1
|
Kurtul BE, Sipal C, El C. Ocular haemodynamics in children with vitamin D deficiency. Eye (Lond) 2025; 39:938-942. [PMID: 39623114 PMCID: PMC11933269 DOI: 10.1038/s41433-024-03528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND To evaluate the retinal and optic nerve head microvasculature in children with vitamin D deficiency using optical coherence tomography angiography (OCTA). METHODS This prospective, cross-sectional study included 74 eyes of 37 children with vitamin D deficiency (Group I) and 64 eyes of 32 healthy children (Group II). All participants underwent OCTA examinations. Foveal retinal thickness (FRT), peripapillary retinal nerve fibre layer (RNFL) thickness, vessel density (VD) in different sections of the retina, and optic disc were analysed and compared between the groups. RESULTS The mean ages, gender, mean intraocular pressures, and central corneal thickness levels were similar between the groups. The mean vitamin D levels measured from the venous blood samples of the participants were 11.42 ± 4.94 ng/mL in Group I and 26.03 ± 11.08 ng/mL in Group II, and the difference between these values was statistically significant (P < 0.001). There was no significant difference regarding optic disc capillary densities between the groups. However, compared with the Group II, Group I showed significantly higher values of FRT, and lower values of superficial whole, parafoveal and perifoveal VD (287.58 ± 12.43 mm vs 258.21 ± 22.68, P < 0.001, 50.85 ± 2.15% vs 51.77 ± 2.30%, P = 0.01, 54.05 ± 2.83% vs 55.18 ± 2.40%, P = 0.01, 51.27 ± 2.21% vs 52.11 ± 2.27%, P = 0.03, respectively). The vitamin D levels showed significantly negative correlation with FRT values in Group I (r = -0.439, P = 0.001). CONCLUSIONS Vitamin D deficiency seems to be associated with higher values of FRT and decreased levels of superficial VD. Retinal microvascular architecture may be affected in paediatric subjects who have vitamin D deficiency.
Collapse
Affiliation(s)
- Bengi Ece Kurtul
- Faculty of Medicine, Department of Ophthalmology, Hatay Mustafa Kemal University Tayfur Ata Sökmen, Hatay, Turkey.
| | - Cansu Sipal
- Faculty of Medicine, Department of Ophthalmology, Hatay Mustafa Kemal University Tayfur Ata Sökmen, Hatay, Turkey
| | - Cigdem El
- Faculty of Medicine, Department of Pediatrics, Hatay Mustafa Kemal University Tayfur Ata Sökmen, Hatay, Turkey
| |
Collapse
|
2
|
Jurševičs K, Jurševičs E, Krasiļņikova J, Šķesters A, Lece A, Skadiņš I. Antioxidant Status in Patients after Breast Mastopexy and Augmentation. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1046. [PMID: 39064475 PMCID: PMC11278537 DOI: 10.3390/medicina60071046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Mammary gland surgery has become very common, but there are complications of these operations, including the concept of breast implant illness (BII) in women with silicone gel breast implants (SBI), who suffer from various symptoms such as myalgia, arthralgia, fatigue, fever, dry eyes, or dry mouth. Silicone biomaterials are synthetic polymers that have their own physical and chemical properties and can exert their effect at the site of use and possibly on the general status of the body, causing inflammation and oxidative stress signs. The aim of the study was to examine components of the blood antioxidant system (AOS) of the mastopexy and breast augmentation patients before the operation, on the first post-op day, and 6 months after surgery. Materials and Methods: Healthy breast surgery patients (women aged 31 to 60 years without visible pathologies) were selected for the study and formed 2 groups: breast lift-mastopexy without silicone biomaterials (I group, 30 patients) and breast augmentation using silicone biomaterials (II group, 28 patients). All patients underwent standard preoperative tests. Glutathione peroxidase (GPxSe) and gamma-glutamyl transferase (GGT) in blood, selenium (Se), selenium protein P (SelPP), and total antioxidant status (TAS) in plasma were measured as AOS parameters. The concentration of vitamin D was also determined. A total of 174 blood tests were performed. Results: Overall, there were no differences in both groups in measured antioxidant system indicators over time; neither changes in objective nor subjective status were observed. However, baseline activity of GPxSe was relatively high but restored to normal values 6 months after surgery. In the mastopexy group, GPxSe decreased from 12,961.7 U/L by 18.9% to 10,513.4 U/L, and in the breast augmentation group, from 15,505.0 U/L by 25.1% to 11,265.5 U/L, which is a decrease of 18.9% and 25.1%, respectively. The patients did not note any complaints; other indicators of standard biochemical tests were within normal limits. Conclusions: The two types of surgical interventions, breast mastopexy and augmentation of the mammary glands, do not significantly impact blood AOS and are physiological in nature.
Collapse
Affiliation(s)
- Kirils Jurševičs
- Department of Doctoral Studies, Riga Stradiņš University, LV1007 Riga, Latvia
| | - Eduards Jurševičs
- Clinic of Aesthetic Medicine of Medical Doctor Edward Yurshevich, LV1010 Riga, Latvia;
| | - Jeļena Krasiļņikova
- Department of Human Physiology and Biochemistry, Rīga Stradiņš University, LV1007 Riga, Latvia;
| | - Andrejs Šķesters
- Scientific Laboratory of Biochemistry, Riga Stradiņš University, LV1067 Riga, Latvia; (A.Š.); (A.L.)
| | - Anna Lece
- Scientific Laboratory of Biochemistry, Riga Stradiņš University, LV1067 Riga, Latvia; (A.Š.); (A.L.)
| | - Ingus Skadiņš
- Department of Biology and Microbiology, Rīga Stradiņš University, LV1007 Riga, Latvia;
| |
Collapse
|
3
|
Pavlou IA, Spandidos DA, Zoumpourlis V, Adamaki M. Nutrient insufficiencies and deficiencies involved in the pathogenesis of bruxism (Review). Exp Ther Med 2023; 26:563. [PMID: 37954114 PMCID: PMC10632959 DOI: 10.3892/etm.2023.12262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023] Open
Abstract
Stress has been well-documented to have a significant role in the etiopathogenesis of bruxism. Activation of the hypothalamic-pituitary-adrenal axis (HPA) and subsequent release of corticosteroids lead to increased muscle activity. Neurological studies have demonstrated that chronic stress exposure induces neurodegeneration of important neuronal structures and destabilization of the mesocortical dopaminergic pathway. These disruptions impair the abilities to counteract the overactivity of the HPA axis and disinhibit involuntary muscle activity, while at the same time, there is activation of the amygdala. Recent evidence shows that overactivation of the amygdala under stressful stimuli causes rhythmic jaw muscle activity by over activating the mesencephalic and motor trigeminal nuclei. The present review aimed to discuss the negative effects of certain vitamin and mineral deficiencies, such as vitamin D, magnesium, and omega-3 fatty acids, on the central nervous system. It provides evidence on how such insufficiencies may increase stress sensitivity and neuromuscular excitability and thereby reduce the ability to effectively respond to the overactivation of the sympathetic nervous system, and also how stress can in turn lead to these insufficiencies. Finally, the positive effects of individualized supplementation are discussed in the context of diminishing anxiety and oxidative stress, neuroprotection and in the reversal of neurodegeneration, and also in alleviating/reducing neuromuscular symptoms.
Collapse
Affiliation(s)
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
4
|
Martynova E, Khaibullin T, Salafutdinov I, Markelova M, Laikov A, Lopukhov L, Liu R, Sahay K, Goyal M, Baranwal M, Rizvanov AA, Khaiboullina S. Seasonal Changes in Serum Metabolites in Multiple Sclerosis Relapse. Int J Mol Sci 2023; 24:3542. [PMID: 36834957 PMCID: PMC9959388 DOI: 10.3390/ijms24043542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Multiple sclerosis (MS) is a debilitating chronic disease of unknown etiology. There are limited treatment options due to an incomplete understanding of disease pathology. The disease is shown to have seasonal exacerbation of clinical symptoms. The mechanisms of such seasonal worsening of symptoms remains unknown. In this study, we applied targeted metabolomics analysis of serum samples using LC-MC/MC to determine seasonal changes in metabolites throughout the four seasons. We also analyzed seasonal serum cytokine alterations in patients with relapsed MS. For the first time, we can demonstrate seasonal changes in various metabolites in MS compared to the control. More metabolites were affected in MS in the fall season followed by spring, while summer MS was characterized by the smallest number of affected metabolites. Ceramides were activated in all seasons, suggesting their central role in the disease pathogenesis. Substantial changes in glucose metabolite levels were found in MS, indicating a potential shift to glycolysis. An increased serum level of quinolinic acid was demonstrated in winter MS. Histidine pathways were affected, suggesting their role in relapse of MS in the spring and fall. We also found that spring and fall seasons had a higher number of overlapping metabolites affected in MS. This could be explained by patients having a relapse of symptoms during these two seasons.
Collapse
Affiliation(s)
- Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Timur Khaibullin
- Republican Clinical Neurological Center, Republic of Tatarstan, 420021 Kazan, Russia
| | - Ilnur Salafutdinov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
- Department of Medical Biology and Genetic, Kazan State Medical University, 420088 Kazan, Russia
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Alexander Laikov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Leonid Lopukhov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471003, China
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Mehendi Goyal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Svetlana Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| |
Collapse
|
5
|
Holton K. The potential role of dietary intervention for the treatment of neuroinflammation. TRANSLATIONAL NEUROIMMUNOLOGY, VOLUME 7 2023:239-266. [DOI: 10.1016/b978-0-323-85841-0.00022-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Miao D, Goltzman D. Mechanisms of action of vitamin D in delaying aging and preventing disease by inhibiting oxidative stress. VITAMINS AND HORMONES 2022; 121:293-318. [PMID: 36707138 DOI: 10.1016/bs.vh.2022.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although several recent studies have shown that vitamin D supplementation beneficially decreases oxidative stress parameters, there is no consensus on this subject in humans. Thus the role of vitamin D supplementation has recently become a controversial topic because large intervention studies in humans have not shown significant benefits. These studies have indicated that supplementation with precursor forms of active vitamin D has no effect on all-cause mortality, cannot reduce the fracture risk of the elderly, cannot reduce the incidence of cancer or cardiovascular disease in the elderly, and cannot significantly reduce the incidence risk of diabetes in the elderly. However, a link between several age-related diseases and enhanced oxidative stress has been found in mice with insufficient or deficient 1,25-dihydroxyvitamin D (1,25(OH)2D), the active form of vitamin D, which indicates that reduced active vitamin D accelerates aging and age-related diseases by increasing oxidative stress. Furthermore, supplementation of exogenous 1,25(OH)2D3, or antioxidants, could dramatically postpone aging, prevent osteoporosis and spontaneous tumor development induced by 1,25(OH)2D insufficiency or deficiency, by inhibiting oxidative stress. Mechanistically, the antioxidative effects of 1,25(OH)2D3 are carried out via the vitamin D receptor (VDR) by activation of the Nrf2 oxidative stress response pathway though transcriptional or posttranscriptional activation of Nrf2 or transcriptional upregulation of Sirt1 and Bmi1 expression. Whether discrepancies between studies in humans and in mice reflect the different forms of vitamin D examined remains to be determined.
Collapse
Affiliation(s)
| | - David Goltzman
- McGill University Health Centre and McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Morelli-Batters A, Lamont HC, Elghobashy M, Masood I, Hill LJ. The role of Vitamin D3 in ocular fibrosis and its therapeutic potential for the glaucomatous trabecular meshwork. FRONTIERS IN OPHTHALMOLOGY 2022; 2:897118. [PMID: 38983544 PMCID: PMC11182265 DOI: 10.3389/fopht.2022.897118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/04/2022] [Indexed: 07/11/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The most prevalent subtype, Primary Open Angle Glaucoma (POAG), is characterized by increased intraocular pressure (IOP), damage to the optic nerve head and irreversible visual loss. IOP increases aqueous humor (AqH) outflow is reduced through the trabecular meshwork (TM) and Schlemm's canal (SC). Increased outflow resistance is partly due to TM/SC dysregulation, including loss of normal trabecular meshwork cell (TMC) function, following increased levels of oxidative stress within TMC, dysregulated extracellular matrix (ECM) deposition and remodeling alongside alterations in TMC phenotype and apoptosis. Current widely available POAG treatments do not target the aberrant expression of ECM in the TM directly. As a result, most drug treatments can fail as the underlying pathological process continues unabated. Rho-kinase inhibitors have demonstrated the benefit of restoring TM/SC function, however there is a clear need to develop further treatment strategies that can target the underlying cellular processes which become dysregulated within the TMC during POAG pathogenesis. Vitamin D is suggested to be beneficial in alleviating the symptoms of fibrosis and inflammation in soft tissues. It has important functions in many major organ systems, including regulation of calcium, phosphate and parathyroid hormone. Evidence suggests that Vitamin D3 modulates ECM turnover through the conventional TGFβ-SMAD signaling, which is associated with the development of POAG. The link between Vitamin D3, inflammation and fibrosis within ocular tissues will be discussed and the potential roles of Vitamin D3 in the management of POAG patients will be explored within this review.
Collapse
Affiliation(s)
- Alexander Morelli-Batters
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hannah C Lamont
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
- School of Chemical Engineering, Healthcare Technologies Institute, University of Birmingham, Birmingham, United Kingdom
| | - Mirna Elghobashy
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Imran Masood
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
Chan HN, Zhang XJ, Ling XT, Bui CHT, Wang YM, Ip P, Chu WK, Chen LJ, Tham CC, Yam JC, Pang CP. Vitamin D and Ocular Diseases: A Systematic Review. Int J Mol Sci 2022; 23:ijms23084226. [PMID: 35457041 PMCID: PMC9032397 DOI: 10.3390/ijms23084226] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
The contributory roles of vitamin D in ocular and visual health have long been discussed, with numerous studies pointing to the adverse effects of vitamin D deficiency. In this paper, we provide a systematic review of recent findings on the association between vitamin D and different ocular diseases, including myopia, age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), dry eye syndrome (DES), thyroid eye disease (TED), uveitis, retinoblastoma (RB), cataract, and others, from epidemiological, clinical and basic studies, and briefly discuss vitamin D metabolism in the eye. We searched two research databases for articles examining the association between vitamin D deficiency and different ocular diseases. One hundred and sixty-two studies were found. There is evidence on the association between vitamin D and myopia, AMD, DR, and DES. Overall, 17 out of 27 studies reported an association between vitamin D and AMD, while 48 out of 54 studies reported that vitamin D was associated with DR, and 25 out of 27 studies reported an association between vitamin D and DES. However, the available evidence for the association with other ocular diseases, such as glaucoma, TED, and RB, remains limited.
Collapse
Affiliation(s)
- Hei-Nga Chan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China; (H.-N.C.); (X.-J.Z.); (X.-T.L.); (C.H.-T.B.); (Y.-M.W.); (W.-K.C.); (L.-J.C.); (C.C.T.)
| | - Xiu-Juan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China; (H.-N.C.); (X.-J.Z.); (X.-T.L.); (C.H.-T.B.); (Y.-M.W.); (W.-K.C.); (L.-J.C.); (C.C.T.)
| | - Xiang-Tian Ling
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China; (H.-N.C.); (X.-J.Z.); (X.-T.L.); (C.H.-T.B.); (Y.-M.W.); (W.-K.C.); (L.-J.C.); (C.C.T.)
| | - Christine Huyen-Trang Bui
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China; (H.-N.C.); (X.-J.Z.); (X.-T.L.); (C.H.-T.B.); (Y.-M.W.); (W.-K.C.); (L.-J.C.); (C.C.T.)
| | - Yu-Meng Wang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China; (H.-N.C.); (X.-J.Z.); (X.-T.L.); (C.H.-T.B.); (Y.-M.W.); (W.-K.C.); (L.-J.C.); (C.C.T.)
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong, China;
| | - Wai-Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China; (H.-N.C.); (X.-J.Z.); (X.-T.L.); (C.H.-T.B.); (Y.-M.W.); (W.-K.C.); (L.-J.C.); (C.C.T.)
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Li-Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China; (H.-N.C.); (X.-J.Z.); (X.-T.L.); (C.H.-T.B.); (Y.-M.W.); (W.-K.C.); (L.-J.C.); (C.C.T.)
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Clement C. Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China; (H.-N.C.); (X.-J.Z.); (X.-T.L.); (C.H.-T.B.); (Y.-M.W.); (W.-K.C.); (L.-J.C.); (C.C.T.)
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
- Department of Ophthalmology, Hong Kong Children’s Hospital, Hong Kong, China
- Hong Kong Eye Hospital, Hong Kong, China
| | - Jason C. Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China; (H.-N.C.); (X.-J.Z.); (X.-T.L.); (C.H.-T.B.); (Y.-M.W.); (W.-K.C.); (L.-J.C.); (C.C.T.)
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
- Department of Ophthalmology, Hong Kong Children’s Hospital, Hong Kong, China
- Hong Kong Eye Hospital, Hong Kong, China
- Correspondence: (J.C.Y.); (C.-P.P.)
| | - Chi-Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China; (H.-N.C.); (X.-J.Z.); (X.-T.L.); (C.H.-T.B.); (Y.-M.W.); (W.-K.C.); (L.-J.C.); (C.C.T.)
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: (J.C.Y.); (C.-P.P.)
| |
Collapse
|
9
|
Pérez Serena A, Martínez Betancourt DP, González del Valle F, Ruiz-Moreno JM. Serum 25-hydroxy vitamin D levels in age-related macular degeneration. Int J Retina Vitreous 2022; 8:17. [PMID: 35255993 PMCID: PMC8899457 DOI: 10.1186/s40942-022-00368-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/20/2022] [Indexed: 12/28/2022] Open
Abstract
Background The aim of this study was to determine the 25-hydroxy vitamin D (25(OH)D) levels in age-related macular degeneration (AMD) patients. Methods Age-related macular degeneration (AMD) patients were classified into four groups: early AMD (N = 10), intermediate AMD (N = 12), advanced atrophic AMD (N = 19) and advanced neovascular AMD (N = 52) after undergoing fundus photography. Serum 25(OH)D levels of all subjects were evaluated. From a random control group of 326 patients whose 25(OH)D levels had been measured, a group of 93 were selected to match the age range of the AMD group. We measured 25(OH)D levels during the same period to rule out seasonal variation. Results A total of 93 AMD patients (36 males and 57 females) and 93 healthy individuals (39 males and 54 females) were enrolled in this study with the mean age of 78.96 ± 8.46 vs. 78.80 ± 8.35, respectively. The patients affected by AMD had statistically significant lower 25(OH)D levels (15 ± 10 ng/mL) than the healthy subjects control group (21 ± 14 ng/mL) (p = 0.004). However, the median 25(OH)D levels in early AMD, intermediate AMD, advanced atrophic AMD and advanced neovascular AMD (12.5 ± 7.3; 15 ± 11; 15 ± 8 and 17 ± 11.5, respectively) were not statistically significant (p = 0.442). Conclusion This study shows that patients affected by AMD had lower vitamin D levels compared to healthy subjects. Further research is necessary to investigate the possible association between 25(OH)D levels and AMD.
Collapse
|
10
|
Holton KF. Micronutrients May Be a Unique Weapon Against the Neurotoxic Triad of Excitotoxicity, Oxidative Stress and Neuroinflammation: A Perspective. Front Neurosci 2021; 15:726457. [PMID: 34630015 PMCID: PMC8492967 DOI: 10.3389/fnins.2021.726457] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Excitotoxicity has been implicated in many neurological disorders and is a leading cause of oxidative stress and neuroinflammation in the nervous system. Most of the research to date has focused on each of these conditions individually; however, excitotoxicity, oxidative stress, and neuroinflammation have the ability to influence one another in a self-sustaining manner, thus functioning as a "neurotoxic triad." This perspective article re-introduces the concept of the neurotoxic triad and reviews how specific dietary micronutrients have been shown to protect against not only oxidative stress, but also excitotoxicity and neuroinflammation. Future dietary interventions for neurological disorders could focus on the effects on all three aspects of the neurotoxic triad.
Collapse
Affiliation(s)
- Kathleen F Holton
- Nutritional Neuroscience Lab, Department of Health Studies, Center for Neuroscience and Behavior, American University, Washington, DC, United States
| |
Collapse
|
11
|
Rai SN, Singh P, Steinbusch HW, Vamanu E, Ashraf G, Singh MP. The Role of Vitamins in Neurodegenerative Disease: An Update. Biomedicines 2021; 9:1284. [PMID: 34680401 PMCID: PMC8533313 DOI: 10.3390/biomedicines9101284] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Acquiring the recommended daily allowance of vitamins is crucial for maintaining homeostatic balance in humans and other animals. A deficiency in or dysregulation of vitamins adversely affects the neuronal metabolism, which may lead to neurodegenerative diseases. In this article, we discuss how novel vitamin-based approaches aid in attenuating abnormal neuronal functioning in neurodegeneration-based brain diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and Prion disease. Vitamins show their therapeutic activity in Parkinson's disease by antioxidative and anti-inflammatory activity. In addition, different water- and lipid-soluble vitamins have also prevented amyloid beta and tau pathology. On the other hand, some results also show no correlation between vitamin action and the prevention of neurodegenerative diseases. Some vitamins also exhibit toxic activity too. This review discusses both the beneficial and null effects of vitamin supplementation for neurological disorders. The detailed mechanism of action of both water- and lipid-soluble vitamins is addressed in the manuscript. Hormesis is also an essential factor that is very helpful to determine the effective dose of vitamins. PubMed, Google Scholar, Web of Science, and Scopus were employed to conduct the literature search of original articles, review articles, and meta-analyses.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India;
| | - Payal Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India;
| | - Harry W.M. Steinbusch
- Department of Cellular Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands;
- Department of Cognitive Neuroscience, DGIST, Daegu 42988, Korea
| | - Emanuel Vamanu
- Faculty of Biotechnology, The University of Agronomic Science and Veterinary Medicine, 59 Marasti blvd, 1 District, 011464 Bucharest, Romania
| | - Ghulam Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohan Prasad Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India;
| |
Collapse
|
12
|
Effects of 1,25 Dihydroxyvitamin D 3 on Human Retinal Pigment Epithelial Cell Lines. Int Ophthalmol 2021; 41:3333-3340. [PMID: 34021828 DOI: 10.1007/s10792-021-01895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To assess the effects of 1,25 dihydroxyvitamin D3 (vitamin D3) either alone or under oxidative damage on human retinal pigment epithelium cell lines. METHODS The human retinal pigment epithelial cell lines were pretreated with hydrogen peroxide with different concentrations (100-1000 μM) and durations (4, 12 and 24 h) to determine the appropriate dose. A group of cells were treated with vitamin D3 alone, and another group of cells were co-treated with different concentrations of (10-100 nM) vitamin D3 and hydrogen peroxide. Anti-cytotoxic, anti-apoptotic and anti-genotoxic effects of vitamin D3 on the hydrogen peroxide treated cell line were evaluated. In addition, mitochondrial membrane potentials of treated cell lines were measured. RESULTS Vitamin D3 showed statistically significant anti-cytotoxic effects and increased cell viability in all concentrations (p < 0.001). It has also significantly decreased the intracellular ROS generation at concentrations between 10-60 nM and increased intracellular reactive oxygen species in high doses over 90 nM (p < 0.01). When apoptosis was evaluated, vitamin D3 caused statistically significant decrease in a dose-dependent manner (p < 0.001). In terms of DNA damage which was caused by oxidative stress, it was observed that vitamin D3 significantly reduced the damage in a dose-dependent manner (p < 0.001). At the doses of 10-50 nM, vitamin D3 significantly decreased the mitochondrial membrane potential (p < 0.01). CONCLUSION Our study suggests that 1,25 (OH)2 D3 is capable for alleviating the oxidative damage in ARPE cell lines. With these results, vitamin D is thought to be a therapeutic alternative for the prevention of age-related macular degeneration. This warrants further investigations.
Collapse
|
13
|
Wang YQ, Geng XP, Wang MW, Wang HQ, Zhang C, He X, Liang SM, Xu DX, Chen X. Vitamin D deficiency exacerbates hepatic oxidative stress and inflammation during acetaminophen-induced acute liver injury in mice. Int Immunopharmacol 2021; 97:107716. [PMID: 33951559 DOI: 10.1016/j.intimp.2021.107716] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022]
Abstract
Several experiments confirmed that vitamin D3 protected against acetaminophen (APAP)-induced acute liver injury (ALI). This research aimed to evaluate the influence of vitamin D deficiency (VDD) on APAP-induced ALI. In VDD and VDD + APAP groups, mice were fed with VDD diet. In APAP and VDD + APAP groups, mice were intraperitoneally injected with a sublethal dose of APAP (150 mg/kg). A sublethal dose of APAP caused a slight elevation of ALT and AST. Interestingly, APAP-induced elevation of ALT and AST was aggravated in VDD-fed mice. APAP-induced hepatic necrosis was exacerbated in VDD-fed mice. In addition, APAP-induced hepatocyte death, measured using TUNEL assay, was exacerbated in VDD-fed mice. Additional experiment showed that APAP-induced hepatic GSH depletion and lipid peroxidation were exacerbated in VDD-fed mice. Moreover, APAP-induced upregulation of antioxidant genes, such as hepatic heme oxygenase-1 (Ho-1), glutathione peroxidase (Gshpx), superoxide dismutase 1 (Sod1) and catalase enzymes (Cat), was aggravated in VDD-fed mice. Although a sublethal dose of APAP did not cause hepatic inflammation, hepatic proinflammatory cytokines and chemokines, such as Tnf-α, Kc, Mcp-1 and Mip2, were upregulated in VDD-fed mice treated with APAP. These results provide experimental data that VDD exacerbates hepatic oxidative stress and inflammation during APAP-induced ALI.
Collapse
Affiliation(s)
- Ya-Qi Wang
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Xiao-Pan Geng
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Ming-Wei Wang
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Hong-Qian Wang
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Xue He
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Shi-Min Liang
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| | - Xi Chen
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
14
|
Hernandez M, Recalde S, González-Zamora J, Bilbao-Malavé V, Sáenz de Viteri M, Bezunartea J, Moreno-Orduña M, Belza I, Barrio-Barrio J, Fernandez-Robredo P, García-Layana A. Anti-Inflammatory and Anti-Oxidative Synergistic Effect of Vitamin D and Nutritional Complex on Retinal Pigment Epithelial and Endothelial Cell Lines against Age-Related Macular Degeneration. Nutrients 2021; 13:nu13051423. [PMID: 33922669 PMCID: PMC8170899 DOI: 10.3390/nu13051423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease of the retina featured by dysfunction of retinal pigmented epithelial (RPE) and loss of photoreceptor cells under oxidative stress and inflammatory conditions. Vitamin D and antioxidants have beneficial effects against retinal degenerative diseases, such as AMD. We investigated the impact of associating vitamin D (ND) with a nutritional antioxidant complex (Nutrof Total®; N) on oxidative stress and inflammation-like induced conditions by H2O2 and LPS, respectively, in human retinal epithelial (ARPE-19) and human retinal endothelial (HREC) cells. Application of either N or ND treatments to H2O2-induced media in ARPE-19 cells counteracted late apoptosis, attenuated oxidative DNA damage, and increased cell proliferation. Significant reduction in the expression levels of MCP1, IL-8, and IL6 cytokines was observed following application of either N or ND treatments under LPS-induced conditions in ARPE-19 cells and in MCP-1 and IL12p70 cytokine levels in HREC cells. ND and not N revealed significant downregulation of IFNγ in ARPE-19 cells, and of IL-6 and IL-18 in HREC cells. In conclusion, adding vitamin D to Nutrof Total® protects in a synergistic way against oxidative and inflammatory stress-induced conditions in retinal epithelial and endothelial cells.
Collapse
Affiliation(s)
- Maria Hernandez
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
- Correspondence:
| | - Sergio Recalde
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| | - Jorge González-Zamora
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
| | - Valentina Bilbao-Malavé
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
| | - Manuel Sáenz de Viteri
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| | - Jaione Bezunartea
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Maite Moreno-Orduña
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Idoia Belza
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
| | - Jesús Barrio-Barrio
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| | - Patricia Fernandez-Robredo
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| | - Alfredo García-Layana
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| |
Collapse
|
15
|
Tuey SM, Atilano-Roque A, Charkoftaki G, Thurman JM, Nolin TD, Joy MS. Influence of vitamin D treatment on functional expression of drug disposition pathways in human kidney proximal tubule cells during simulated uremia. Xenobiotica 2021; 51:657-667. [PMID: 33870862 DOI: 10.1080/00498254.2021.1909783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Effects of cholecalciferol (VitD3) and calcitriol (1,25-VitD3), on the expression and function of major vitamin D metabolizing enzymes (cytochrome P450 [CYP]2R1, CYP24A1) and select drug transport pathways (ABCB1/P-gp, SLCO4C1/OATP4C1) were evaluated in human kidney proximal tubule epithelial cells (hPTECs) under normal and uraemic serum conditions.hPTECs were incubated with 10% normal or uraemic serum for 24 h followed by treatment with 2% ethanol vehicle, or 100 and 240 nM doses of VitD3, or 1,25-VitD3 for 6 days. The effects of treatment on mRNA and protein expression and functional activity of select CYP enzymes and transporters were assessedUnder uraemic serum, treatment with 1,25-VitD3 resulted in increased mRNA but decreased protein expression of CYP2R1. Activity of CYP2R1 was not influenced by serum or VitD analogues. CYP24A1 expression was increased with 1,25-VitD3 under normal as well as uraemic serum, although to a lesser extent. ABCB1/P-gp mRNA expression increased under normal and uraemic serum, with exposure to 1,25-VitD3. SLCO4C1/OATP4C1 exhibited increased mRNA but decreased protein expression, under uraemic serum + 1,25-VitD3. Functional assessments of transport showed no changes regardless of exposure to serum or 1,25-VitD3.Key findings indicate that uraemic serum and VitD treatment led to differential effects on the functional expression of CYPs and transporters in hPTECs.
Collapse
Affiliation(s)
- Stacey M Tuey
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Amandla Atilano-Roque
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Georgia Charkoftaki
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA.,School of Public Health, Yale University, New Haven, CT, USA
| | - Joshua M Thurman
- Division of Nephrology and Hypertension, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Thomas D Nolin
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Melanie S Joy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA.,Division of Nephrology and Hypertension, School of Medicine, University of Colorado, Aurora, CO, USA
| |
Collapse
|
16
|
Ferreira A, Silva N, Furtado MJ, Carneiro Â, Lume M, Andrade JP. Serum vitamin D and age-related macular degeneration: Systematic review and meta-analysis. Surv Ophthalmol 2020; 66:183-197. [PMID: 32768420 DOI: 10.1016/j.survophthal.2020.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022]
Abstract
Vitamin D may be implicated in the pathophysiology of several ocular diseases, but its role in age-related macular degeneration (AMD) remains uncertain. We sought to review systematically the existing evidence to evaluate the association between serum 25-hydroxyvitamin D 25(OH)D levels and AMD. A four-database search (PubMed, ISI Web of Science, Cochrane, and Scopus) was performed from inception to May 2020 using the MeSH terms: ("Macular Degeneration" OR "Age-related macular degeneration" OR "Retinal degeneration" OR "Macula lutea") AND ("Vitamin D" OR "Ergocalciferols" OR "Cholecalciferol" OR "25-Hydroxyvitamin D"). Random-effects meta-analyses were performed to compute 1) the standard mean difference in 25(OH)D concentration between AMD and non-AMD patients and 2) the AMD risk according to serum 25(OH)D levels. Eighteen observational studies enrolling 75,294 patients after a selection process among 375 original abstracts were selected. No significant differences were found, but there appears to exist a trend for late AMD among subjects with a serum 25(OH)D level below 50 nmol/L (odds ratio, 1.8; 95% confidence interval: 1.00-3.24, P = 0.05). There is no clear evidence of a definitive association between serum 25(OH)D and AMD risk, mainly due to heterogeneity in study procedures and lack of longitudinal designs.
Collapse
Affiliation(s)
- André Ferreira
- Service of Ophthalmology, Centro Hospitalar Universitário do Porto, Largo do Prof. Abel Salazar, Porto, Portugal; Unit of Anatomy, Department of Biomedicine, Faculty of Medicine of University of Porto, Al. Professor Hernâni Monteiro, Porto, Portugal.
| | - Nisa Silva
- Service of Ophthalmology, Centro Hospitalar Universitário do Porto, Largo do Prof. Abel Salazar, Porto, Portugal
| | - Maria João Furtado
- Service of Ophthalmology, Centro Hospitalar Universitário do Porto, Largo do Prof. Abel Salazar, Porto, Portugal
| | - Ângela Carneiro
- Service of Ophthalmology, Hospital São João, Al. Professor Hernâni Monteiro, Porto, Portugal; Department of Surgery and Physiology, Ophthalmology Unit, Faculty of Medicine of University of Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| | - Miguel Lume
- Service of Ophthalmology, Centro Hospitalar Universitário do Porto, Largo do Prof. Abel Salazar, Porto, Portugal
| | - José P Andrade
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine of University of Porto, Al. Professor Hernâni Monteiro, Porto, Portugal; Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine of University of Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| |
Collapse
|
17
|
Abstract
OBJECTIVE In this review the authors discuss evidence from the literature concerning vitamin D and temporal bone diseases (benign paroxysmal positional vertigo [BPPV], Menière's disease [MD], vestibular neuritis, idiopathic facial paralysis, idiopathic acute hearing loss). Common features shared by Menière's disease, glaucoma, and the possible influence by vitamin D are briefly discussed. DATA SOURCES, STUDY SELECTION Publications from 1970 until recent times have been reviewed according to a keyword search (see above) in PubMed. CONCLUSIONS MD, BPPV, vestibular neuritis, idiopathic facial paralysis, idiopathic acute hearing loss may all have several etiological factors, but a common feature of the current theories is that an initial viral infection and a subsequent autoimmune/autoinflammatory reaction might be involved. Additionally, in some of these entities varying degrees of demyelination have been documented. Given the immunomodulatory effect of vitamin D, we postulate that it may play a role in suppressing an eventual postviral autoimmune reaction. This beneficial effect may be enhanced by the antioxidative activity of vitamin D and its potential in stabilizing endothelial cells. The association of vitamin D deficiency with demyelination has already been established in other entities such as multiple sclerosis and experimental autoimmune encephalitis. Mice without vitamin D receptor show degenerative features in inner ear ganglia, hair cells, as well as otoconia. The authors suggest further studies concerning the role of vitamin D deficiency in diseases of the temporal bone. Additionally, the possible presence and degree of demyelination in these entities will have to be elucidated more systematically in the future.
Collapse
|
18
|
Tohari AM, Almarhoun M, Alhasani RH, Biswas L, Zhou X, Reilly J, Zeng Z, Shu X. Protection by vitamin D against high-glucose-induced damage in retinal pigment epithelial cells. Exp Cell Res 2020; 392:112023. [PMID: 32325079 DOI: 10.1016/j.yexcr.2020.112023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/17/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Diabetic retinopathy (DR) is a diabetes-associated complication characterized by irreversible deterioration of the microvessels within the retina, leading subsequently to severe retinal damage and vision loss. Vitamin D (VITD), a steroid hormone, plays multiple physiological functions in cellular homeostasis. Deficiency of VITD has been suggested to be associated with DR. To study the potential protective function of VITD in DR, high-glucose-treated ARPE-19 cells and STZ-induced diabetic mice were used as in vitro and in vivo models. The protective effects of VITD were assessed based on the changes of expression of antioxidant enzymes and cytokines in high-glucose-treated retinal pigment epithelial (RPE) cells and in the retina and RPE of diabetic and VITD-treated diabetic mice. The present study demonstrated that exposure to a high level of glucose caused upregulation of pro-inflammatory cytokines and a decrease in anti-oxidant enzyme expression in both in vitro and in vivo models. VITD treatment increased cell viability, reduced reactive oxygen species (ROS) production and caspase-3/7 activities in high-glucose-treated RPE cells. Our data suggest that VITD can protect the retina and RPE from high-glucose-induced oxidative damage and inflammation.
Collapse
Affiliation(s)
- Ali Mohammad Tohari
- Department of Clinical Biochemistry, King Fahad Hospital, Jazan, PO Box 204, 91991, Saudi Arabia; Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| | - Mohammad Almarhoun
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| | - Reem Hasaballah Alhasani
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom; Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Lincoln Biswas
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| | - Xinzhi Zhou
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha, Hunan, 410022, PR China.
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom; Department of Vision Science, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom.
| |
Collapse
|
19
|
Dhas Y, Banerjee J, Damle G, Mishra N. Serum 25(OH)D concentration and its association with inflammation and oxidative stress in the middle-aged Indian healthy and diabetic subjects. Steroids 2020; 154:108532. [PMID: 31672627 DOI: 10.1016/j.steroids.2019.108532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Vitamin D deficiency is associated with inflammation and oxidative stress. We have studied the association of 25-hydroxyvitamin D [25(OH)D] with markers of inflammation and oxidative stress. METHODS We have recruited total 180 male and female subjects aged between 30 and 50 years and divided them into two groups as control (n = 90) and T2DM (n = 90). We have measured 25(OH)D concentration, markers of inflammation including interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α) and markers of oxidative stress including malondialdehyde (MDA) and oxidized low-density lipoprotein (Ox-LDL) by using standard methods. RESULTS We stratified control and T2DM groups by 25(OH)D concentration and it indicates that in severe deficiency and sufficiency category IL-6, IL-1β, TNF-α, and Ox-LDL were significantly different while in moderate deficiency category only MDA was significantly different, among control and T2DM groups. In an insufficiency category, IL-6, IL-1β, TNF-α, MDA, and Ox-LDL were significantly different among control and T2DM groups. Correlation analysis indicates a negative correlation of 25(OH)D with IL-6, IL-1β, TNF-α, and Ox-LDL among total subjects. Further, logistic regression analysis demonstrated a significant association of different categories of 25(OH)D with IL-6, IL-1β, TNF-α, and Ox-LDL before and after adjustment to body mass index and waist to hip ratio. CONCLUSION This study suggest that vitamin D may have significant implications in the prevention of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Yogita Dhas
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, Maharashtra 412115, India
| | - Joyita Banerjee
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, Maharashtra 412115, India
| | - Gauri Damle
- Madhunayani Diabetes Care & Eye Laser Centre, Pune, India
| | - Neetu Mishra
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, Maharashtra 412115, India.
| |
Collapse
|
20
|
Tohari AM, Alhasani RH, Biswas L, Patnaik SR, Reilly J, Zeng Z, Shu X. Vitamin D Attenuates Oxidative Damage and Inflammation in Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2019; 8:antiox8090341. [PMID: 31450606 PMCID: PMC6770403 DOI: 10.3390/antiox8090341] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
Age-related macular degeneration (AMD), the most common visual disorder in elderly people, is characterized by the formation of deposits beneath the retinal pigment epithelium (RPE) and by dysfunction of RPE and photoreceptor cells. The biologically active form of vitamin D, 1,25-(OH)2D3 (VITD), is categorized as a multifunctional steroid hormone that modulates many transcriptional processes of different genes and is involved in a broad range of cellular functions. Epidemiological and genetic association studies demonstrate that VITD may have a protective role in AMD, while single nucleotide polymorphisms in the vitamin D metabolism gene (CYP24A1) increase the risk of AMD. However, the functional mechanisms of VITD in AMD are not fully understood. In the current study, we investigated the impact of VITD on H2O2-induced oxidative stress and inflammation in human RPE cells. We demonstrate that exposure to H2O2 caused significantly reduced cell viability, increased production of reactive oxygen species (ROS), lowered expression of antioxidant enzymes and enhanced inflammation. VITD exposure notably counteracted the above H2O2-induced effects. Our data suggest that VITD protects the RPE from oxidative damage and elucidate molecular mechanisms of VITD deficiency in the development of AMD.
Collapse
Affiliation(s)
- Ali Mohammad Tohari
- Department of Clinical Biochemistry, King Fahad Hospital, PO Box 204, Jazan 91991, Saudi Arabia
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Reem Hasaballah Alhasani
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Lincoln Biswas
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Sarita Rani Patnaik
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Zhihong Zeng
- Department of Bioengineering and Environmental Science, Changsha University, Changsha 410022, China.
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| |
Collapse
|
21
|
Zhang X, Shahani U, Reilly J, Shu X. Disease mechanisms and neuroprotection by tauroursodeoxycholic acid in Rpgr knockout mice. J Cell Physiol 2019; 234:18801-18812. [PMID: 30924157 DOI: 10.1002/jcp.28519] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022]
Abstract
Mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene are the predominant cause of retinitis pigmentosa. RPGR plays a critical role as a scaffold protein in the regulation of protein trafficking from the basal body to the axoneme, where the cargoes are transported to the outer segments (OSs) of photoreceptors. This trafficking process is controlled directly by intraflagellar transport complexes and regulated by the RPGR protein complex, although the precise mechanisms have yet to be defined. We used an Rpgr conditional knockout (cko) mouse model to investigate the disease mechanisms during retinal degeneration and to evaluate the protective effects of tauroursodeoxycholic acid (TUDCA). Rhodopsin, cone opsins and transducin were mislocalized in Rpgr cko photoreceptors, while localization of NPHP4 to connecting cilia was absent, suggesting that RPGR is required for ciliary protein trafficking. Microglia were activated in advance of retinal degeneration in Rpgr cko mouse retinas. TUDCA treatment suppressed microglial activation and inflammation and prevented photoreceptor degeneration in Rpgr cko mice. Our data demonstrated that TUDCA has therapeutic potential for RPGR-associated RP patients.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Uma Shahani
- Department of Vision Science, Glasgow Caledonian University, Glasgow, Scotland
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, Scotland.,Department of Vision Science, Glasgow Caledonian University, Glasgow, Scotland
| |
Collapse
|
22
|
Filgueiras MS, Rocha NP, Novaes JF, Bressan J. Vitamin D status, oxidative stress, and inflammation in children and adolescents: A systematic review. Crit Rev Food Sci Nutr 2018; 60:660-669. [PMID: 30596263 DOI: 10.1080/10408398.2018.1546671] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vitamin D deficiency is considered a global public health problem with high prevalence in children and adolescents. The majority of the studies in the literature have identified a relationship between vitamin D insufficiency/deficiency and obesity, as well as other traditional cardiometabolic risk factors in children and adolescents. Scarce studies address vitamin D status with oxidative stress and inflammation in the young population. The aim of this systematic review was to evaluate the evidence of the association of vitamin D status with oxidative stress and inflammation in children and adolescents. This is a systematic review based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA) guideline on reporting systematic reviews. Eight studies were selected for this review. All included studies evaluated inflammatory biomarkers and two out of eight evaluated biomarkers of oxidative stress. The majority of the studies (five out of eight) found association of vitamin D status with biomarkers of oxidative stress and inflammation such as C-reactive protein (CRP), interleukin-6 (IL-6), cathepsin S, vascular cell adhesion molecule-1 (VCAM-1), malondialdehyde (MDA), myeloperoxidase, 3-nitrotyrosine, and superoxide dismutase (SOD). Vitamin D status is associated with oxidative stress and inflammation in the majority of the studies with children and adolescents. Thus, the assessment of vitamin D status is important because it is associated with nontraditional cardiometabolic markers in the pediatric population (review registration: PROSPERO CRD42018109307).
Collapse
Affiliation(s)
- M S Filgueiras
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - N P Rocha
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - J F Novaes
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - J Bressan
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
23
|
Albalawi A, Alhasani RHA, Biswas L, Reilly J, Akhtar S, Shu X. Carnosic acid attenuates acrylamide-induced retinal toxicity in zebrafish embryos. Exp Eye Res 2018; 175:103-114. [DOI: 10.1016/j.exer.2018.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022]
|
24
|
Lima LAR, Lopes MJP, Costa RO, Lima FAV, Neves KRT, Calou IBF, Andrade GM, Viana GSB. Vitamin D protects dopaminergic neurons against neuroinflammation and oxidative stress in hemiparkinsonian rats. J Neuroinflammation 2018; 15:249. [PMID: 30170624 PMCID: PMC6119240 DOI: 10.1186/s12974-018-1266-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/01/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The deficiency in 1α, 25-dihydroxyvitamin D3 (VD3) seems to increase the risk for neurodegenerative pathologies, including Parkinson's disease (PD). The majority of its actions are mediated by the transcription factor, VD3 receptor (VD3R). METHODS The neuroprotective effects of VD3 were investigated on a PD model. Male Wistar rats were divided into the following groups: sham-operated (SO), 6-OHDA-lesioned (non-treated), and 6-OHDA-lesioned and treated with VD3 (7 days before the lesion, pre-treatment or for 14 days after the 6-OHDA striatal lesion, post-treatment). Afterwards, the animals were subjected to behavioral tests and euthanized for striatal neurochemical and immunohistochemical assays. The data were analyzed by ANOVA and the Tukey test and considered significant for p < 0.05. RESULTS We showed that pre- or post-treatments with VD3 reversed behavioral changes and improved the decreased DA contents of the 6-OHDA group. In addition, VD3 reduced the oxidative stress, increased (TH and DAT), and reduced (TNF-alpha) immunostainings in the lesioned striata. While significant decreases in VD3R immunoreactivity were observed after the 6-OHDA lesion, these changes were blocked after VD3 pre- or post-treatments. We showed that VD3 offers neuroprotection, decreasing behavioral changes, DA depletion, and oxidative stress. In addition, it reverses partially or completely TH, DAT, TNF-alpha, and VD3R decreases of immunoreactivities in the non-treated 6-OHDA group. CONCLUSIONS Taken together, VD3 effects could result from its anti-inflammatory and antioxidant actions and from its actions on VD3R. These findings should stimulate translational research towards the VD3 potential for prevention or treatment of neurodegenerative diseases, as PD.
Collapse
Affiliation(s)
- Ludmila A R Lima
- Faculty of Medicine, Federal University of Ceará (UFC), Rua Barbosa de Freitas, 130/1100, Fortaleza, CE, 60170-020, Brazil
| | - Maria Janice P Lopes
- Faculty of Medicine Estácio of Juazeiro do Norte (Estácio/FMJ), Juazeiro do Norte, Brazil
| | - Roberta O Costa
- Faculty of Medicine Estácio of Juazeiro do Norte (Estácio/FMJ), Juazeiro do Norte, Brazil
| | - Francisco Arnaldo V Lima
- Faculty of Medicine, Federal University of Ceará (UFC), Rua Barbosa de Freitas, 130/1100, Fortaleza, CE, 60170-020, Brazil
| | - Kelly Rose T Neves
- Faculty of Medicine, Federal University of Ceará (UFC), Rua Barbosa de Freitas, 130/1100, Fortaleza, CE, 60170-020, Brazil
| | | | - Geanne M Andrade
- Faculty of Medicine, Federal University of Ceará (UFC), Rua Barbosa de Freitas, 130/1100, Fortaleza, CE, 60170-020, Brazil
| | - Glauce S B Viana
- Faculty of Medicine, Federal University of Ceará (UFC), Rua Barbosa de Freitas, 130/1100, Fortaleza, CE, 60170-020, Brazil.
| |
Collapse
|
25
|
Layana AG, Minnella AM, Garhöfer G, Aslam T, Holz FG, Leys A, Silva R, Delcourt C, Souied E, Seddon JM. Vitamin D and Age-Related Macular Degeneration. Nutrients 2017; 9:nu9101120. [PMID: 29027953 PMCID: PMC5691736 DOI: 10.3390/nu9101120] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 12/12/2022] Open
Abstract
In recent years, the relationship between vitamin D and health has received growing attention from the scientific and medical communities. Vitamin D deficiencies have been repeatedly associated with various acute and chronic diseases, including age-related macular degeneration (AMD). Its active metabolite, 1α,25-dihydoxy vitamin D, acts as a modulator of cell proliferation, differentiation and apoptosis, and cumulative data from experimental and observational studies suggest that relatively a lower vitamin D status could be a potential risk factor for the development of early and/or late AMD. Herein, we made a narrative review of the mechanisms linking a potential role of vitamin D with the current concepts of AMD pathophysiology.
Collapse
Affiliation(s)
| | - Angelo Maria Minnella
- Dipartimento di Scienze Otorinolaringoiatriche e Oftalmologiche, Universita' Cattolica del Sacro Cuore, Lgo F. Vito 1, 00168 Roma, Italy.
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, University of Vienna, 1090 Vienna, Austria.
| | - Tariq Aslam
- School of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
- Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, M13 9WL Manchester, and Heriot Watt University, Edinburgh EH14 4AS, UK.
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, D-53107 Bonn, Germany.
| | - Anita Leys
- Department of Ophthalmology, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Rufino Silva
- Faculty of Medicine, Institute for Biomedical Imaging and Life Sciences (IBILI), University of Coimbra, 3000-548 Coimbra, Portugal.
- Centro Hospitalar e Universitário de Coimbra (CHUC), Department of Ophthalmology, 3000-548 Coimbra, Portugal.
- Centro Hospitalar e Universitário de Coimbra (CHUC), Faculty of Medicine, Institute for Biomedical Imaging and Life Sciences (IBILI-FMUC), University of Coimbra, 3000-548 Coimbra, Portugal.
- Centro Hospitalar e Universitário de Coimbra (CHUC), Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal.
| | - Cécile Delcourt
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000 Bordeaux, France.
| | - Eric Souied
- Hôpital Intercommunal de Créteil, University Paris Est, 94010 Créteil, France.
| | - Johanna M Seddon
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, USA.
- Ophthalmic Epidemiology and Genetics Service, Tufts Medical Center, Boston, MA 02111, USA.
| |
Collapse
|
26
|
Pasing Y, Fenton CG, Jorde R, Paulssen RH. Changes in the human transcriptome upon vitamin D supplementation. J Steroid Biochem Mol Biol 2017; 173:93-99. [PMID: 28330721 DOI: 10.1016/j.jsbmb.2017.03.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/25/2017] [Accepted: 03/18/2017] [Indexed: 01/17/2023]
Abstract
Vitamin D is hydroxylated in the liver and kidneys to its active form, which can bind to the vitamin D receptor (VDR). The VDR is present in a wide variety of different cells types and tissues and acts as a transcription factor. Although activation of the VDR is estimated to regulate expression of up to 5% of the human genome, our study is the first analysing gene expression after supplementation in more than 10 subjects. Subjects of a randomized controlled trial (RCT) received either vitamin D3 (n=47) in a weekly dose of 20,000 IU or placebo (n=47) for a period of three to five years. For this study, blood samples for preparation of RNA were drawn from the subjects and mRNA gene expression in blood was determined using microarray analysis. The two study groups were similar regarding gender, age, BMI and duration of supplementation, whereas the mean serum 25-hydroxyvitamin D (25(OH)D) level as expected was significantly higher in the vitamin D group (119 versus 63nmol/L). When analysing all subjects, nearly no significant differences in gene expression between the two groups were found. However, when analysing men and women separately, significant effects on gene expression were observed for women. Furthermore, when only including subjects with the highest and lowest serum 25(OH)D levels, additional vitamin D regulated genes were disclosed. Thus, a total of 99 genes (p≤0.05, log2 fold change ≥|0.2|) were found to be regulated, of which 72 have not been published before as influenced by vitamin D. These genes were particularly involved in the interleukin signaling pathway, oxidative stress response, apoptosis signaling pathway and gonadotropin releasing hormone receptor pathway. Thus, our results open the possibility for many future studies.
Collapse
Affiliation(s)
- Yvonne Pasing
- Tromsø Endocrine Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, 9037, Norway; Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway.
| | - Christopher Graham Fenton
- Genomics Support Center Tromsø (GSCT), Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, 9037, Norway; Gastroenterology and Nutrition Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, 9037, Norway
| | - Rolf Jorde
- Tromsø Endocrine Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, 9037, Norway; Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Ruth Hracky Paulssen
- Genomics Support Center Tromsø (GSCT), Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, 9037, Norway; Gastroenterology and Nutrition Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, 9037, Norway
| |
Collapse
|
27
|
Vitamin D deficiency, oxidative stress and antioxidant status: only weak association seen in the absence of advanced age, obesity or pre-existing disease. Br J Nutr 2017; 118:11-16. [PMID: 28758603 DOI: 10.1017/s000711451700188x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vitamin D deficiency (plasma 25-hydroxycholecalciferol (25(OH)D)70 % of participants were vitamin D deficient. No significant correlations and no biomarker differences across 25(OH)D quartiles or groups were seen except for total antioxidant status. A weak direct association (r 0·252, P<0·05) was observed between 25(OH)D and FRAP, and those in the lowest 25(OH)D quartile and group had significantly lower FRAP values. Results did not reveal a clear link between vitamin D status and oxidative stress biomarkers in the absence of advanced age, obesity and disease, though some evidence of depleted antioxidant status in those with vitamin D deficiency was seen. Poor antioxidant status may pre-date increased oxidative stress. Study of effects of correction of deficiency on antioxidant status and oxidative stress in vitamin D-deficient but otherwise healthy subjects is needed.
Collapse
|
28
|
Cagirci G, Kucukseymen S, Yuksel IO, Bayar N, Koklu E, Guven R, Arslan S. The Relationship between Vitamin D and Coronary Artery Ectasia in Subjects with a Normal C-Reactive Protein Level. Korean Circ J 2017; 47:231-237. [PMID: 28382079 PMCID: PMC5378030 DOI: 10.4070/kcj.2016.0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/09/2016] [Accepted: 10/25/2016] [Indexed: 12/19/2022] Open
Abstract
Background and Objectives Vitamin D is generally known to be closely related to inflammation. The effects of vitamin D on coronary artery disease (CAD) are not fully explained. Nowadays, coronary artery ectasia (CAE) cases are common and are regarded as being a kind of CAD. We aimed to investigate, in a case-control study, the relationship between vitamin D and CAE without an associated inflammatory process. Subjects and Methods This study population included 201 patients (CAE group, 121 males; mean age, 61.2±6.4 years) with isolated CAE; and 197 healthy individuals (control group, 119 males; mean age, 62.4±5.8 years), comprising the control group, who had normal coronary arteries. These participants concurrently underwent routine biochemical tests, tests for inflammatory markers, and tests for 25-OH vitamin D in whole-blood draws. These parameters were compared. Results There are no statistical significance differences among the groups for basic clinical characteristics (p>0.05). Inflammatory markers were recorded and compared to exclude any inflammatory process. All of them were similar, and no statistical significance difference was found. The average parathyroid hormone (PTH) level of patients was higher than the average PTH level in controls (41.8±15.1 pg/mL vs. 19.1±5.81 pg/mL; p<0.001). Also, the average 25-OH vitamin D level of patients was lower than the average 25-OH vitamin D level of controls (14.5±6.3 ng/mL vs. 24.6±9.3 ng/mL; p<0.001). In receiver operating characteristic curve analysis, the observed cut-off value for vitamin D between the control group and patients was 10.8 and 85.6% sensitivity and 75.2% specificity (area under the curve: 0.854, 95% confidence interval: 0.678-0.863). Conclusion We found that there is an association between vitamin D and CAE in patients who had no inflammatory processes. Our study may provide evidence for the role of vitamin D as a non-inflammatory factor in the pathophysiology of CAE.
Collapse
Affiliation(s)
- Goksel Cagirci
- Department of Cardiology, Antalya Education and Research Hospital, Antalya, Turkey
| | - Selcuk Kucukseymen
- Department of Cardiology, Antalya Education and Research Hospital, Antalya, Turkey
| | - Isa Oner Yuksel
- Department of Cardiology, Antalya Education and Research Hospital, Antalya, Turkey
| | - Nermin Bayar
- Department of Cardiology, Antalya Education and Research Hospital, Antalya, Turkey
| | - Erkan Koklu
- Department of Cardiology, Antalya Education and Research Hospital, Antalya, Turkey
| | - Ramazan Guven
- Department of Emergency Medicine, Antalya Education and Research Hospital, Antalya, Turkey
| | - Sakir Arslan
- Department of Cardiology, Antalya Education and Research Hospital, Antalya, Turkey
| |
Collapse
|
29
|
TNFa knockdown in the retina promotes cone survival in a mouse model of autosomal dominant retinitis pigmentosa. Biochim Biophys Acta Mol Basis Dis 2016; 1863:92-102. [PMID: 27750040 DOI: 10.1016/j.bbadis.2016.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022]
Abstract
Expression of T17M rhodopsin (T17M) in rods activates the Unfolded Protein Response (UPR) and leads to the development of autosomal dominant retinitis pigmentosa (adRP). The rod death occurs in adRP retinas prior to cone photoreceptor death, so the mechanism by which cone photoreceptors die remains unclear. Therefore, the goal of the study was to verify whether UPR in rods induces TNFa-mediated signaling to the cones and to determine whether the TNFa deficit could prevent adRP cone cell death. Primary rod photoreceptors and cone-derived 661W cells transfected with siRNA against TNFa were treated with tunicamycin to mimic activation of UPR in T17M retinas expressing normal and reduced TNFa levels. The 661W cells were then exposed to recombinant TNFa to evaluate cell viability. In vivo, the role of TNFa was assessed in T17M TNFa+/- mice by electroretinography, optical coherence tomography, histology, immunohistochemistry, and a cytokine enzyme-linked immunosorbent assay. Rods overexpressed and secreted TNFa in response to UPR activation. The recombinant TNFa treatment lowered the number of viable cones, inducing cell death through elevation of pro-inflammatory cytokines and caspase-3/7 activity. The TNFa deficiency significantly protected adRP retinas. The photopic ERG amplitudes and the number of surviving cones dramatically increased in T17M TNFa+/- mice. This neuroprotection was associated with a reduced level of pro-inflammatory cytokines. Our results indicate that rod photoreceptors, following UPR activation during adRP progression, secrete TNFa and signal a self-destructive program to the cones, resulting in their cell death. TNFa therefore holds promise as a therapeutic target for treatment of adRP.
Collapse
|