1
|
Hu X, Chen Y, Ying H, He C, Ren Y, Tian Y, Tan Y. Metabolic-associated fatty liver disease (MAFLD) promotes the progression of hepatocellular carcinoma by enhancing KIF20A expression. Int Immunopharmacol 2025; 154:114589. [PMID: 40168801 DOI: 10.1016/j.intimp.2025.114589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Compared to other HCC, those related to MAFLD exhibit distinct prognostic differences. This article aims to elucidate the impact of MAFLD on HCC prognosis through the lens of KIF20A, thereby providing a theoretical foundation for targeted therapies in MAFLD-related HCC. METHODS We employed the Weighted gene co-expression network analysis (WGCNA) method alongside the Mime package to identify key genes associated with MAFLD-related HCC. Subsequently, we utilized OCLR and CytoTRACE algorithms to evaluate the relationship between these genes and HCC stemness. The R package was employed to conduct immunological analyses on both mRNA sequencing and single-cell data. We validated the effects of core genes on HCC through experimental approaches, including cell culture, Transwell assays, Western Blot, and proliferation assays. Finally, we predicted potential therapeutic drugs using the OncoPredict software package. RESULTS WGCNA identified the cyan module associated with MAFLD in GSE135251 and the blue module linked to HCC in TCGA. Further analysis identified KIF20A as the core gene in MAFLD-related HCC. Utilizing the OCLR and CytoTRACE algorithms, KIF20A was found to correlate with mRNA stemness index (mRNAsi). Analysis of public databases revealed that KIF20A promotes immune tolerance through the SPP1-CD44 pathway and drives HCC progression via the G2M checkpoint. Experimental results demonstrated that lipotoxic damage in HCC cells and small extracellular vesicles (sEVs) derived from these cells upregulate KIF20A, thereby accelerating HCC progression. Finally, OncoPredict and AutoDock were employed to predict drugs targeting KIF20A. CONCLUSION MAFLD-related HCC can elevate KIF20A levels and promote tumor proliferation and migration.
Collapse
Affiliation(s)
- Xinsong Hu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yifei Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China; Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, Jiangsu, China
| | - Hao Ying
- Department of Neurology, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cong He
- The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yangyang Ren
- Clinical Laboratory, Xinyi People's Hospital, Xuzhou, Jiangsu, China.
| | - Yiqing Tian
- Clinical Laboratory, Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, China.
| | - Youwen Tan
- The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
2
|
Luo Q, Qiu J, Chen M, Yang N, Li X, Huang S, Ma Q, Li Z, Lou D, Du Y, Chen L, Shen Q, Chen F, Li C, Qiu P. Vine tea (Ampelopsis grossedentata) ameliorates chronic alcohol-induced hepatic steatosis, oxidative stress, and inflammation via YTHDF2/PGC-1α/SIRT3 axis. Food Res Int 2025; 209:116321. [PMID: 40253212 DOI: 10.1016/j.foodres.2025.116321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/21/2025]
Abstract
For over a millennium, the leaves of Ampelopsis grossedentata (Hand.-Mazz.) W. T. Wang, commonly known as vine tea, have been revered as a popular tea and traditional herbal remedy, possessing antioxidant, anti-inflammatory, hepatoprotective, and antiviral properties. In recent years, the incidence of alcohol-related liver injury has been on the rise, imposing a significant public health burden worldwide. Previous studies have indicated that extracts of vine tea (AGE) can ameliorate alcoholic liver disease (ALD), yet the pharmacological mechanisms underlying this effect remain poorly understood. In this study, we first employed UPLC-Q-TOF-MS to analyze the chemical constituents of AGE. Subsequently, an ALD model was established in mice fed with Lieber-DeCarli diet, and the hepatoprotective benefits of AGE were assessed by measuring biochemical indicators and hepatic pathological changes. Moreover, a suite of bioinformatics tools, including transcriptomics, weighted gene co-expression network analysis, and single-cell data mining, were utilized to reveal that the YTHDF2/PGC-1α/SIRT3 signaling axis may be the potential mechanism by which AGE exerts its anti-ALD effects. Additionally, Western blotting and immunofluorescence staining techniques were employed to further substantiate the aforementioned mechanism. Our findings demonstrate that administration of vine tea significantly alleviated chronic ethanol-induced hepatic lipid accumulation, oxidative stress, and inflammation. Notably, knockdown of YTHDF2 partially protected the liver from ethanol-induced injury. Mechanistically, bioinformatics analysis and in vitro and in vivo experiments identified YTHDF2 as a key pharmacological target of AGE in treating ALD, acting through the downstream PGC-1α/SIRT3 pathway. In summary, in this study, we provide the first evidence that AGE mitigates ethanol-induced liver injury by inhibiting YTHDF2 and enhancing the expression of PGC-1α and SIRT3. Vine tea, as a tea food with unique medicinal value, shows significant potential and value in the treatment of ALD.
Collapse
Affiliation(s)
- Qihan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiang Qiu
- Department of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Minxia Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Na Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyue Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Ma
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zongyuan Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dayong Lou
- Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| | - Yu Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.
| | - Fangming Chen
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Ping Qiu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
3
|
Qin F, Tian L, Wang Z, Qiu X. Schisandrol A Mitigated Voriconazole-induced Liver Injury in Mice Through Regulation of Farnesoid X Receptor-mediated Bile Acid Metabolism. Chem Biodivers 2025:e202402769. [PMID: 40059080 DOI: 10.1002/cbdv.202402769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 04/14/2025]
Abstract
Schisandrol A has been previously used to mitigate hepatotoxicity. However, the effects of schisandrol A on voriconazole-induced hepatic injury have not been investigated. In this study, we aimed to explore the effects of schisandrol A on voriconazole-induced hepatic injury in mice, as well as to elucidate the underlying mechanism. Mice were continuously treated with voriconazole with or without schisandrol A administration. Acetaminophen was used as a positive control to induce liver damage. Hematological, histological, and gene analyses were conducted, and the therapeutic target of schisandrol A was verified. Our results showed that voriconazole-induced hepatic injury was similar to that induced by acetaminophen. Importantly, schisandrol A alleviated voriconazole-induced hepatic steatosis, cell death, inflammation, and fibrosis. Schisandrol A reduced oxidative damage and inflammation in the liver. Furthermore, schisandrol A reduced total bile acid, cholesterol, and triglyceride levels in the liver and serum. The expression of farnesoid X receptor (FXR), small heterodimer partner, cytochrome P450 (CYP) 7A1, and sterol 12α-hydroxylase in the liver was altered by schisandrol A treatment. The binding of schisandrol A to FXR was verified by the cellular thermal shift assay and molecular docking. In conclusion, these findings suggested the favorable effects of schisandrol A against voriconazole-induced hepatotoxicity.
Collapse
Affiliation(s)
- Fangxu Qin
- Department of Clinical Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| | - Lifeng Tian
- Department of Clinical Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| | - Zhien Wang
- Department of Clinical Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| | - Xiongquan Qiu
- Department of Clinical Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| |
Collapse
|
4
|
He J, Xu P, Chen R, Chen M, Wang B, Xie Y, Yang Q, Sun D, Ji M. Exploiting the Zebrafish Model for Sepsis Research: Insights into Pathophysiology and Therapeutic Potentials. Drug Des Devel Ther 2024; 18:5333-5349. [PMID: 39600867 PMCID: PMC11590671 DOI: 10.2147/dddt.s500276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Sepsis, a severe condition instigated by infections, continues to be a primary global cause of death, typified by systemic inflammation and advancing immune dysfunction. Comprehending the complex pathological processes that underlie sepsis is integral to the creation of efficacious treatments. Despite the inability of animal models to entirely reproduce the clinical intricacies related to sepsis, they are invaluable instruments for the exploration and development of therapeutic approaches. Within this context, the zebrafish model is particularly noteworthy due to its genetic tractability, transparency, and appropriateness for high-throughput screening of genetic mutants and therapeutic compounds. This scholarly review emphasizes the crucial role that the zebrafish disease model plays in enhancing our comprehension of sepsis, by exploring its applications in deciphering immune and inflammatory responses, evaluating the consequences of genetic alterations, and examining novel therapeutic agents. The Insights derived from zebrafish research not only augment our understanding of the underlying mechanisms of sepsis, but also possess considerable potential for the transference of these discoveries into clinical therapies, thus potentially transforming the approach to sepsis management. The objective of this scholarly article is to underscore the importance of zebrafish in the realm of biomedical research pertaining to sepsis, and to delineate forthcoming opportunities for utilizing this model in clinical applications.
Collapse
Affiliation(s)
- Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Peiye Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR 999077, People’s Republic of China
| | - Mengyan Chen
- Department of Critical Care Medicine, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| | - Beier Wang
- Department of Hepatobiliary-Pancreatic Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Yilun Xie
- Department of Hepatobiliary-Pancreatic Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People’s Republic of China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Mingxia Ji
- Department of Critical Care Medicine, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| |
Collapse
|
5
|
Wang Y, Huang S, Wang D, Wu J, Liu F, Liao X, Shi X, Xiao J, Zhang S, Lu H. Hepatotoxicity of N-nitrosodin-propylamine in larval zebrafish by upregulating the Wnt pathway. Toxicol Appl Pharmacol 2024; 492:117132. [PMID: 39481764 DOI: 10.1016/j.taap.2024.117132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024]
Abstract
N-nitrosodin-propylamine is an organic compound mainly used in organic synthesis. As a typical pollutant, the accidental release of N-nitrosodin-propylamine may cause environmental pollution, especially water environment pollution. In the present study, we used the zebrafish model for the first time to evaluate the developmental toxicity of this drug in the liver. Zebrafish larvae fertilized at 72hpf showed a range of toxic responses after 72hpf exposure to the drug. These include increased mortality, delayed absorption of yolk sac nutrients, shorter body length, abnormal liver morphology, gene disruption, and altered expression of various indicators with increasing dose. Studies on the mechanism of toxicity showed that N-nitrosodin-propylamine exposure increased the level of oxidative stress, increased the level of apoptosis in hepatocytes, and up-regulated the transcriptional expression level of Wnt signaling pathway genes. Astaxanthin and IWR-1 can effectively save the liver toxicity in zebrafish caused by N-nitrosodin-propylamine. Our study showed that the drug exposure induced hepatotoxicity in zebrafish larvae through the up-regulation of Wnt signaling pathway, oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Ying Wang
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China; College of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, China
| | - Shouqiang Huang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Dagang Wang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Jie Wu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Xiaowen Shi
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang 330006, Jiangxi, China.
| | - Shouhua Zhang
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang Medical College, Nanchang 330006, China.
| | - Huiqiang Lu
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China.
| |
Collapse
|
6
|
Fadel H, Slougui N, Hazmoune H. The first report of an Algerian Leopoldia comosa essential oil content and antioxidant assessment. Nat Prod Res 2024:1-7. [PMID: 39344671 DOI: 10.1080/14786419.2024.2409986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
In the current study, we examined the chemical makeup and anti-oxidant potential of an Algerian Leopoldia comosa. The results showed that there were moderate levels of phenols and flavonoids in the crude extract (15.11 ± 0.78 μg GAE/mg and 31.27 ± 2.71 μg QE/mg, respectively). Additionally, the findings showed that both crude extract and EO had moderate antioxidant capabilities (8.74 ± 1.13 mg/ml; 13.18 ± 0.18% and 12.94 ± 0.89%, respectively). Twelve (12) volatile compounds were found in the EO according to GC-MS and GC-FID analyses, with tetrapentacontane (48.25%), 3,7,11,15-tetramethyl-2-hexadecen-1-ol (16.59%), hexatriacontane (9.17%), and 6,10,14-trimethylpentadecan-2-one (8.80%) accounting for the majority of the components. To our knowledge, no earlier studies have looked at the chemical composition of L. comosa oil. These findings might contribute to our understanding of this species' makeup and make it a useful source of food and medicine in the future.
Collapse
Affiliation(s)
- Hamza Fadel
- Research Unit, Valorization of Natural Resources, Bioactive Molecules and Physicochemical and Biological Analyses, University of Mentouri Brothers, Constantine, Algeria
| | - Nabila Slougui
- Ecole Nationale Polytechnique de Constantine, Ville Universitaire Ali Mendjeli, Constantine, Algeria
- Laboratoire de Bio Géochimie des Milieux Désertiques, Université Kasdi Merbah Ouargla, Route de Ghardaia, Ouargla, Algeria
| | - Hichem Hazmoune
- Research Unit, Valorization of Natural Resources, Bioactive Molecules and Physicochemical and Biological Analyses, University of Mentouri Brothers, Constantine, Algeria
| |
Collapse
|
7
|
Nayak SPRR, Boopathi S, Almutairi BO, Arokiyaraj S, Kathiravan MK, Arockiaraj J. Indole-3-acetic acid induced cardiogenesis impairment in in-vivo zebrafish via oxidative stress and downregulation of cardiac morphogenic factors. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104479. [PMID: 38821154 DOI: 10.1016/j.etap.2024.104479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Plant growth regulators (PGRs) are increasingly used to promote sustainable agriculture, but their unregulated use raises concerns about potential environmental risks. Indole-3-acetic acid (IAA), a commonly used PGR, has been the subject of research on its developmental toxicity in the in-vivo zebrafish model. IAA exposure to zebrafish embryos caused oxidative stress, lipid peroxidation, and cellular apoptosis. The study also revealed that critical antioxidant genes including sod, cat, and bcl2 were downregulated, while pro-apoptotic genes such as bax and p53 were upregulated. IAA exposure also hampered normal cardiogenesis by downregulating myl7, amhc, and vmhc genes and potentially influencing zebrafish neurobehavior. The accumulation of IAA was confirmed by HPLC analysis of IAA-exposed zebrafish tissues. These findings underscore the need for further study on the potential ecological consequences of IAA use and the need for sustainable agricultural practices.
Collapse
Affiliation(s)
- S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India
| | - Seenivasan Boopathi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, South Korea
| | - M K Kathiravan
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
8
|
Valan AS, Krithikadatta J, Eswaramoorthy R, Guru A. Comparative Analysis of the Cytotoxic Effects of Modified Triple Antibiotic Hydrogel: Insights From Experimental Models. Cureus 2024; 16:e62662. [PMID: 39036189 PMCID: PMC11258932 DOI: 10.7759/cureus.62662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
INTRODUCTION The effectiveness of intracanal medicaments (ICMs) in root canal therapy is critical for successful dental treatments, yet their cytotoxic effects pose significant challenges. This research uses zebrafish embryos and dental pulp stem cells (DPSCs) to identify the optimal concentration that balances antibacterial efficacy with minimal toxicity. AIM This study aims to address the need for effective ICMs in dentistry by formulating and assessing the embryotoxicity and cytocompatibility of a novel carrageenan-based modified triple antibiotic paste (MTAP) hydrogel at different concentrations (1, 5, and 10 mg/mL) using a zebrafish model and cell culture assay. MATERIALS AND METHODS The hydrogel was formulated by combining antibiotic solutions (ciprofloxacin, metronidazole, and amoxicillin) with carrageenan and xanthan gum. Zebrafish embryos were exposed to varying concentrations of MTAP hydrogel, chlorhexidine (CHX), calcium hydroxide (CaOH2), and plain carrageenan to assess developmental toxicity, survival rate, heart rate, hatching rate, and macrophage migration. The cytotoxicity against DPSCs was examined within a timeframe of 6, 24, and 72 hours with the use of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide (MTT) assay. RESULTS The analysis revealed developmental toxicity with malformations observed at higher concentrations of MTAP hydrogel, CaOH2, and CHX medicaments, indicating potential toxicity. Significant impacts on survival, heart rate, and hatching rate were noted in the CaOH2 and CHX groups, as well as at higher MTAP hydrogel concentrations, emphasizing the importance of dosage considerations. The neutral red assay confirmed toxicity, with macrophage migration observed in CaOH2, CHX, and higher MTAP hydrogel concentrations. Lower concentrations, particularly at 1 mg/mL, showed no adverse effects on zebrafish embryos and larvae. These findings align with cell viability investigations, which demonstrated that higher antibiotic concentrations resulted in decreased cell proliferation and viability over time. Conversely, at a lower concentration of 1 mg/mL, cell proliferation notably increased after 72 hours. Plain MTAP and CHX exhibited the highest toxicity levels in the MTT assay. CONCLUSION The study concludes that while higher concentrations of MTAP hydrogel exhibit toxic effects, the hydrogel at 1 mg/mL demonstrates no adverse impact on zebrafish embryos, larvae, and DPSCs. These findings underscore the necessity of optimizing ICM concentrations to balance antibacterial efficacy and minimal cytotoxicity.
Collapse
Affiliation(s)
- Annie Sylvea Valan
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Jogikalmat Krithikadatta
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rajalakshmanan Eswaramoorthy
- Department of Biochemistry, Center of Molecular Medicine and Diagnostics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
9
|
Valan AS, Krithikadatta J, Guru A. Exploring Periostracum as an Alternative Root Canal Irrigant: Insights From Zebrafish Embryo Experiments. Cureus 2024; 16:e56638. [PMID: 38646289 PMCID: PMC11032143 DOI: 10.7759/cureus.56638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Objectives Root canal treatments aim to eliminate biofilms effectively. Considering the limitations of chemical irrigants, there is growing interest in natural alternatives like periostracum due to their antibacterial and fouling-resistant properties. This study aimed to assess periostracum's toxicity as a root canal irrigant by investigating its effects on zebrafish embryos' heart rate, survival rate, and hatching rate, as well as inflammation studies using neutral red assays comparing it to standard irrigants like ethylenediaminetetraacetic acid (EDTA), chlorhexidine (CHX), and sodium hypochlorite (NaOCl). Materials and methods Zebrafish embryos were exposed to varying concentrations of periostracum irrigant and standard irrigants. Heart rate, survival rate, and hatching rate were evaluated as indicators of developmental toxicity using microscopy. Statistical analysis, utilizing GraphPad Prism software (version 5.03, GraphPad Software, LLC, San Diego, California, United States), involved one-way ANOVA and Tukey's post-hoc test to determine significance levels (p < 0.05) across control and other groups based on triplicate means and standard deviation. Results The periostracum irrigant demonstrated superior survival rates, heart rates, and hatching rates at specific concentrations compared to standard irrigants (p < 0.01), maintaining favorable heart rates and hatching rates at those concentrations. However, higher concentrations resulted in diminished hatching rates (p < 0.05). Additionally, this study revealed increased inflammation when larvae were treated with NaOCl, EDTA, and CHX. Conversely, no inflammation was observed when subjected to periostracum irrigants. These findings suggest potential advantages of periostracum as a root canal irrigant due to its increased biocompatibility. Conclusion Periostracum displayed promising attributes in zebrafish embryo experiments, such as stable heart rate, hatching rate, and survival rate, along with reduced developmental toxicity and inflammation, indicating potential advantages as a root canal irrigant, including reduced toxicity compared to conventional agents. Further research involving diverse demographics and long-term effects is crucial to validate periostracum's clinical applicability and safety in endodontic therapies.
Collapse
Affiliation(s)
- Annie Sylvea Valan
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Jogikalmat Krithikadatta
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
10
|
Guru A, Murugan R, Almutairi BO, Arokiyaraj S, Arockiaraj J. Brain targeted luteolin-graphene oxide nanoparticle abrogates polyethylene terephthalate induced altered neurological response in zebrafish. Mol Biol Rep 2023; 51:27. [PMID: 38133875 DOI: 10.1007/s11033-023-08960-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Polyethylene terephthalate (PET), a commonly used polymer in various food and plastic bag containers, has raised significant concerns regarding its environmental and human health risks. Despite its prevalent use, the impact of PET exposure on aquatic environments and its potential to induce neurotoxic conditions in species remain poorly understood. Furthermore, the mechanisms underlying amelioration through natural product intervention are not well-explored. In light of these gaps, our study aimed to elucidate the neurotoxic effects of PET in zebrafish through waterborne exposure, and to mitigate its neurological impact using luteolin-graphene oxide nanoparticles. METHODS AND RESULTS Our investigation revealed that exposure to PET in water triggered adverse effects in zebrafish larvae, particularly in the head region. We observed heightened oxidative stress, lipid peroxidation, and cell death, accompanied by impaired antioxidant defense enzymes. Furthermore, abnormal levels of acetylcholine esterase and nitric oxide in the zebrafish brain indicated cognitive impairment. To address these issues, we explored the potential neuroprotective effects of luteolin-graphene oxide nanoparticles. These nanoparticles demonstrated efficacy in localizing within the zebrafish brain, enhancing their therapeutic impact against PET exposure. Treatment with luteolin-graphene oxide nanoparticles not only mitigated PET-induced neurological alterations but also exhibited a neuroprotective effect. This was evidenced by the regulation of pro-inflammatory cytokine gene expression in the zebrafish brain. Additionally, normalization of locomotory behavior in PET-exposed zebrafish following nanoparticle treatment underscored the potential effectiveness of luteolin-graphene oxide nanoparticles as a treatment against PET-induced neurotoxicity. CONCLUSIONS In summary, our study emphasizes the urgent need to investigate the environmental and health risks associated with PET. We demonstrate the potential of luteolin-graphene oxide nanoparticles as an effective intervention against PET-induced neurotoxicity in zebrafish.
Collapse
Affiliation(s)
- Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603 203, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O.Box 2455, 11451, Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, 05006, Seoul, Korea
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
11
|
Murugan R, Haridevamuthu B, Gopinath P, Rajagopal R, Arokiyaraj S, Arockiaraj J. Deacetylepoxyazadiradione ameliorates diabesity in in-vivo zebrafish larval model by influencing the level of regulatory adipokines and oxidative stress. Eur J Pharmacol 2023; 961:176214. [PMID: 37992886 DOI: 10.1016/j.ejphar.2023.176214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Obesity and diabetes constitute significant global health issues associated with one another. In contrast to diabetes, which is characterised by oxidative stress that enhances cellular damage and the following complications. Obesity dynamics involve chronic inflammation that promotes insulin resistance and metabolic disruptions. Anti-inflammatory and antioxidant agents, therefore, hold promise for synergistic effects, addressing inflammation and oxidative stress, key factors in managing obesity and diabetes. These agents can be utilized in novel drug delivery approaches. The complex interactions between deacetylepoxyazadiradione (DEA) and zebrafish larva subjected to metabolic impairment due to a high-fat diet (HFD) are examined in this study. The survival assay showed a significantly lower rate (79% survival rate) in the larvae exposed to HFD. Contrastingly, DEA treatment showed significant results with survival rates increasing dose-dependently (84%, 89%, and 94% at concentrations of 50 μM, 100 μM, and 150 μM, respectively). Further investigations revealed that DEA could reduce hyperlipidemic and hyperglycemic conditions in zebrafish larvae. Glucose levels significantly dropped in the DEA treatment, which was associated with a decline in larval weight, lipid accumulation, oxidative stress and apoptosis. Enzyme assays revealed higher antioxidant enzyme concentrations in DEA treated in-vivo larval models, which were associated with reduced expression of pro-inflammatory genes. In conclusion, the results demonstrate that DEA can alleviate oxidative stress and inflammation, effectively easing the diabesity-like state in zebrafish larvae. This offers potential avenues for developing DEA as a valuable drug candidate to manage the intricate diabesity condition.
Collapse
Affiliation(s)
- Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Pushparathinam Gopinath
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, South Korea
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
12
|
Boopathi S, Haridevamuthu B, Mendonca E, Gandhi A, Priya PS, Alkahtani S, Al-Johani NS, Arokiyaraj S, Guru A, Arockiaraj J, Malafaia G. Combined effects of a high-fat diet and polyethylene microplastic exposure induce impaired lipid metabolism and locomotor behavior in larvae and adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165988. [PMID: 37549705 DOI: 10.1016/j.scitotenv.2023.165988] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Microplastics (MP), tiny plastic particles, can be ingested by fish through their habitat or contaminated food sources. When combined with a high-fat diet (HFD), MP exposure may lead to increased MP accumulation in fish and negative impacts on their health. However, the underlying mechanisms of how MP and HFD interact to promote fat accumulation in fish remain poorly understood. In this study, we aimed to evaluate the combined effect of HFD and polyethylene MP (PE-MP) in the zebrafish model (Danio rerio) and decipher its molecular mechanisms. Adult zebrafish exposed to the combined HFD and PE-MP showed elevated lipid accumulation, total cholesterol, triglycerides, and abnormal swimming behavior compared to HFD-fed fish. Histological and gene expression analysis revealed severe hepatic inflammation and injury, resembling nonalcoholic fatty liver disease (NAFLD) in the HFD + PE-MP exposed zebrafish. Moreover, HFD and PE-MP exposure upregulated genes related to lipogenesis (SREBP1, FAS, and C/EBPα) and inflammation (tnfα, il1β, and il-6) in the liver. These findings underscore the interactive effect of environmental pollutants and fish diet, emphasizing the importance of improving fish culture practices to safeguard fish health and human consumers from microplastic contamination through the food chain. This research sheds light on the complex interactions between microplastics and diet, providing valuable insights into the potential risks of microplastic pollution in aquatic ecosystems and the implications for human health. Understanding the underlying molecular mechanisms will contribute to international research efforts to mitigate the adverse effects of microplastics on both environmental and public health.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Edrea Mendonca
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Akash Gandhi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah S Al-Johani
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
13
|
Velayutham M, Priya PS, Sarkar P, Murugan R, Almutairi BO, Arokiyaraj S, Kari ZA, Tellez-Isaias G, Guru A, Arockiaraj J. Aquatic Peptide: The Potential Anti-Cancer and Anti-Microbial Activity of GE18 Derived from Pathogenic Fungus Aphanomyces invadans. Molecules 2023; 28:6746. [PMID: 37764521 PMCID: PMC10534430 DOI: 10.3390/molecules28186746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Small molecules as well as peptide-based therapeutic approaches have attracted global interest due to their lower or no toxicity in nature, and their potential in addressing several health complications including immune diseases, cardiovascular diseases, metabolic disorders, osteoporosis and cancer. This study proposed a peptide, GE18 of subtilisin-like peptidase from the virulence factor of aquatic pathogenic fungus Aphanomyces invadans, which elicits anti-cancer and anti-microbial activities. To understand the potential GE18 peptide-induced biological effects, an in silico analysis, in vitro (L6 cells) and in vivo toxicity assays (using zebrafish embryo), in vitro anti-cancer assays and anti-microbial assays were performed. The outcomes of the in silico analyses demonstrated that the GE18 peptide has potent anti-cancer and anti-microbial activities. GE18 is non-toxic to in vitro non-cancerous cells and in vivo zebrafish larvae. However, the peptide showed significant anti-cancer properties against MCF-7 cells with an IC50 value of 35.34 µM, at 24 h. Besides the anti-proliferative effect on cancer cells, the peptide exposure does promote the ROS concentration, mitochondrial membrane potential and the subsequent upregulation of anti-cancer genes. On the other hand, GE18 elicits significant anti-microbial activity against P. aeruginosa, wherein GE18 significantly inhibits bacterial biofilm formation. Since the peptide has positively charged amino acid residues, it targets the cell membrane, as is evident in the FESEM analysis. Based on these outcomes, it is possible that the GE18 peptide is a significant anti-cancer and anti-microbial molecule.
Collapse
Affiliation(s)
- Manikandan Velayutham
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - P. Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Purabi Sarkar
- Department of Molecular Medicine, School of Allied Healthcare and Sciences, Jain Deemed-to-be University, Whitefield, Bangalore 560066, Karnataka, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Bader O. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | | | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India;
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|