1
|
de Menezes RPB, de Assis EB, de Sousa NF, de Souza JMS, da França Rodrigues KA, Scotti L, Tavares JF, da Silva MS, Scotti MT. Exploring Lamiaceae diterpenoids as potential multitarget therapeutics for leishmaniasis and chagas disease. Mol Divers 2025:10.1007/s11030-025-11200-y. [PMID: 40287545 DOI: 10.1007/s11030-025-11200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Neglected tropical diseases such as Leishmaniasis and Chagas disease remain critical public health challenges. This study applied ligand-based virtual screening to a dataset of 4,150 secondary metabolites from the Lamiaceae family, aiming to identify multitarget molecules against four Leishmania species (L. infantum, L. donovani, L. amazonensis, and L. braziliensis) and Trypanosoma cruzi forms. Random forest models exhibited high accuracy (over 72%), leading to the identification of 82 molecules with potential multitarget activity across five of six predictive models. Nineteen prioritized molecules were subjected to molecular docking simulations targeting key enzymes-including sterol 14-alpha demethylase, glucose-6-phosphate dehydrogenase, dihydroorotate dehydrogenase, nucleoside diphosphate kinase, tryparedoxin peroxidase, and cruzain-with compounds 12, 18, and 19 exhibiting a high binding affinity across multiple targets. In vitro assays confirmed the predicted activity of selected molecules (3, 4, and 5) against Leishmania and T. cruzi. Importantly, these molecules represent novel findings, with antileishmanial or antitrypanosomal activities that have not been previously reported. The results highlight their potential as multitarget therapeutic candidates for neglected tropical diseases, paving the way for further biological evaluation and development.
Collapse
Affiliation(s)
- Renata Priscila Barros de Menezes
- Programa de Pós-Graduação Em Produtos Naturais E Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Edileuza Bezerra de Assis
- Programa de Pós-Graduação Em Produtos Naturais E Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Natália Ferreira de Sousa
- Programa de Pós-Graduação Em Produtos Naturais E Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | | | | | - Luciana Scotti
- Programa de Pós-Graduação Em Produtos Naturais E Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Josean Fechine Tavares
- Programa de Pós-Graduação Em Produtos Naturais E Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Marcelo Sobral da Silva
- Programa de Pós-Graduação Em Produtos Naturais E Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Marcus Tullius Scotti
- Programa de Pós-Graduação Em Produtos Naturais E Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil.
| |
Collapse
|
2
|
Battah B, Chianese T, Rosati L, Petretto G, Soukkarieh C, Ferrari M, Mazzarello V, Barac A, Peric A, Donadu MG. Thymus syriacus Essential Oil Extract: Potential Antileishmanial Activity Induced by an Apoptotic-like Death. Antibiotics (Basel) 2025; 14:293. [PMID: 40149103 PMCID: PMC11939511 DOI: 10.3390/antibiotics14030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/30/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Chemotherapy continues to be the cornerstone for the management of leishmaniasis. The preferred medications are pricey and have a number of unfavorable side effects. These restrictions make it necessary to produce novel antileishmanial chemicals, and plants have opportunities in this respect. Objectives: This study aimed to evaluate the antileishmanial properties of Thymus syriacus essential oil and its mechanisms of action. Results: Our findings demonstrated that Thymus syriacus essential oil, rich in thymol, exhibited potent antileishmanial activity, with an IC50 value of approximately 1 µg/mL against L. tropica promastigotes. Furthermore, the cell cycle arrest at the sub-G0-G1 phase supported the theory that the leishmanicidal effect was mediated by apoptosis. Methods: The essential oil was characterized using gas chromatography-tandem mass spectrometry. Antileishmanial activity against L. tropica promastigotes was assessed, with mechanisms confirmed via flow cytometry. Conclusions: These results confirm the potential of Thymus syriacus essential oil as a promising therapeutic candidate for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Basem Battah
- Department of Microbiology and Biochemistry, Antioch Syrian Private University, Maaret Saidnaya 22734, Syria;
| | - Teresa Chianese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (L.R.)
| | - Luigi Rosati
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (L.R.)
| | - Giacomo Petretto
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | | | - Marco Ferrari
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (V.M.)
| | - Vittorio Mazzarello
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (V.M.)
| | - Aleksandra Barac
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandar Peric
- Department of Otorhinolaryngology, Faculty of Medicine of the Military Medical Academy, University of Defense, 11042 Belgrade, Serbia;
| | - Matthew Gavino Donadu
- Scuola di Specializzazione in Farmacia Ospedaliera, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
- Hospital Pharmacy, Giovanni Paolo II Hospital, ASL Gallura, 07026 Olbia, Italy
| |
Collapse
|
3
|
de Oliveira Filho VA, Gubiani JR, Borgonovi VD, Hilário F, de Amorim MR, Minori K, Bertolini VKS, Ferreira AG, Biz AR, Soares MA, Teles HL, Gadelha FR, Berlinck RGS, Miguel DC. In Vitro and In Vivo Leishmanicidal Activity of Beauvericin. JOURNAL OF NATURAL PRODUCTS 2024; 87:2829-2838. [PMID: 39626110 DOI: 10.1021/acs.jnatprod.4c01098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Leishmaniasis is a worldwide disease caused by more than 20 species of Leishmania parasites. Leishmania amazonensis and L. braziliensis are among the main causative agents of cutaneous leishmaniasis, presenting a broad spectrum of clinical forms. As these pathologies lead to unsatisfactory treatment outcomes, the discovery of alternative chemotherapeutic options is urgently required. In this investigation, a leishmanicidal bioassay-guided fractionation of the growth media extract produced by Aspergillus terreus P63 led to the isolation of the cyclic depsipeptide beauvericin (1). The viability of L. amazonensis, L. braziliensis and mammalian cells (macrophages and L929 fibroblasts) was assessed in 1 incubated cultures. Leishmania promastigotes were sensitive to 1, with EC50 values ranging from 0.7 to 1.3 μM. Microscopy analysis indicated that Leishmania spp. parasites showed morphological abnormalities in a dose-dependent manner in the presence of 1. L. amazonensis intracellular amastigotes were more sensitive to 1 than promastigotes (EC50 = 0.8 ± 0.1 μM), with a good selectivity index (22-30). 1 reduced the infectivity index at very low concentrations, maintaining the integrity of the primary murine host cell for up to the highest concentration tested for 1. In vivo assays of 1 conducted using BALB/c mice infected with stationary-phase promastigotes of L. amazonensis in the tail base presented a significant reduction in the lesion parasite load. A second round of in vivo assays was performed to assess the efficacy of the topical use of 1. The results demonstrated a significant decrease in the total ulcerated area of mice treated with 1 when compared with untreated animals. Our results present promising in vitro and in vivo leishmanicidal effects of beauvericin, emphasizing that systemic inoculation of 1 led to a decrease in the parasite load at the lesion site, whereas topical administration of 1 delayed the progression of leishmaniasis ulcers, a cure criterion established for cutaneous leishmaniasis management.
Collapse
Affiliation(s)
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970 São Carlos, SP, Brazil
| | - Vitória D Borgonovi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970 São Carlos, SP, Brazil
| | - Felipe Hilário
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970 São Carlos, SP, Brazil
| | - Marcelo R de Amorim
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970 São Carlos, SP, Brazil
| | - Karen Minori
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil
| | - Vitor K S Bertolini
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | - Andressa R Biz
- Departamento de Botânica e Ecologia. Universidade Federal de Mato Grosso - UFMT, Cuiabá 78060-900, MT, Brazil
| | - Marcos A Soares
- Departamento de Botânica e Ecologia. Universidade Federal de Mato Grosso - UFMT, Cuiabá 78060-900, MT, Brazil
| | - Helder L Teles
- Instituto de Ciências Exatas e Naturais, Universidade Federal de Rondonópolis, Campus de Rondonópolis, 78736-900 Rondonópolis, MT, Brazil
| | - Fernanda R Gadelha
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970 São Carlos, SP, Brazil
| | - Danilo C Miguel
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil
| |
Collapse
|
4
|
Arya PK, Mandal P, Barik K, Singh DV, Kumar A. Computational evaluation of phytochemicals targeting DNA topoisomerase I in Leishmania donovani: molecular docking and molecular dynamics simulation studies. J Biomol Struct Dyn 2024; 42:8293-8306. [PMID: 37697722 DOI: 10.1080/07391102.2023.2256865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/30/2023] [Indexed: 09/13/2023]
Abstract
DNA topoisomerase I (Topo I) is a ubiquitous enzyme that plays a crucial role in resolving the topological constraints of supercoiled DNA during various cellular activities, including repair, replication, recombination, transcription, and chromatin remodeling. Multiple studies have confirmed the essential role of Topo I in nucleic acid metabolism of Leishmania donovani, the kinetoplastid parasite responsible for visceral leishmaniasis or kala-azar. Inhibition of this enzyme has shown promise as a strategy for therapy against visceral leishmaniasis. However, current treatment options suffer from limitations related to effectiveness, cost, and side effects. To address these challenges, computational methods have been employed in this study to investigate the inhibition of Leishmania donovani DNA topoisomerase I (LdTopo I) by phytochemicals derived from Indian medicinal plants known for their anti-leishmanial activity. A library of phytochemicals and known inhibitors was assembled, and virtual screening based on docking binding affinities was conducted to identify potent phytochemical inhibitors. To assess the drug-likeness of the docked phytochemicals, their physicochemical properties were predicted. Additionally, molecular dynamics (MD) simulations were performed on the docked complexes for a duration of 100 ns to evaluate their stability, intermolecular interactions, and dynamic behavior. Among all the docked phytochemicals, three compounds, namely CID23266147 (withanolide N), CID5488537 (fagopyrine), and CID100947536 (isozeylanone), exhibited the highest inhibitory potential against LdTopo I. These findings hold promise for the development of novel inhibitors targeting LdTopo I, which could potentially lead to improved therapies for visceral leishmaniasis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Pranabesh Mandal
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Krishnendu Barik
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Durg Vijay Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Anil Kumar
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| |
Collapse
|
5
|
González-Matos M, Aguado ME, Izquierdo M, Monzote L, González-Bacerio J. Compounds with potentialities as novel chemotherapeutic agents in leishmaniasis at preclinical level. Exp Parasitol 2024; 260:108747. [PMID: 38518969 DOI: 10.1016/j.exppara.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Leishmaniasis are neglected infectious diseases caused by kinetoplastid protozoan parasites from the genus Leishmania. These sicknesses are present mainly in tropical regions and almost 1 million new cases are reported each year. The absence of vaccines, as well as the high cost, toxicity or resistance to the current drugs determines the necessity of new treatments against these pathologies. In this review, several compounds with potentialities as new antileishmanial drugs are presented. The discussion is restricted to the preclinical level and molecules are organized according to their chemical nature, source and molecular targets. In this manner, we present antimicrobial peptides, flavonoids, withanolides, 8-aminoquinolines, compounds from Leish-Box, pyrazolopyrimidines, and inhibitors of tubulin polymerization/depolymerization, topoisomerase IB, proteases, pteridine reductase, N-myristoyltransferase, as well as enzymes involved in polyamine metabolism, response against oxidative stress, signaling pathways, and sterol biosynthesis. This work is a contribution to the general knowledge of these compounds as antileishmanial agents.
Collapse
Affiliation(s)
- Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Lianet Monzote
- Department of Parasitology, Center for Research, Diagnosis and Reference, Tropical Medicine Institute "Pedro Kourí", Autopista Novia Del Mediodía Km 6½, La Lisa, La Habana, Cuba.
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba; Department of Biochemistry, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba.
| |
Collapse
|
6
|
Abdoul-Latif FM, Oumaskour K, Abdallah N, Ainane A, Houmed Aboubaker I, Merito A, Mohamed H, Ainane T. Overview of Research on Leishmaniasis in Africa: Current Status, Diagnosis, Therapeutics, and Recent Advances Using By-Products of the Sargassaceae Family. Pharmaceuticals (Basel) 2024; 17:523. [PMID: 38675483 PMCID: PMC11054980 DOI: 10.3390/ph17040523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Leishmaniasis in Africa, which has been designated as a priority neglected tropical disease by various global organizations, exerts its impact on millions of individuals, primarily concentrated within this particular region of the world. As a result of the progressively grave epidemiological data, numerous governmental sectors and civil organizations have concentrated their endeavors on this widespread outbreak with the objective of devising appropriate remedies. This comprehensive examination delves into multiple facets of this parasitic ailment, scrutinizing the associated perils, diagnostic intricacies, and deficiencies within the existing therapeutic protocols. Despite the established efficacy of current treatments, they are not immune to deleterious incidents, particularly concerning toxicity and the emergence of parasitic resistance, thus accentuating the necessity of exploring alternative avenues. Consequently, this research not only encompasses conventional therapeutic approaches, but also extends its scope to encompass complementary and alternative medicinal techniques, thereby striving to identify innovative solutions. A particularly auspicious dimension of this study lies in the exploration of natural substances and by-products derived from some brown algae of the Sargassaceae family. These resources possess the potential to assume a pivotal role in the management of leishmaniasis.
Collapse
Affiliation(s)
- Fatouma Mohamed Abdoul-Latif
- Institut Supérieur des Sciences de la Santé (ISSS), Djibouti City P.O. Box 2530, Djibouti
- Medicinal Research Institute, Center for Studies and Research of Djibouti, IRM-CERD, Route de l’Aéroport, Haramous, Djibouti City P.O. Box 486, Djibouti
| | - Khadija Oumaskour
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| | - Nadira Abdallah
- Institut Supérieur des Sciences de la Santé (ISSS), Djibouti City P.O. Box 2530, Djibouti
| | - Ayoub Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| | | | - Ali Merito
- Medicinal Research Institute, Center for Studies and Research of Djibouti, IRM-CERD, Route de l’Aéroport, Haramous, Djibouti City P.O. Box 486, Djibouti
| | - Houda Mohamed
- Peltier Hospital of Djibouti, Djibouti City P.O. Box 2123, Djibouti
| | - Tarik Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| |
Collapse
|
7
|
Phan TN, Lee H, Baek KH, No JH. Identification of Novel Flavonoids and Ansa-Macrolides with Activities against Leishmania donovani through Natural Product Library Screening. Pathogens 2024; 13:213. [PMID: 38535556 PMCID: PMC10974828 DOI: 10.3390/pathogens13030213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 02/11/2025] Open
Abstract
The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis (VL), a potentially fatal disease if left untreated. Given the limitations of current therapies, there is an urgent need for new, safe, and effective drugs. To discover novel antileishmanial compounds from previously unexplored chemical spaces, we conducted a high-throughput screening (HTS) of 2562 natural compounds, assessing their activity against L. donovani promastigotes and intracellular amastigotes. Utilizing the criteria of ≥70% parasite growth inhibition and ≥70% host cell (THP-1) viability, we selected 100 inhibitors for half-maximal inhibitory concentration (IC50) value determination. Twenty-six compounds showed activities in both forms of Leishmania with a selectivity index of over 3. Clustering analysis resulted in four chemical clusters with scaffolds of lycorine (cluster 1), 5-hydroxy-9,10-dihydro-4H,8H-pyrano[2,3-f]chromene-4,8-dione (cluster 2), and semi-synthetic derivatives of ansamycin macrolide (cluster 4). The enantiomer of lycorine, BMD-NP-00820, showed the highest anti-amastigote activity with an IC50 value of 1.74 ± 0.27 μM and a selectivity index (SI) > 29. In cluster 3, the most potent compound had an IC50 value of 2.20 ± 0.29 μM with an SI > 23, whereas in cluster 4, with compounds structurally similar to the tuberculosis drug rifapentine, BMD-NP-02085 had an IC50 value of 1.76 ± 0.28 μM, but the SI value was 7.5. Taken together, the natural products identified from this study are a potential source for the discovery of antileishmanial chemotypes for further development.
Collapse
Affiliation(s)
- Trong-Nhat Phan
- Institute of Applied Science and Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam;
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (H.L.); (K.-H.B.)
| | - Hyeryon Lee
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (H.L.); (K.-H.B.)
| | - Kyung-Hwa Baek
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (H.L.); (K.-H.B.)
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (H.L.); (K.-H.B.)
| |
Collapse
|
8
|
Sun J, Wang X, Nie Z, Ma L, Sai H, Cheng J, Liu Y, Duan J. Characterization of the interactions between Fulvic acid and Trypsin with Spectroscopic and Molecular Docking technology. Chem Biodivers 2024; 21:e202301366. [PMID: 38073179 DOI: 10.1002/cbdv.202301366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/10/2023] [Indexed: 01/13/2024]
Abstract
The interaction mechanism between trypsin and fulvic acid was analyzed by multispectral method and molecular docking simulation. The fluorescence spectra showed that fulvic acid induced static quenching of trypsin. The validity of this conclusion was further substantiated through the computation of the binding constants. The thermodynamic parameters show that the reaction is mainly controlled by van der Waals force and hydrogen bond force, and the reaction is spontaneous. In addition, based on the obtained binding distance, there may be a non-radiative energy transfer between the two. The ultraviolet spectrum showed that fulvic acid could shift the absorption peak of trypsin, indicating that fulvic acid had an effect on the secondary structure of trypsin. According to the synchronous fluorescence spectrum results, fulvic acid primarily interacts with tryptophan residues in trypsin and induces alterations in their microenvironment. Three-dimensional fluorescence spectrum and circular dichroism further proves this conclusion. The molecular docking simulation reveals that the interaction between the two groups primarily arises from hydrogen bonding and van der Waals forces. The findings suggest that FA has the ability to induce conformational changes in trypsin's secondary structure.
Collapse
Affiliation(s)
- Jisheng Sun
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Xiaoxia Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Innermongolia Engineering Research Center of Comprehensive Utilization of Bio-coal Chemical Industry, Baotou, 014010, China
| | - Zhihua Nie
- School of life sciences, Tsinghua University, Beijing, 100084, China
| | - Litong Ma
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Innermongolia Engineering Research Center of Comprehensive Utilization of Bio-coal Chemical Industry, Baotou, 014010, China
| | - Huazheng Sai
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Jianguo Cheng
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yunying Liu
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Jianguo Duan
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| |
Collapse
|
9
|
Pal R, Teli G, Akhtar MJ, Matada GSP. The role of natural anti-parasitic guided development of synthetic drugs for leishmaniasis. Eur J Med Chem 2023; 258:115609. [PMID: 37421889 DOI: 10.1016/j.ejmech.2023.115609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Leishmaniasis is a parasitic disease and categorised as a neglected tropical disease (NTD). Each year, between 70,0000 and 1 million new cases are believed to occur. There are approximately 90 sandfly species which can spread the Leishmania parasites (over 20 species) causing 20,000 to 30,000 death per year. Currently, leishmaniasis has no specific therapeutic treatment available. The prescribed drugs with several drawbacks including high cost, challenging administration, toxicity, and drug resistance led to search for the alternative treatment with less toxicity and selectivity. Introducing the molecular features like that of phytoconstituents for the search of compounds with less toxicity is another promising approach. The current review classifies the synthetic compounds according to the core rings present in the natural phytochemicals for the development of antileishmanial agents (2020-2022). Considering the toxicity and limitations of synthetic analogues, natural compounds are at the higher notch in terms of effectiveness and safety. Synthesized compounds of chalcones (Compound 8; IC50: 0.03 μM, 4.7 folds more potent than Amphotericin B; IC50: 0.14 μM), pyrimidine (compound 56; against L. tropica; 0.04 μM and L. infantum; 0.042 μM as compared to glucantime: L. tropica; 8.17 μM and L. infantum; 8.42 μM), quinazoline and (compound 72; 0.021 μM, 150 times more potent than miltefosine). The targeted delivery against DHFR have been demonstrated by one of the pyrimidine compounds 62 with an IC50 value of 0.10 μM against L. major as compared to the standard trimethoprim (IC50: 20 μM). The review covers the medicinal importance of antileishmanial agents from synthetic and natural sources such as chalcone, pyrazole, coumarins, steroids, and alkaloidal-containing drugs (indole, quinolines, pyridine, pyrimidine, carbolines, pyrrole, aurones, and quinazolines). The efforts of introducing the core rings present in the natural phytoconstituents as antileishmanial in the synthetic compounds are discussed with their structural activity relationship. The perspective will support the medicinal chemists in refining and directing the development of novel molecules phytochemicals-based antileishmanial agents.
Collapse
Affiliation(s)
- Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Ghanshyam Teli
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PO 620, PC 130, Azaiba Bousher, Muscat, Sultanate of Oman
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| |
Collapse
|
10
|
Qureshi KA, Imtiaz M, Al Nasr I, Koko WS, Khan TA, Jaremko M, Mahmood S, Fatmi MQ. Antiprotozoal Activity of Thymoquinone (2-Isopropyl-5-methyl-1,4-benzoquinone) for the Treatment of Leishmania major-Induced Leishmaniasis: In Silico and In Vitro Studies. Antibiotics (Basel) 2022; 11:antibiotics11091206. [PMID: 36139985 PMCID: PMC9495120 DOI: 10.3390/antibiotics11091206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Leishmaniasis, a neglected tropical parasitic disease (NTPD), is caused by various Leishmania species. It transmits through the bites of the sandfly. The parasite is evolving resistance to commonly prescribed antileishmanial drugs; thus, there is an urgent need to discover novel antileishmanial drugs to combat drug-resistant leishmaniasis. Thymoquinone (2-isopropyl-5-methyl-1,4-benzoquinone; TQ), a primary pharmacologically active ingredient of Nigella sativa (black seed) essential oil, has been reported to possess significant antiparasitic activity. Therefore, the present study was designed to investigate the in vitro and in silico antileishmanial activity of TQ against various infectious stages of Leishmania major (L. major), i.e., promastigotes and amastigotes, and its cytotoxicity against mice macrophages. In silico molecular dockings of TQ were also performed with multiple selected target proteins of L. major, and the most preferred antileishmanial drug target protein was subjected to in silico molecular dynamics (MD) simulation. The in vitro antileishmanial activity of TQ revealed that the half-maximal effective concentration (EC50), half-maximal cytotoxic concentration (CC50), and selectivity index (SI) values for promastigotes are 2.62 ± 0.12 μM, 29.54 ± 0.07 μM, and 11.27, while for the amastigotes, they are 17.52 ± 0.15 μM, 29.54 ± 0.07 μM, and 1.69, respectively. The molecular docking studies revealed that squalene monooxygenase is the most preferred antileishmanial drug target protein for TQ, whereas triosephosphate isomerase is the least preferred. The MD simulation revealed that TQ remained stable in the binding pocket throughout the simulation. Additionally, the binding energy calculations using Molecular Mechanics Generalized-Born Surface Area (MMGBSA) indicated that TQ is a moderate binder. Thus, the current study shows that TQ is a promising antileishmanial drug candidate that could be used to treat existing drug-resistant leishmaniasis.
Collapse
Affiliation(s)
- Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
- Correspondence: (K.A.Q.); (M.Q.F.)
| | - Mahrukh Imtiaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45600, Pakistan
| | - Ibrahim Al Nasr
- Department of Laboratory Sciences, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
- Department of Biology, College of Science and Arts, Qassim University, Unaizah 51911, Saudi Arabia
| | - Waleed S. Koko
- Department of Laboratory Sciences, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Tariq A. Khan
- Department of Clinical Nutrition, College of Applied Health Sciences, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - M. Qaiser Fatmi
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45600, Pakistan
- Correspondence: (K.A.Q.); (M.Q.F.)
| |
Collapse
|
11
|
Shah SI, Nasir F, Malik NS, Alamzeb M, Abbas M, Rehman IU, Khuda F, Shah Y, Goh KW, Zeb A, Ming LC. Efficacy Evaluation of 10-Hydroxy Chondrofoline and Tafenoquine against Leishmania tropica (HTD7). Pharmaceuticals (Basel) 2022; 15:ph15081005. [PMID: 36015153 PMCID: PMC9415556 DOI: 10.3390/ph15081005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Leishmaniasis is affirmed as a category one disease (most emerging and unmanageable) by the World Health Organization (WHO), affecting 98 countries with an annual global incidence of ~1.2 million cases. Options for chemotherapeutic treatment are limited due to drug resistance and cytotoxicity. Thus, the search for new chemical compounds is instantly desirable. In this study, we used two compounds, i.e., 10-hydroxy chondrofoline and tafenoquine, for their antileishmanial activity against L. tropica (HTD7). First, the cytotoxicity assay of the test compounds against THP-1 cells was carried out, and these compounds were found safe. Intra-THP-1 amastigote activity (in vitro) was performed, which was then followed by the in vivo activity of 10-hydroxy chondrofoline in the murine cutaneous leishmaniasis (CL) model. A total of three concentrations were used, i.e., 25, 50, and 100 µM, to check the in vitro activity of the test compounds against the amastigotes. 10-hydroxy chondrofoline was found to be the most potent compound in vitro (and thus was selected for in vivo studies) with an LD50 value of 43.80 µM after 48 h incubation, whilst tafenoquine had an LD50 value of 53.57 µM. In vivo activity was conducted by injecting 10-hydroxy chondrofoline in the left hind foot of the infected BALB/c mice, where it caused a statistically significant 58.3% (F = 14.18; p = 0.002) reduction in lesion size (0.70 ± 0.03 mm) when compared with negative control (1.2 ± 0.3 mm).
Collapse
Affiliation(s)
- Sayyed Ibrahim Shah
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
- Correspondence: (S.I.S.); (L.C.M.)
| | - Fazli Nasir
- Department of Pharmacy, University of Peshawar, Khyber Pakhtunkhwa 25100, Pakistan
| | - Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad 44000, Pakistan
| | - Muhammad Alamzeb
- Department of Chemistry, University of Kotli, Kotli 11100, Pakistan
| | - Muhammad Abbas
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Inayat Ur Rehman
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Fazli Khuda
- Department of Pharmacy, University of Peshawar, Khyber Pakhtunkhwa 25100, Pakistan
| | - Yasir Shah
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Khang Weh Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- Correspondence: (S.I.S.); (L.C.M.)
| |
Collapse
|
12
|
Singh R, Chaudhary M, Chauhan ES. Stellaria media Linn.: A comprehensive review highlights the nutritional, phytochemistry, and pharmacological activities. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Stellaria media Linn., a member of the family Caryophyllaceae, is generally known by the name of Chickweed. This plant is extensively cultivated globally and is inherent to Africa, Asia, China, Europe, and North America. It is a well-known medicinal plant with immense therapeutic uses. Nutritional studies have revealed the presence of protein, especially 16 amino acids, vitamins, and minerals such as calcium, iron, phosphorus, and zinc. Phytochemicals, mainly flavonoids, isoflavonoids, saponins, tannins, alkaloids, phenolic acids, triterpenoids, phenolic compounds, and anthraquinone are present in chickweed. It has multiple therapeutic potentials like anti-obesity, anti-diabetic, anti-fungal, anti-bacterial, anti-inflammatory, anti-leishmanial, anti-anxiety, and toxicity profiles. The crude extracts and their metabolites did not show any toxicity in the experimental animal. This review summarizes the nutritional, phytochemical, pharmacological, and toxicity studies on this plant concerning its future use in pharmacological drugs.
Collapse
Affiliation(s)
- Ridhima Singh
- Research Scholar, Department of Food Science and Nutrition, Banasthali Vidyapith, Tonk, Rajasthan-304022, India
| | - Mansi Chaudhary
- Research Scholar, Department of Food Science and Nutrition, Banasthali Vidyapith, Tonk, Rajasthan-304022, India
| | - Ekta Singh Chauhan
- Associate Professor, Department of Food Science and Nutrition, Banasthali Vidyapith, Tonk, Rajasthan-304022, India
| |
Collapse
|
13
|
Islamuddin M, Ali A, Afzal O, Ali A, Ali I, Altamimi AS, Alamri MA, Kato K, Parveen S. Thymoquinone Induced Leishmanicidal Effect via Programmed Cell Death in Leishmania donovani. ACS OMEGA 2022; 7:10718-10728. [PMID: 35382308 PMCID: PMC8973115 DOI: 10.1021/acsomega.2c00467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/02/2022] [Indexed: 05/08/2023]
Abstract
Visceral leishmaniasis (VL) or kala-azar is a vector-borne dreaded protozoal infection that is caused by the parasite Leishmania donovani. With increases in the dramatic infection rates, present drug toxicity, resistance, and the absence of an approved vaccine, the development of new antileishmanial compounds from plant sources remains the keystone for the control of visceral leishmaniasis. In this study, we evaluated the leishmanicidal effect of thymoquinone against L. donovani with an in vitro and ex vivo model. Thymoquinone exhibited potent antipromastigote activity with IC50 and IC90 concentrations achieved at 6.33 ± 1.21 and 20.71 ± 2.15 μM, respectively, whereas the IC50 and IC90 concentrations were found to be 7.83 ± 1.65 and 27.25 ± 2.20 μM against the intramacrophagic form of amastigotes, respectively. Morphological changes in promastigotes and growth reversibility study following treatment confirmed the leishmanicidal effect of thymoquinone. Further, thymoquinone exhibited leishmanicidal activities against L. donovani promastigote through cytoplasmic shrinkage, membrane blebbing, chromatin condensation, cellular and nuclear shrinkage, and DNA fragmentation, as observed under scanning and transmission electron microscopy analyses. The antileishmanial activity was exerted via programmed cell death as proved by exposure of phosphatidylserine, DNA nicking by TUNEL assay, and loss of mitochondrial membrane potential. Thymoquinone at a concentration of 200 μM was devoid of any cytotoxic effects against mammalian macrophage cells. Thymoquinone showed strong leishmanicidal activity against L. donovani, which is mediated via an apoptosis mode of parasitic cell death, and accordingly, thymoquinone may be the source of a new lead molecule for the cure of VL.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Molecular
Virology Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
- Laboratory
of Sustainable Animal Environment, Graduate School of Agricultural
Science, Tohoku University, Miyagi 989-6711, Japan
| | - Abuzer Ali
- Department
of Pharmacognosy, College of Pharmacy, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Amena Ali
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Intzar Ali
- Department
of Microbiology, Hamdard Institute of Medical
Sciences & Research, New Delhi 110062, India
| | | | - Mubarak A. Alamri
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Kentaro Kato
- Laboratory
of Sustainable Animal Environment, Graduate School of Agricultural
Science, Tohoku University, Miyagi 989-6711, Japan
| | - Shama Parveen
- Molecular
Virology Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|