioavailability (65 ± 11.6%). Arbutin is primarily found in the liver and kidneys and is eliminated in the urine. It does not significantly inhibit CYP450 up to 10 μM, suggesting a low potential for drug interactions. Futhermore, preliminary toxicological experiments indicate arbutin's safety, supporting its potential as a therapeutic agent. CONCLUSION This study provides a comprehensive analysis the drug metabolism and pharmacokinetics (DMPK) of arbutin, enriching our understanding of its metabolism stability and pharmacokinetics properties, It establishes a foundation for further structural optimization, pharmacological studies, and the clinical development of arbutin.
Collapse
Affiliation(s)
- Qiao-Lai Wang
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China.
| | - Pei-Xi Zhang
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China
| | - Rui Shen
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China
| | - Meng Xu
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China
| | - Liang Han
- Sheng Xia Innovation Pharmaceutical Technology Co., Ltd., Xiamen, 361000, China
| | - Xuan Shi
- Sheng Xia Innovation Pharmaceutical Technology Co., Ltd., Xiamen, 361000, China
| | - Zi-Rui Zhou
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China
| | - Jing-Yi Yang
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China
| | - Jie-Qing Liu
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China; Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, Huaqiao University, Quanzhou, 362021, China.
| |
Collapse
|
5
|
Aktar A, Bhuia S, Chowdhury R, Hasan R, Islam Rakib A, Al Hasan S, Akter Sonia F, Torequl Islam M. Therapeutic Promises of Bioactive Rosavin: A Comprehensive Review with Mechanistic Insight. Chem Biodivers 2024; 21:e202400286. [PMID: 38752614 DOI: 10.1002/cbdv.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
Rosavin is an alkylbenzene diglycoside primarily found in Rhodiola rosea (L.), demonstrating various pharmacological properties in a number of preclinical test systems. This study focuses on evaluating the pharmacological effects of rosavin and the underlying molecular mechanisms based on different preclinical and non-clinical investigations. The findings revealed that rosavin has anti-microbial, antioxidant, and different protective effects, including neuroprotective effects against various neurodegenerative ailments such as mild cognitive disorders, neuropathic pain, depression, and stress, as well as gastroprotective, osteoprotective, pulmoprotective, and hepatoprotective activities. This protective effect of rosavin is due to its capability to diminish inflammation and oxidative stress. The compound also manifested anticancer properties against various cancer via exerting cytotoxicity, apoptotic cell death, arresting the different phases (G0/G1) of the cancerous cell cycle, inhibiting migration, and invading other organs. Rosavin also regulated MAPK/ERK signaling pathways to exert suppressing effect of cancer cell. However, because of its high-water solubility, which lowers its permeability, the phytochemical has low oral bioavailability. The compound's relevant drug likeness was evaluated by the in silico ADME, revealing appropriate drug likeness. We suggest more extensive investigation and clinical studies to determine safety, efficacy, and human dose to establish the compound as a reliable therapeutic agent.
Collapse
Affiliation(s)
- Asma Aktar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Bangladesh
| | - Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
| | - Asraful Islam Rakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
| | - Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, 8100, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj, 8100, Bangladesh
- Pharmacy Discipline, Khulna University, 9208, Khulna, Bangladesh
| |
Collapse
|
6
|
Huang M, Sui R, Zhang L, Zhu Y, Yuan X, Jiang H, Mao X. Rosavin thwarts amyloid-β-induced macromolecular damages and neurotoxicity, exhibiting anti-Alzheimer's disease activity in Wister rat model. Inflammopharmacology 2024; 32:1461-1474. [PMID: 37758932 DOI: 10.1007/s10787-023-01320-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023]
Abstract
Lately, interest surrounding the utilization of plant-derived compounds as a viable beneficial approach for treating Alzheimer's disease (AD) has significantly increased. This study aimed to assess the defensive properties of rosavin against Alzheimer's disease induced by amyloid-β, utilizing experimental models. We found that rosavin exhibited anti-aggregation and disaggregation properties, suggesting its potential to prevent the gathering of Aβ-aggregates. In vitro experiments revealed that rosavin effectively mitigated the neurotoxicity induced by Aβ in Neuro-2a cells, showcasing its protective potential. Rosavin significantly improved the Aβ-induced cognitive deficits in Wistar rats, particularly in spatial memory. Which the pathophysiology of AD includes oxidative damage, which negatively impacts biological macromolecules. Triggers the apoptotic process, causing macromolecular destruction. Interestingly, rosavin attenuated Aβ-induced macromolecular damages, thereby preserving neuronal integrity. Furthermore, the activation of antioxidative defense enzymes by rosavin inhibited oxidative damage. The positive outcomes associated with rosavin were primarily attributed to its capacity to enhance acetylcholine-mediated effects. Finally, rosavin has the potential to alleviate Aβ-induced neurotoxicity and macromolecular damages, ultimately resulting in enhanced memorial and reasoning function in Wistar rats, offering promising prospects for the treatment of AD.
Collapse
Affiliation(s)
- Meiyi Huang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, No 2, Section 5, Renmin Street, Jinzhou, 121099, China
| | - Rubo Sui
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, No 2, Section 5, Renmin Street, Jinzhou, 121099, China.
| | - Lei Zhang
- School of Nursing, Jinzhou Medical University, Jinzhou, 121099, China
| | - Yue Zhu
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, No 2, Section 5, Renmin Street, Jinzhou, 121099, China
| | - Xueling Yuan
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, No 2, Section 5, Renmin Street, Jinzhou, 121099, China
| | - Hongxin Jiang
- Department of Radiology, Gucheng County Hospital, Gucheng, 253809, China
| | - Xin Mao
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, No 2, Section 5, Renmin Street, Jinzhou, 121099, China.
| |
Collapse
|
7
|
Wang S, Feng Y, Zheng L, He P, Tan J, Cai J, Wu M, Ye X. Rosavin: Research Advances in Extraction and Synthesis, Pharmacological Activities and Therapeutic Effects on Diseases of the Characteristic Active Ingredients of Rhodiola rosea L. Molecules 2023; 28:7412. [PMID: 37959831 PMCID: PMC10648587 DOI: 10.3390/molecules28217412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Rhodiola rosea L. (RRL) is a popular plant in traditional medicine, and Rosavin, a characteristic ingredient of RRL, is considered one of the most important active ingredients in it. In recent years, with deepening research on its pharmacological actions, the clinical application value and demand for Rosavin have been steadily increasing. Various routes for the extraction and all-chemical or biological synthesis of Rosavin have been gradually developed for the large-scale production and broad application of Rosavin. Pharmacological studies have demonstrated that Rosavin has a variety of biological activities, including antioxidant, lipid-lowering, analgesic, antiradiation, antitumor and immunomodulation effects. Rosavin showed significant therapeutic effects on a range of chronic diseases, including neurological, digestive, respiratory and bone-related disorders during in vitro and vivo experiments, demonstrating the great potential of Rosavin as a therapeutic drug for diseases. This paper gives a comprehensive and insightful overview of Rosavin, focusing on its extraction and synthesis, pharmacological activities, progress in disease-treatment research and formulation studies, providing a reference for the production and preparation, further clinical research and applications of Rosavin in the future.
Collapse
Affiliation(s)
- Shen Wang
- School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China; (S.W.); (J.T.); (J.C.)
| | - Yanmin Feng
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang 524023, China; (Y.F.); (L.Z.); (P.H.)
| | - Lin Zheng
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang 524023, China; (Y.F.); (L.Z.); (P.H.)
| | - Panfeng He
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang 524023, China; (Y.F.); (L.Z.); (P.H.)
| | - Jingyi Tan
- School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China; (S.W.); (J.T.); (J.C.)
| | - Jinhui Cai
- School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China; (S.W.); (J.T.); (J.C.)
| | - Minhua Wu
- School of Basic Medicine, Guangdong Medical University, Zhanjiang 524023, China;
| | - Xiaoxia Ye
- School of Basic Medicine, Guangdong Medical University, Zhanjiang 524023, China;
| |
Collapse
|
8
|
Jang S, Lee A, Hwang YH. Chemical Profile Determination and Quantitative Analysis of Components in Oryeong-san Using UHPLC-Q-Orbitrap-MS and UPLC-TQ-MS/MS. Molecules 2023; 28:3685. [PMID: 37175095 PMCID: PMC10180092 DOI: 10.3390/molecules28093685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, a method to both qualitatively and quantitively analyze the components of Oryeong-san (ORS), which is composed of five herbal medicines (Alisma orientale Juzepzuk, Polyporus umbellatus Fries, Atractylodes japonica Koidzumi, Poria cocos Wolf, and Cinnamomum cassia Presl) and is prescribed in traditional Oriental medicine practices, was established for the first time. First, ORS components were profiled using ultra-high-performance liquid chromatography/quadrupole Orbitrap mass spectrometry, and 19 compounds were clearly identified via comparison against reference standard compounds. Subsequently, a quantitative method based on ultra-high-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry was established to simultaneously measure the identified compounds. Nineteen compounds were accurately quantified using the multiple-reaction-monitoring mode and used to analyze the sample; we confirmed that coumarin was the most abundant compound. The method was validated, achieving good linearity (R2 ≤ 0.9991), recovery (RSD, 0.11-3.15%), and precision (RSD, 0.35-9.44%). The results suggest that this method offers a strategy for accurately and effectively determining the components of ORS, and it can be used for quality assessment and management.
Collapse
Affiliation(s)
- Seol Jang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (S.J.); (A.L.)
| | - Ami Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (S.J.); (A.L.)
- Korean Convergence Medical Science Major, KIOM School, University of Science & Technology (UST), Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Youn-Hwan Hwang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (S.J.); (A.L.)
- Korean Convergence Medical Science Major, KIOM School, University of Science & Technology (UST), Yuseong-gu, Daejeon 34054, Republic of Korea
| |
Collapse
|
9
|
Protective Effect of Bojungikki-Tang against Radiation-Induced Intestinal Injury in Mice: Experimental Verification and Compound-Target Prediction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:5417813. [PMID: 36644439 PMCID: PMC9833920 DOI: 10.1155/2023/5417813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023]
Abstract
Bojungikki-tang (BJIT) is a traditional herbal medicine used in Korea, Japan, and China to treat gastrointestinal disorders. In this study, we aimed to investigate whether BJIT has protective effects against radiation-induced intestinal injury and to predict the underlying therapeutic mechanisms and related pathways via network pharmacological analyses. BJIT was injected intraperitoneally (50 mg/kg body weight) to C3H/HeN mice at 36 and 12 h before exposure to partial abdominal irradiation (5 Gy and 13 Gy) to evaluate the apoptotic changes and the histological changes and variations in inflammatory cytokine mRNA levels in the jejunum, respectively. Through in silico network analysis, we predicted the mechanisms underlying BJIT-mediated regulation of radiation-induced intestinal injury. BJIT reduced the level of apoptosis in the jejunal crypts 12 h post 5-Gy irradiation. Histological assessment revealed intestinal morphological changes in irradiated mice 3.5 days post 13-Gy irradiation. Furthermore, BJIT decreased inflammatory cytokine levels following radiation exposure. Apoptosis, TNF, p53, VEGF, toll-like receptor, PPAR, PI3K-Akt, and MAPK signaling pathways, as well as inflammatory bowel disease (IBD), were found to be linked to the radioprotective effects of BJIT against intestinal injury. According to our results, BJIT exerted its potential protective effects by attenuating histopathological changes in jejunal crypts and suppressing inflammatory mediator levels. Therefore, BJIT is a potential therapeutic agent that can treat radiation-induced intestinal injury and its associated symptoms.
Collapse
|
10
|
Nahar L, Al-Groshi A, Kumar A, Sarker SD. Arbutin: Occurrence in Plants, and Its Potential as an Anticancer Agent. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248786. [PMID: 36557918 PMCID: PMC9787540 DOI: 10.3390/molecules27248786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Arbutin, a hydroquinone glucoside, has been detected in ca. 50 plant families, especially in the plants of the Asteraceae, Ericaceae, Proteaceae and Rosaceae families. It is one of the most widely used natural skin-whitening agents. In addition to its skin whitening property, arbutin possesses other therapeutically relevant biological properties, e.g., antioxidant, antimicrobial and anti-inflammatory, as well as anticancer potential. This review presents, for the first time, a comprehensive overview of the distribution of arbutin in the plant kingdom and critically appraises its therapeutic potential as an anticancer agent based on the literature published until the end of August 2022, accessed via several databases, e.g., Web of Science, Science Direct, Dictionary of Natural Products, PubMed and Google Scholar. The keywords used in the search were arbutin, cancer, anticancer, distribution and hydroquinone. Published outputs suggest that arbutin has potential anticancer properties against bladder, bone, brain, breast, cervix, colon, liver, prostate and skin cancers and a low level of acute or chronic toxicity.
Collapse
Affiliation(s)
- Lutfun Nahar
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Correspondence: or (L.N.); (S.D.S.)
| | - Afaf Al-Groshi
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
- Faculty of Pharmacy, Tripoli University, Tripoli 42300, Libya
| | - Anil Kumar
- Department of Biotechnology, Government V. Y. T. PG Autonomous College, Durg 491001, Chhattisgarh, India
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
- Correspondence: or (L.N.); (S.D.S.)
| |
Collapse
|
11
|
Zhang C, Zhu H, Jie H, Ding H, Sun H. Arbutin ameliorated ulcerative colitis of mice induced by dextran sodium sulfate (DSS). Bioengineered 2021; 12:11707-11715. [PMID: 34783296 PMCID: PMC8809946 DOI: 10.1080/21655979.2021.2005746] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Accumulating evidence has revealed the anti-inflammatory effects of arbutin against various diseases. However, the effects of arbutin are not clarified in ulcerative colitis. This study was intended to investigate the protective effects and mechanisms of arbutin on DSS-induced colitis. Hematoxylin eosin staining was performed to determine the pathological damage of intestinal tissue in mice. Inflammatory factors levels in intestinal tissue were detected by enzyme linked immunosorbent assay (ELISA) assay. TUNEL staining showed the apoptosis levels of cells. Intestinal permeability was analyzed using the application of Fluorescein isothiocyanate Dextran (FD) 4. The levels of Zona Occludens 1 (ZO-1), occluding and claudin-1, and the related proteins in MAPK/ELK1 pathway were analyzed by Western blot. DSS promotes pathological injury, the levels of pro-inflammatory factors containing tumor necrosis factor alpha (TNF-α), Interleukin- 6 (IL-6) and myeloperoxidase (MPO), and cell apoptosis in the mouse colon. Additionally, intestinal permeability was increased and the levels of tight function-related proteins were increased following DSS induction. Its effects could be greatly improved by arbutin. Arbutin exerted effects by eliciting anti-inflammatory effects and maintaining normal intestinal mucosal barrier function, the action mechanism of which could be associated with MAPK/ELK1 pathway.
Collapse
Affiliation(s)
- Chuan Zhang
- Department of Gastroenterology, Suzhou Traditional Chinese Medicine Hospital Affiliated College of Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Huiping Zhu
- Department of Gastroenterology, Suzhou Traditional Chinese Medicine Hospital Affiliated College of Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Hui Jie
- Department of Gastroenterology, Suzhou Traditional Chinese Medicine Hospital Affiliated College of Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Hengyue Ding
- Department of Gastroenterology, Suzhou Traditional Chinese Medicine Hospital Affiliated College of Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Hongwen Sun
- Department of Gastroenterology, Suzhou Traditional Chinese Medicine Hospital Affiliated College of Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Bi H, Qu G, Wang S, Zhuang Y, Sun Z, Liu T, Ma Y. Biosynthesis of a rosavin natural product in Escherichia coli by glycosyltransferase rational design and artificial pathway construction. Metab Eng 2021; 69:15-25. [PMID: 34715353 DOI: 10.1016/j.ymben.2021.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Phytochemicals are rich resources for pharmaceutical and nutraceutical agents. A key challenge of accessing these precious compounds can present significant bottlenecks for development. The cinnamyl alcohol disaccharides also known as rosavins are the major bioactive ingredients of the notable medicinal plant Rhodiola rosea L. Cinnamyl-(6'-O-β-xylopyranosyl)-O-β-glucopyranoside (rosavin E) is a natural rosavin analogue with the arabinopyranose unit being replaced by its diastereomer xylose, which was only isolated in minute quantity from R. rosea. Herein, we described the de novo production of rosavin E in Escherichia coli. The 1,6-glucosyltransferase CaUGT3 was engineered into a xylosyltransferase converting cinnamyl alcohol monoglucoside (rosin) into rosavin E by replacing the residue T145 with valine. The enzyme activity was further elevated 2.9 times by adding the mutation N375Q. The synthesis of rosavin E from glucose was achieved with a titer of 92.9 mg/L by combining the variant CaUGT3T145V/N375Q, the UDP-xylose synthase from Sinorhizobium meliloti 1021 (SmUXS) and enzymes for rosin biosynthesis into a phenylalanine overproducing E. coli strain. The production of rosavin E was further elevated by co-overexpressing UDP-xylose synthase from Arabidopsis thaliana (AtUXS3) and SmUXS, and the titer in a 5 L bioreactor with fed-batch fermentation reached 782.0 mg/L. This work represents an excellent example of producing a natural product with a disaccharide chain by glycosyltransferase engineering and artificial pathway construction.
Collapse
Affiliation(s)
- Huiping Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Shuai Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yibin Zhuang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Tao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|