1
|
Girme A, Gupta V. A Case Report of the Coexistence of Gastric Cancer With Polycystic Kidney and Liver Disease: Unveiling the Complexity. Cureus 2024; 16:e53574. [PMID: 38445116 PMCID: PMC10914406 DOI: 10.7759/cureus.53574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 03/07/2024] Open
Abstract
Polycystic kidney disease (PKD) is a genetic disorder that comprises multiple cystic lesions in the kidneys. The association of PKD with gastric cancer has been studied. We present a rare presentation of stomach cancer with polycystic liver and kidney disease. A male patient in his 40s presented with epigastric pain, nausea, retrosternal burning, and occasional episodes of vomiting. Esophagogastroduodenoscopy revealed ulceroproliferative growth in the prepyloric region. Biopsies revealed moderately differentiated adenocarcinoma which was confirmed by contrast-enhanced computed tomography of the abdomen and pelvis. This showed a chance finding of polycystic kidney and liver disease. After confirmation with a positron emission tomography scan, the patient was diagnosed with gastric carcinoma (cT3N1M0, Stage IIB) with polycystic kidney and liver disease. We provide a case of early-stage stomach cancer in a patient with PKD. More extensive research is needed for a better understanding of this association between polycystic kidney and liver disease and gastric cancer development, to achieve earlier diagnosis.
Collapse
Affiliation(s)
- Amit Girme
- General Surgery, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, IND
| | - Vernika Gupta
- General Surgery, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, IND
| |
Collapse
|
2
|
Carotenuto P, Gradilone SA, Franco B. Cilia and Cancer: From Molecular Genetics to Therapeutic Strategies. Genes (Basel) 2023; 14:1428. [PMID: 37510333 PMCID: PMC10379587 DOI: 10.3390/genes14071428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Cilia are microtubule-based organelles that project from the cell surface with motility or sensory functions. Primary cilia work as antennae to sense and transduce extracellular signals. Cilia critically control proliferation by mediating cell-extrinsic signals and by regulating cell cycle entry. Recent studies have shown that primary cilia and their associated proteins also function in autophagy and genome stability, which are important players in oncogenesis. Abnormal functions of primary cilia may contribute to oncogenesis. Indeed, defective cilia can either promote or suppress cancers, depending on the cancer-initiating mutation, and the presence or absence of primary cilia is associated with specific cancer types. Together, these findings suggest that primary cilia play important, but distinct roles in different cancer types, opening up a completely new avenue of research to understand the biology and treatment of cancers. In this review, we discuss the roles of primary cilia in promoting or inhibiting oncogenesis based on the known or predicted functions of cilia and cilia-associated proteins in several key processes and related clinical implications.
Collapse
Affiliation(s)
- Pietro Carotenuto
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
| | - Sergio A. Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brunella Franco
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- School of Advanced Studies, Genomic and Experimental medicine Program (Scuola Superiore Meridionale), 80138 Naples, Italy
| |
Collapse
|
3
|
Murakami H, Okubo S, Kobayashi M, Akabane M, Matsumura M, Shindoh J, Hashimoto M. Gallbladder cancer concomitant with autosomal dominant polycystic kidney disease: A case report. Clin Case Rep 2022; 10:e6734. [PMID: 36540879 PMCID: PMC9755817 DOI: 10.1002/ccr3.6734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
The case is a 67-year-old female with autosomal dominant polycystic kidney disease who was followed up regularly. CT scan showed a mural nodule growing over the past 4 years inside the hypodense region surrounded by hepatic cysts. Surgery was performed and the pathological diagnosis was StageI gallbladder cancer.
Collapse
Affiliation(s)
- Hisashi Murakami
- Department of Gastroenterological SurgeryToranomon HospitalTokyoJapan
| | - Satoshi Okubo
- Department of Gastroenterological SurgeryToranomon HospitalTokyoJapan
| | | | - Miho Akabane
- Department of Gastroenterological SurgeryToranomon HospitalTokyoJapan
| | - Masaru Matsumura
- Department of Gastroenterological SurgeryToranomon HospitalTokyoJapan
| | - Junichi Shindoh
- Department of Gastroenterological SurgeryToranomon HospitalTokyoJapan
| | - Masaji Hashimoto
- Department of Gastroenterological SurgeryToranomon HospitalTokyoJapan
| |
Collapse
|
4
|
Papavassiliou KA, Gargalionis AN, Papavassiliou AG. Polycystins, mechanotransduction and cancer development. J Cell Mol Med 2022; 26:2741-2743. [PMID: 35366054 PMCID: PMC9077297 DOI: 10.1111/jcmm.17298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Affiliation(s)
- Kostas A. Papavassiliou
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Antonios N. Gargalionis
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | | |
Collapse
|
5
|
Zoi I, Gargalionis AN, Papavassiliou KA, Nasiri‐Ansari N, Piperi C, Basdra EK, Papavassiliou AG. Polycystin-1 and hydrostatic pressure are implicated in glioblastoma pathogenesis in vitro. J Cell Mol Med 2022; 26:1699-1709. [PMID: 35106909 PMCID: PMC8899169 DOI: 10.1111/jcmm.17212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 01/02/2023] Open
Abstract
The mechanobiological aspects of glioblastoma (GBM) pathogenesis are largely unknown. Polycystin-1 (PC1) is a key mechanosensitive protein which perceives extracellular mechanical cues and transforms them into intracellular biochemical signals that elicit a change in cell behaviour. The aim of the present study was to investigate if and how PC1 participates in GBM pathogenesis under a mechanically induced microenvironment. Therefore, we subjected T98G GBM cells to continuous hydrostatic pressure (HP) and/or PC1 blockade and evaluated their effect on cell behaviour, the activity of signalling pathways and the expression of mechano-induced transcriptional regulators and markers associated with properties of cancer cells. According to our data, PC1 and HP affect GBM cell proliferation, clonogenicity and migration; the diameter of GBM spheroids; the phosphorylation of mechanistic target of rapamycin (mTOR), extracellular signal-regulated kinase (ERK) and focal adhesion kinase (FAK); the protein expression of transcription cofactors YES-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ); and the mRNA expression of markers related to anti-apoptosis, apoptosis, angiogenesis, epithelial to mesenchymal transition (EMT) and proliferation. Together, our in vitro results suggest that PC1 plays an important role in GBM mechanobiology.
Collapse
Affiliation(s)
- Ilianna Zoi
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Antonios N. Gargalionis
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
- Department of Biopathology‘Aeginition’ HospitalMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Kostas A. Papavassiliou
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Narjes Nasiri‐Ansari
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Christina Piperi
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Efthimia K. Basdra
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | | |
Collapse
|
6
|
Yasuda T, Ishikawa T, Hirose R, Doi T, Inoue K, Dohi O, Yoshida N, Kamada K, Uchiyama K, Takagi T, Konishi H, Inamori O, Morinaga Y, Konishi E, Naito Y, Itoh Y. Aggressive advanced gastric cancer in a patient with autosomal dominant polycystic kidney disease. Clin J Gastroenterol 2021; 14:1014-1019. [PMID: 34028786 DOI: 10.1007/s12328-021-01407-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
A 60-year-old man with autosomal dominant polycystic kidney disease presented with malaise, melena, and epigastric discomfort. Esophagogastroduodenoscopy revealed a massive elevated gastric cancer lesion involving the cardia. Histopathological evaluation of a biopsy specimen showed poorly differentiated adenocarcinoma. Fluorodeoxyglucose-positron emission tomography revealed significant fluorodeoxyglucose uptake in the stomach, liver, bones, and bone marrow. He was diagnosed with metastatic gastric cancer resistant to chemotherapy, and he developed bone marrow carcinomatosis and disseminated intravascular coagulation and died 8 weeks after disease onset. A statistically significant association is reported between autosomal dominant polycystic kidney disease and gastric cancer. Moreover, the specific clinical features observed in our patient could be attributed to the molecular disorders like PC-1 and mechanistic target of rapamycin that are known to occur in autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Takeshi Yasuda
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takeshi Ishikawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Ryohei Hirose
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshifumi Doi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ken Inoue
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Naohisa Yoshida
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuhiro Kamada
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuhiko Uchiyama
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomohisa Takagi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hideyuki Konishi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Osamu Inamori
- Department of Surgical Pathology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiko Morinaga
- Department of Surgical Pathology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
7
|
Gargalionis AN, Basdra EK, Papavassiliou AG. Polycystins and Mechanotransduction in Human Disease. Int J Mol Sci 2019; 20:2182. [PMID: 31052533 PMCID: PMC6539061 DOI: 10.3390/ijms20092182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/20/2022] Open
Abstract
Alterations in the process of mechanotransduction have been implicated in the pathogenesis of several diseases such as genetic diseases, osteoporosis, cardiovascular anomalies, and cancer. Several studies over the past twenty years have demonstrated that polycystins (polycystin-1, PC1; and polycystin-2, PC2) respond to changes of extracellular mechanical cues, and mediate pathogenic mechanotransduction and cyst formation in kidney cells. However, recent reports reveal the emergence of polycystins as key proteins that facilitate the transduction of mechano-induced signals in various clinical entities besides polycystic kidney disease, such as cancer, cardiovascular defects, bone loss, and deformations, as well as inflammatory processes like psoriasis. Herewith, we discuss data from recent studies that establish this role with potential clinical utility.
Collapse
Affiliation(s)
- Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
8
|
Gargalionis AN, Basdra EK, Papavassiliou AG. Polycystins in Colorectal Cancer. Int J Mol Sci 2018; 20:104. [PMID: 30597875 PMCID: PMC6337659 DOI: 10.3390/ijms20010104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 12/18/2022] Open
Abstract
Cell and extracellular matrix (ECM) biomechanics emerge as a distinct feature during the development and progression of colorectal cancer (CRC). Polycystins are core mechanosensitive protein molecules that mediate mechanotransduction in a variety of epithelial cells. Polycystin-1 (PC1) and polycystin-2 (PC2) are engaged in signal transduction mechanisms and during alterations in calcium influx, which regulate cellular functions such as proliferation, differentiation, orientation, and migration in cancer cells. Recent findings implicate polycystins in the deregulation of such functions and the formation of CRC invasive phenotypes. Polycystins participate in all aspects of the cell's biomechanical network, from the perception of extracellular mechanical cues to focal adhesion protein and nuclear transcriptional complexes. Therefore, polycystins could be employed as novel biomarkers and putative targets of selective treatment in CRC.
Collapse
Affiliation(s)
- Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
9
|
Sun AJ, Gao HB, Liu G, Ge HF, Ke ZP, Li S. Identification of MSX1 and DCLK1 as mRNA Biomarkers for Colorectal Cancer Detection Through DNA Methylation Information. J Cell Physiol 2017; 232:1879-1884. [PMID: 27966796 DOI: 10.1002/jcp.25733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/13/2016] [Indexed: 11/11/2022]
Abstract
Colorectal cancer is the second most deadly malignancy in the United States. However, the currently screening options had their limitation. Novel biomarkers for colorectal cancer detections are necessary to reduce the mortality. The clinical information, mRNA expression levels and DNA methylation information of colorectal cancer were downloaded from TCGA. The patients were separated into training group and testing group based on their platforms for DNA methylation. Beta values of DNA methylation from tumor tissues and normal tissues were utilized to figure out the position that were differentially methylated. The expression levels of mRNA of thirteen genes, whose CpG islands were differentially methylated, were extracted from the RNA-Seq results from TCGA. The probabilities whether the mRNA was differentially expressed between tumor and normal samples were calculated using Student's t-test. Logistic regression and decision tree were built for cancer detection and their performances were evaluated by the area under the curve (AUC). Twenty-four genomic locations were differentially methylated, which could be mapped to eleven genes. Nine out of eleven genes had differentially expressed mRNA levels, which were used to build the model for cancer detection. The final detection models consisting of mRNA expression levels of these nine genes had great performances on both training group and testing group. The model that constructed in this study suggested MSX1 and DCLK1 might be used in colorectal cancer detection or as target of cancer therapies. J. Cell. Physiol. 232: 1879-1884, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ai-Jun Sun
- Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Hai-Bo Gao
- Department of General Surgery, Huai'an Tumor Hospital, Huai'an, China
| | - Gao Liu
- Department of Gastrointestinal Surgery, Enshi Clinical College of Wuhan University, Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei, China
| | - Heng-Fa Ge
- Department of Intestinal Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Zun-Ping Ke
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Sen Li
- Department of Spinal Surgery, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Gargalionis AN, Papavassiliou KA, Basdra EK, Papavassiliou AG. Polycystins: Mechanosensors with Diagnostic and Prognostic Potential in Cancer. Trends Mol Med 2016; 22:7-9. [DOI: 10.1016/j.molmed.2015.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 12/11/2022]
|
11
|
Qian B, Yao Y, Liu Y, Yan M, Huang Y, Chen Y. Nucleolin identified by comparative mass‑spectra analysis is a potential marker for invasive progression of hepatocellular carcinoma. Mol Med Rep 2014; 10:1489-94. [PMID: 24927373 DOI: 10.3892/mmr.2014.2321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 03/07/2014] [Indexed: 11/06/2022] Open
Abstract
At present, the diagnosis and prognosis of hepatocellular carcinoma (HCC) metastasis remains poor. Recently, a number of proteins associated with the metastasis and invasion of HCC were identified; however, the effective markers require further elucidation. In the current study, a nucleolin expression was observed in MHCC97L and HCCLM9 HCC cell lines, with low and high metastatic potentials respectively, using comparative proteomics. The data indicated that nucleolin expression in the nucleus was significantly higher in HCCLM9 cells, and it primarily influenced the migration of HCC cells in vitro. Thus, to the best of our knowledge this is the first study to hypothesize that nucleolin may be a novel marker for HCC invasive progression.
Collapse
Affiliation(s)
- Bin Qian
- Department of Anesthesiology, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yusheng Yao
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yihong Liu
- Diabetic Center of Control and Prevention, The PLA 520 Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Maolin Yan
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Ying Huang
- Department of Pathology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yanqing Chen
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
12
|
Taskiran EZ, Korkmaz E, Gucer S, Kosukcu C, Kaymaz F, Koyunlar C, Bryda EC, Chaki M, Lu D, Vadnagara K, Candan C, Topaloglu R, Schaefer F, Attanasio M, Bergmann C, Ozaltin F. Mutations in ANKS6 cause a nephronophthisis-like phenotype with ESRD. J Am Soc Nephrol 2014; 25:1653-61. [PMID: 24610927 DOI: 10.1681/asn.2013060646] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nephronophthisis (NPHP) is one of the most common genetic causes of CKD; however, the underlying genetic abnormalities have been established in <50% of patients. We performed genome-wide analysis followed by targeted resequencing in a Turkish consanguineous multiplex family and identified a canonic splice site mutation in ANKS6 associated with an NPHP-like phenotype. Furthermore, we identified four additional ANKS6 variants in a cohort of 56 unrelated patients diagnosed with CKD due to nephronophthisis, chronic GN, interstitial nephritis, or unknown etiology. Immunohistochemistry in human embryonic kidney tissue demonstrated that the expression patterns of ANKS6 change substantially during development. Furthermore, we detected increased levels of both total and active β-catenin in precystic tubuli in Han:SPRD Cy/+ rats. Overall, these data indicate the importance of ANKS6 in human kidney development and suggest a mechanism by which mutations in ANKS6 may contribute to an NPHP-like phenotype in humans.
Collapse
Affiliation(s)
- Ekim Z Taskiran
- Nephrogenetics Laboratory, andDepartments of Medical Genetics
| | | | | | | | | | | | - Elizabeth C Bryda
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | | | | | | | - Cengiz Candan
- **Department of Pediatric Nephrology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Rezan Topaloglu
- Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Franz Schaefer
- Pediatric Nephrology Division, Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | - Massimo Attanasio
- Department of Internal Medicine, andEugene McDermott Center for Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany; Department of Nephrology and Center for Clinical Research, University Hospital, Freiburg, Germany; and
| | - Fatih Ozaltin
- Nephrogenetics Laboratory, andPediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey; Hacettepe University Center for Biobanking and Genomics, Ankara, Turkey
| |
Collapse
|
13
|
Beheshti A, Peluso M, Lamont C, Hahnfeldt P, Hlatky L. Proton irradiation augments the suppression of tumor progression observed with advanced age. Radiat Res 2014; 181:272-83. [PMID: 24568128 DOI: 10.1667/rr13538.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Proton radiation is touted for improved tumor targeting, over standard gamma radiation, due to the physical advantages of ion beams for radiotherapy. Recent studies from our laboratory demonstrate that in addition to these targeting advantages, proton irradiation can inhibit angiogenic and immune factors critical to "hallmark" processes that impact cancer progression, thereby modulating tumor development. Outside the therapeutic utilization of protons, high-energy protons constitute a principal component of galactic cosmic rays and thus are a consideration in carcinogenesis risk for space flight. Given that proton irradiation modulates fundamental biological processes known to decrease with aging (e.g. angiogenesis and immunogenicity), we investigated how proton irradiation impacts tumor advancement as a function of host age, a question with both therapeutic and carcinogenesis implications. Tumor lag time and growth dynamics were tracked, after injection of murine Lewis lung carcinoma (LLC) cells into syngeneic adolescent (68 day) vs. old (736 day) C57BL/6 mice with or without coincident irradiation. Tumor growth was suppressed in old compared to adolescent mice. These differences were further modulated by proton irradiation (1 GeV), with increased inhibition and a significant radiation-altered molecular fingerprint evident in tumors grown in old mice. Through global transcriptome analysis, TGFβ1 and TGFβ2 were determined to be key players that contributed to the tumor dynamics observed. These findings suggest that old hosts exhibit a reduced capacity to support tumor advancement, which can be further reduced by proton irradiation.
Collapse
Affiliation(s)
- Afshin Beheshti
- Center of Cancer Systems Biology, GRI, Tufts University School of Medicine, Boston, Massachusetts 02135
| | | | | | | | | |
Collapse
|
14
|
Genetic control of renal tumorigenesis by the mouse Rtm1 locus. BMC Genomics 2013; 14:724. [PMID: 24148528 PMCID: PMC4046818 DOI: 10.1186/1471-2164-14-724] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/11/2013] [Indexed: 01/04/2023] Open
Abstract
Background The genetic basis of susceptibility to renal tumorigenesis has not yet been established in mouse strains. Mouse lines derived by bidirectional phenotypic selection on the basis of their maximal (AIRmax) or minimal (AIRmin) acute inflammatory responsiveness differ widely in susceptibility to spontaneous and urethane-induced renal tumorigenesis. To map the functional loci modulating renal tumor susceptibility in these mice, we carried out a genome-wide genetic linkage study, using SNP arrays, in an (AIRmax x AIRmin)F2 intercross population treated with a single urethane dose at 1 week of age and phenotyped for renal tumors at 35 weeks of age. Results AIRmax mice did not develop renal tumors spontaneously nor in response to urethane, whereas in AIRmin mice renal tumors formed spontaneously (in 52% of animals) and after urethane induction (89%). The tumors had a papillary morphology and were positive for alpha-methylacyl-CoA racemase and negative for CD10. By analysis of 879 informative SNPs in 662 mice, we mapped a single quantitative trait locus modulating the incidence of renal tumors in the (AIRmax x AIRmin)F2 intercross population. This locus, which we named Renal tumor modifier QTL 1 (Rtm1), mapped to chromosome 17 at 23.4 Mb (LOD score = 15.8), with SNPs rs3696835 and rs3719497 flanking the LOD score peak. The A allele of rs3719497 from AIRmin mice was associated with a 2.5-fold increased odds ratio for renal tumor development. The LOD score peak included the Tuberous sclerosis 2 (Tsc2) gene which has already been implicated in kidney disease: loss of function by germline retroviral insertion is associated with spontaneous renal tumorigenesis in the Eker rat, and heterozygous-null Tsc2(+/-) mice develop renal cystadenomas. Conclusions We mapped Rtm1 as a single major locus modulating renal tumorigenesis in a murine intercross population. Thus, the AIR mouse lines can be considered a new genetic model for studying the role of germline and somatic molecular alterations in kidney neoplastic disease.
Collapse
|
15
|
PKD controls αvβ3 integrin recycling and tumor cell invasive migration through its substrate Rabaptin-5. Dev Cell 2013; 23:560-72. [PMID: 22975325 DOI: 10.1016/j.devcel.2012.08.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/05/2012] [Accepted: 08/14/2012] [Indexed: 11/21/2022]
Abstract
Integrin recycling is critical for cell migration. Protein kinase D (PKD) mediates signals from the platelet-derived growth factor receptor (PDGF-R) to control αvβ3 integrin recycling. We now show that Rabaptin-5, a Rab5 effector in endosomal membrane fusion, is a PKD substrate. PKD phosphorylates Rabaptin-5 at Ser407, and this is both necessary and sufficient for PDGF-dependent short-loop recycling of αvβ3, which in turn inhibits α5β1 integrin recycling. Rab4, but not Rab5, interacts with phosphorylated Rabaptin-5 toward the front of migrating cells to promote delivery of αvβ3 to the leading edge, thereby driving persistent cell motility and invasion that is dependent on this integrin. Consistently, disruption of Rabaptin-5 Ser407 phosphorylation reduces persistent cell migration in 2D and αvβ3-dependent invasion. Conversely, invasive migration that is dependent on α5β1 integrin is promoted by disrupting Rabaptin phosphorylation. These findings demonstrate that the PKD pathway couples receptor tyrosine kinase signaling to an integrin switch via Rabaptin-5 phosphorylation.
Collapse
|
16
|
You N, Liu W, Tang L, Zhong X, Ji R, Zhang N, Wang D, He Y, Dou K, Tao K. Tg737 signaling is required for hypoxia-enhanced invasion and migration of hepatoma cells. J Exp Clin Cancer Res 2012; 31:75. [PMID: 22974282 PMCID: PMC3523075 DOI: 10.1186/1756-9966-31-75] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/03/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Although hypoxia is known to promote hepatoma cell invasion and migration, little is known regarding the molecular mechanisms of this process. Our previous research showed that loss of Tg737 is associated with hepatoma cell invasion and migration; therefore, we hypothesized that the Tg737 signal might be required for hypoxia-enhanced invasion and migration. METHODS We established in vitro normoxic or hypoxic models to investigate the role of Tg737 in the hypoxia-enhanced invasion and migration of hepatoma cells. The hepatoma cell lines HepG2 and MHCC97-H were subjected to normoxic or hypoxic conditions, and the cell adhesion, invasion, and migration capabilities were tested. The expression of Tg737 under normoxia or hypoxia was detected using western blot assays; cell viability was determined using flow cytometry. Furthermore, we created HepG2 and MHCC97-H cells that over expressed Tg737 prior to incubation under hypoxia and investigated their metastatic characteristics. Finally, we analyzed the involvement of critical molecular events known to regulate invasion and migration. RESULTS In this study, Tg737 expression was significantly inhibited in HepG2 and MHCC97-H cells following exposure to hypoxia. The down regulation of Tg737 expression corresponded to significantly decreased adhesion and increased invasion and migration. Hypoxia also decreased the expression/secretion of polycystin-1, increased the secretion of interleukin-8 (IL-8), and increased the levels of active and total transforming growth factor β 1 (TGF-β1), critical regulators of cell invasion and migration. Moreover, the decrease in adhesiveness and the increase in the invasive and migratory capacities of hypoxia-treated hepatoma cells were attenuated by pcDNA3.1-Tg737 transfection prior to hypoxia. Finally, following the up regulation of Tg737, the expression/secretion of polycystin-1 increased, and the secretion of IL-8 and the levels of active and total TGF-β1 decreased correspondingly. CONCLUSIONS These data provide evidence that Tg737 contributes to hypoxia-induced invasion and migration, partially through the polycystin-1, IL-8, and TGF-β1 pathway. Taken together, this work suggests that Tg737 is involved in the invasion and migration of hepatoma cells under hypoxia, with the involvement of the polycystin-1, IL-8, and TGF-β1 signaling pathway. Tg737 is a potential therapeutic target for inhibiting the high invasion and migration potential of hepatoma cells in hypoxic regions.
Collapse
Affiliation(s)
- Nan You
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Weihui Liu
- PLA Center of General Surgery; General Hospital of Chengdu Army Region, Chengdu, 610083, China
| | - Lijun Tang
- PLA Center of General Surgery; General Hospital of Chengdu Army Region, Chengdu, 610083, China
| | - Xiao Zhong
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, PR China
| | - Ru Ji
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Ning Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Desheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yong He
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
17
|
Franz-Wachtel M, Eisler SA, Krug K, Wahl S, Carpy A, Nordheim A, Pfizenmaier K, Hausser A, Macek B. Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 2012; 11:160-70. [PMID: 22496350 DOI: 10.1074/mcp.m111.016014] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Protein kinase D (PKD) is a cytosolic serine/threonine kinase implicated in regulation of several cellular processes such as response to oxidative stress, directed cell migration, invasion, differentiation, and fission of the vesicles at the trans-Golgi network. Its variety of functions must be mediated by numerous substrates; however, only a couple of PKD substrates have been identified so far. Here we perform stable isotope labeling of amino acids in cell culture-based quantitative phosphoproteomic analysis to detect phosphorylation events dependent on PKD1 activity in human cells. We compare relative phosphorylation levels between constitutively active and kinase dead PKD1 strains of HEK293 cells, both treated with nocodazole, a microtubule-depolymerizing reagent that disrupts the Golgi complex and activates PKD1. We identify 124 phosphorylation sites that are significantly down-regulated upon decrease of PKD1 activity and show that the PKD target motif is significantly enriched among down-regulated phosphorylation events, pointing to the presence of direct PKD1 substrates. We further perform PKD1 target motif analysis, showing that a proline residue at position +1 relative to the phosphorylation site serves as an inhibitory cue for PKD1 activity. Among PKD1-dependent phosphorylation events, we detect predominantly proteins with localization at Golgi membranes and function in protein sorting, among them several sorting nexins and members of the insulin-like growth factor 2 receptor pathway. This study presents the first global detection of PKD1-dependent phosphorylation events and provides a wealth of information for functional follow-up of PKD1 activity upon disruption of the Golgi network in human cells.
Collapse
|
18
|
Merrick D, Chapin H, Baggs JE, Yu Z, Somlo S, Sun Z, Hogenesch JB, Caplan M. The γ-secretase cleavage product of polycystin-1 regulates TCF and CHOP-mediated transcriptional activation through a p300-dependent mechanism. Dev Cell 2012; 22:197-210. [PMID: 22178500 PMCID: PMC3264829 DOI: 10.1016/j.devcel.2011.10.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 08/01/2011] [Accepted: 10/26/2011] [Indexed: 12/28/2022]
Abstract
Mutations in Pkd1, encoding polycystin-1 (PC1), cause autosomal-dominant polycystic kidney disease (ADPKD). We show that the carboxy-terminal tail (CTT) of PC1 is released by γ-secretase-mediated cleavage and regulates the Wnt and CHOP pathways by binding the transcription factors TCF and CHOP, disrupting their interaction with the common transcriptional coactivator p300. Loss of PC1 causes increased proliferation and apoptosis, while reintroducing PC1-CTT into cultured Pkd1 null cells reestablishes normal growth rate, suppresses apoptosis, and prevents cyst formation. Inhibition of γ-secretase activity impairs the ability of PC1 to suppress growth and apoptosis and leads to cyst formation in cultured renal epithelial cells. Expression of the PC1-CTT is sufficient to rescue the dorsal body curvature phenotype in zebrafish embryos resulting from either γ-secretase inhibition or suppression of Pkd1 expression. Thus, γ-secretase-dependent release of the PC1-CTT creates a protein fragment whose expression is sufficient to suppress ADPKD-related phenotypes in vitro and in vivo.
Collapse
Affiliation(s)
- David Merrick
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Hannah Chapin
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Julie E. Baggs
- Department of Pharmacology, Institute of Translational Medicine and Therapeutics, Penn Genome Frontiers Institute, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Zhiheng Yu
- Department of Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT
| | - Stefan Somlo
- Department of Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - John B. Hogenesch
- Department of Pharmacology, Institute of Translational Medicine and Therapeutics, Penn Genome Frontiers Institute, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Michael Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
19
|
Mimatsu K, Oida T, Kawasaki A, Kano H, Kida K, Fukino N, Kuboi Y, Amano S. Multiple Gastric Carcinomas Associated with Potter Type III Cystic Disease. Case Rep Gastroenterol 2011; 5:590-6. [PMID: 22110420 PMCID: PMC3219483 DOI: 10.1159/000329179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report a case of multiple gastric carcinomas associated with Potter type III cystic disease of the liver, mesenterium and kidney. A 65-year-old man with chronic renal failure due to polycystic kidneys and under hemodialysis treatment 3 times a week for 2 years was admitted to our hospital because of anemia. He stated that his sister had suffered from polycystic kidney disease. Gastrointestinal fiberscopy showed two lesions in the lesser curvature in the lower portion of the stomach, and histopathological analysis of the gastric tumor biopsies revealed that one of the tumors was a papillary adenocarcinoma and the other a poorly differentiated adenocarcinoma. Helicobacter pylori infection was not detected in the stomach mucosa. Abdominal computed tomography scan revealed polycystic lesions in the liver, mesenterium and both kidneys. These imaging findings and family history suggested that the patient suffered from multiple gastric carcinomas associated with Potter type III cystic disease of the liver, mesenterium and kidney. Reports on the association of malignant neoplasm with Potter type III cystic disease are extremely rare. Especially, no case of the association of gastric carcinoma with Potter type III cystic disease of the liver and kidney has been described previously. This is a first report of the association of gastric carcinoma with Potter type III cystic disease. We also review reports of other malignant neoplasms associated with polycystic disease.
Collapse
Affiliation(s)
- Kenji Mimatsu
- Department of Surgery, Social Insurance Yokohama Central Hospital, Yokahama
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ai J, Huang H, Lv X, Tang Z, Chen M, Chen T, Duan W, Sun H, Li Q, Tan R, Liu Y, Duan J, Yang Y, Wei Y, Li Y, Zhou Q. FLNA and PGK1 are two potential markers for progression in hepatocellular carcinoma. Cell Physiol Biochem 2011; 27:207-16. [PMID: 21471709 DOI: 10.1159/000327946] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2011] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/AIMS Hepatocellular carcinoma (HCC) is one of the most deadly diseases; metastasis and recurrence are the most important factors that affect the therapy of HCC chronically. Until now, the prognosis for the metastasis of HCC had not improved. Recently, several proteins that are related to metastasis and invasion of HCC were identified, but the effective markers still remain to be elucidated. METHODS In this study, comparative proteomics was used to study the differentially expressed proteins in two HCC cell lines MHCC97L and HCCLM9, which have low and high metastatic potentials, respectively. RESULTS Our findings indicated that filamin A (FLNA) and phosphoglycerate kinase 1 (PGK1) were two significantly differentially expressed proteins, with high expression in HCCLM9 cells, and may influence the metastasis of HCC cells. CONCLUSION Taken together with the confirmation of expression on the mRNA level, we propose the use of FLNA and PGK1 as potential markers for the progression of HCC.
Collapse
Affiliation(s)
- Jianzhong Ai
- Core Facility of Genetically Engineered Mice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lancaster MA, Gleeson JG. Cystic kidney disease: the role of Wnt signaling. Trends Mol Med 2010; 16:349-60. [PMID: 20576469 PMCID: PMC2919646 DOI: 10.1016/j.molmed.2010.05.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/19/2010] [Accepted: 05/19/2010] [Indexed: 02/07/2023]
Abstract
Wnt signaling encompasses a variety of signaling cascades that can be activated by secreted Wnt ligands. Two such pathways, the canonical or beta-catenin pathway and the planar cell polarity (PCP) pathway, have recently received attention for their roles in multiple cellular processes within the kidney. Both of these pathways are important for kidney development as well as homeostasis and injury repair. The disruption of either pathway can lead to cystic kidney disease, a class of genetic diseases that includes the most common hereditary life-threatening syndrome polycystic kidney disease (PKD). Recent evidence implicates canonical and noncanonical Wnt pathways in cyst formation and points to a remarkable role for developmental processes in the adult kidney.
Collapse
Affiliation(s)
- Madeline A Lancaster
- Biomedical Sciences Program, Howard Hughes Medical Institutes, Department of Neurosciences, University of California, San Diego, USA.
| | | |
Collapse
|
22
|
Bandyopadhyay N, Kahveci T, Goodison S, Sun Y, Ranka S. Pathway-BasedFeature Selection Algorithm for Cancer Microarray Data. Adv Bioinformatics 2010; 2009:532989. [PMID: 20204186 PMCID: PMC2831238 DOI: 10.1155/2009/532989] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 11/30/2009] [Indexed: 01/09/2023] Open
Abstract
Classification of cancers based on gene expressions produces better accuracy when compared to that of the clinical markers. Feature selection improves the accuracy of these classification algorithms by reducing the chance of overfitting that happens due to large number of features. We develop a new feature selection method called Biological Pathway-based Feature Selection (BPFS) for microarray data. Unlike most of the existing methods, our method integrates signaling and gene regulatory pathways with gene expression data to minimize the chance of overfitting of the method and to improve the test accuracy. Thus, BPFS selects a biologically meaningful feature set that is minimally redundant. Our experiments on published breast cancer datasets demonstrate that all of the top 20 genes found by our method are associated with cancer. Furthermore, the classification accuracy of our signature is up to 18% better than that of vant Veers 70 gene signature, and it is up to 8% better accuracy than the best published feature selection method, I-RELIEF.
Collapse
Affiliation(s)
- Nirmalya Bandyopadhyay
- Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Tamer Kahveci
- Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Steve Goodison
- Anderson Cancer Center Orlando, Cancer Research Institute Orlando, FL 32827, USA
| | - Y. Sun
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Sanjay Ranka
- Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
23
|
Ai J, Duan J, Lv X, Chen M, Yang Q, Sun H, Li Q, Xiao Y, Wang Y, Zhang Z, Tan R, Liu Y, Zhao D, Chen T, Yang Y, Wei Y, Zhou Q. Overexpression of FoxO1 causes proliferation of cultured pancreatic beta cells exposed to low nutrition. Biochemistry 2010; 49:218-25. [PMID: 19938874 DOI: 10.1021/bi901414g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Multiple lines of evidence have shown that the functional defect of pancreatic beta cells is the root cause of type 2 diabetes. FoxO1, a key transcription factor of fundamental cellular physiology and functions, has been implicated in this process. However, the underlying molecular mechanism is still largely unknown. Here, we show that the overexpression of FoxO1 promotes the proliferation of cultured pancreatic beta cells exposed to low nutrition, while no change in apoptosis was observed compared with the control group. Moreover, by using two specific inhibitors for PI3K and MAPK signaling, we found that FoxO1 might be the downstream transcription factor of these two pathways. Furthermore, a luciferase assay demonstrated that FoxO1 could regulate the expression of Ccnd1 at the transcription level. Collectively, our findings indicated that FoxO1 modulated by both MAPK and PI3K signaling pathways was prone to cause the proliferation, but not the apoptosis, of pancreatic beta cells exposed to low nutrition, at least partially, by regulating the expression of Ccnd1 at the transcription level.
Collapse
Affiliation(s)
- Jianzhong Ai
- Core Facility of Genetically Engineered Mice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yamanaka H, Asamoto H, Ishizaka T, Kawai S, Matsunaga H, Kitoh Y, Kamiya S, Matsuzaki Y. A Case of Gastric Cancer with Autosomal Dominant Polycystic Kidney Disease. ACTA ACUST UNITED AC 2010. [DOI: 10.5833/jjgs.43.628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Impaired Wnt-beta-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy. Nat Med 2009; 15:1046-54. [PMID: 19718039 DOI: 10.1038/nm.2010] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 06/24/2009] [Indexed: 11/09/2022]
Abstract
Cystic kidney disease represents a major cause of end-stage renal disease, yet the molecular mechanisms of pathogenesis remain largely unclear. Recent emphasis has been placed on a potential role for canonical Wnt signaling, but investigation of this pathway in adult renal homeostasis is lacking. Here we provide evidence of a previously unidentified canonical Wnt activity in adult mammalian kidney homeostasis, the loss of which leads to cystic kidney disease. Loss of the Jouberin (Jbn) protein in mouse leads to the cystic kidney disease nephronophthisis, owing to an unexpected decrease in endogenous Wnt activity. Jbn interacts with and facilitates beta-catenin nuclear accumulation, resulting in positive modulation of downstream transcription. Finally, we show that Jbn is required in vivo for a Wnt response to injury and renal tubule repair, the absence of which triggers cystogenesis.
Collapse
|
26
|
Ramdas L, Giri U, Ashorn CL, Coombes KR, El-Naggar A, Ang KK, Story MD. miRNA expression profiles in head and neck squamous cell carcinoma and adjacent normal tissue. Head Neck 2009; 31:642-54. [PMID: 19260130 DOI: 10.1002/hed.21017] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The expression of miRNA in head and neck squamous cell carcinomas (HNSCCs) that had been classified as high risk by surgical pathologic features and validated by trial outcome for disease recurrence was determined and compared with matched adjacent normal tissues. METHODS miRNA and corresponding gene expression were determined using miRNA bioarrays and gene expression arrays. RESULTS Twenty miRNAs were determined to be differentially regulated in the HNSCC samples when compared with their normal tissue counterparts. Quantitative reverse transcriptase-polymerase chain reaction confirmed differential regulation of miRNA expression, and gene expression analysis on these same-paired samples confirmed the loss of putative mRNA targets including genes such as adenomatous polyposis coli, programmed cell death protein 4, and TGF beta receptor 3 in the tumor samples. CONCLUSIONS These data suggest a role for the upregulation of specific miRNAs in high-risk HNSCC. Furthermore, upregulation of these miRNAs may be responsible for the elimination of mRNAs that lead to the growth and progression of HNSCC.
Collapse
Affiliation(s)
- Latha Ramdas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Bian GH, Cao G, Lv XY, Li QW, Sun H, Xiao Y, Ai JZ, Yang QT, Duan JJ, Wang YD, Zhang Z, Tan RZ, Liu YH, Yang Y, Wei YQ, Zhou Q. Down-regulation of Pkd2 by siRNAs suppresses cell-cell adhesion in the mouse melanoma cells. Mol Biol Rep 2009; 37:2387-95. [PMID: 19688268 DOI: 10.1007/s11033-009-9746-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 08/05/2009] [Indexed: 02/05/2023]
Abstract
The Pkd2 gene encodes an integral protein (~130 kDa), named polycystin-2 (PC-2). PC-2 is mainly involved in autosomal dominant polycystic kidney disease. Recently, polycystin-1/polycystin-2 complex has been shown to act as an adhesion complex mediating or regulating cell-cell or cell-matrix adhesion, suggesting that PC-2 may play a role in cell-cell/cell-matrix interactions. Here, we knocked down the expression of Pkd2 gene with small interfering RNAs (siRNAs) in the mouse melanoma cells (B16 cells), indicating that the cells transfected with the targeted siRNAs significantly suppressed cell-cell adhesion, but not cell-matrix adhesion, compared to the cells transfected with non-targeted control (NC) siRNA. This study provides the first directly functional evidence that PC-2 mediates cell-cell adhesion. Furthermore, we demonstrated that PC-2 modulated cell-cell adhesion may be, at least partially, associated with E-cadherin. Collectively, these findings for the first time showed that PC-2 may mediate cell-cell adhesion, at least partially, through E-cadherin.
Collapse
Affiliation(s)
- Guo-Hui Bian
- Core Facility of Gene Engineered Mice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Keyuan the Fourth Road, The District of Hi&Tech, 610041 Chengdu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang YD, Bian GH, Lv XY, Zheng R, Sun H, Zhang Z, Chen Y, Li QW, Xiao Y, Yang QT, Ai JZ, Wei YQ, Zhou Q. TC1 (C8orf4) is involved in ERK1/2 pathway-regulated G1- to S-phase transition. BMB Rep 2008; 41:733-8. [DOI: 10.5483/bmbrep.2008.41.10.733] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|