1
|
Mariottini D, Idili A, Ercolani G, Ricci F. Thermo-Programmed Synthetic DNA-Based Receptors. ACS NANO 2023; 17:1998-2006. [PMID: 36689298 PMCID: PMC9933611 DOI: 10.1021/acsnano.2c07039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Herein, we present a generalizable and versatile strategy to engineer synthetic DNA ligand-binding devices that can be programmed to load and release a specific ligand at a defined temperature. We do so by re-engineering two model DNA-based receptors: a triplex-forming bivalent DNA-based receptor that recognizes a specific DNA sequence and an ATP-binding aptamer. The temperature at which these receptors load/release their ligands can be finely modulated by controlling the entropy associated with the linker connecting the two ligand-binding domains. The availability of a set of receptors with tunable and reversible temperature dependence allows achieving complex load/release behavior such as sustained ligand release over a wide temperature range. Similar programmable thermo-responsive synthetic ligand-binding devices can be of utility in applications such as drug delivery and production of smart materials.
Collapse
Affiliation(s)
- Davide Mariottini
- Chemistry
Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Andrea Idili
- Chemistry
Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Gianfranco Ercolani
- Chemistry
Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Chemistry
Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
2
|
Aparin IO, Proskurin GV, Golovin AV, Ustinov AV, Formanovsky AA, Zatsepin TS, Korshun VA. Fine Tuning of Pyrene Excimer Fluorescence in Molecular Beacons by Alteration of the Monomer Structure. J Org Chem 2017; 82:10015-10024. [PMID: 28856889 DOI: 10.1021/acs.joc.7b01451] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oligonucleotide probes labeled with pyrene pairs that form excimers have a number of applications in hybridization analysis of nucleic acids. A long excited state lifetime, large Stokes shift, and chemical stability make pyrene excimer an attractive fluorescent label. Here we report synthesis of chiral phosphoramidite building blocks based on (R)-4-amino-2,2-dimethylbutane-1,3-diol, easily available from an inexpensive d-(-)-pantolactone. 1-Pyreneacetamide, 1-pyrenecarboxamide, and DABCYL derivatives have been used in preparation of molecular beacon (MB) probes labeled with one or two pyrenes/quenchers. We observed significant difference in the excimer emission maxima (475-510 nm; Stokes shifts 125-160 nm or 7520-8960 cm-1) and excimer/monomer ratio (from 0.5 to 5.9) in fluorescence spectra depending on the structure and position of monomers in the pyrene pair. The pyrene excimer formed by two rigid 1-pyrenecarboxamide residues showed the brightest emission. This is consistent with molecular dynamics data on excimer stability. Increase of the excimer fluorescence for MBs after hybridization with DNA was up to 24-fold.
Collapse
Affiliation(s)
- Ilya O Aparin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Gleb V Proskurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Andrey V Golovin
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University , Leninskie gory 1-73, Moscow 119992, Russia
| | - Alexey V Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Andrey A Formanovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology , 143026 Skolkovo, Russia
- Central Research Institute of Epidemiology , 111123 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University , Leninskie gory 1-73, 119992 Moscow, Russia
| | - Vladimir A Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Gause Institute of New Antibiotics , 119021 Moscow, Russia
| |
Collapse
|
3
|
Jang HS, Zhao J, Lei Y, Nieh MP. Unique effects of the chain lengths and anions of tetra-alkylammonium salts on quenching pyrene excimer. ACS APPLIED MATERIALS & INTERFACES 2014; 6:14801-14811. [PMID: 25105459 DOI: 10.1021/am504953a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Pyrene (Py) excimer, through its unique fluorescence quenching, exhibits high sensitivity and high selectivity in detecting specific electron-deficient molecules, providing a potential platform for sensing technology, optical switch, and probing hydrophobicity of molecular environment. In solution state, its quenching mechanism has been well-studied. However, there remain many unknown properties regarding the quenching mechanism of the solid-state Py excimer. In this paper, the effects of a series of tetra-alkylammonium salts (with a variety of chain lengths and anions) on Py excimer quenching are investigated to identify the controlling parameters of the fluorescence quenching in the binary system. Several experimental approaches including steady-state fluorescence spectroscopy, UV absorption, (13)C-nuclear magnetic resonance (NMR) spectra, X-ray diffraction, scanning electron microscopy, and time-dependent fluorescence decay are employed to seek for the fundamental understanding of the quenching mechanism. The result indicates a unique quenching effect of tetrabutylammonium cation on the pyrene excimer, and which is not observed in the other cations with different chain lengths (the same associated hexafluorophosphate anions). Meanwhile, hexafluorophosphate anion (in the presence of tetrabutylammonium) is able to effectively retain Py excimer fluorescence when the system is prepared by evaporating solvent at high temperature. It is also confirmed that dynamic quenching is involved in the process. Hydrophobic environment around Py molecules shows strong correlation with the formation of Py excimer. The knowledge obtained in this study provides the insights to how the interaction between salt and Py molecule affects the excimer fluorescence.
Collapse
Affiliation(s)
- Hyun-Sook Jang
- Institute of Materials Science, ‡Department of Chemistry, §Department of Chemical & Biomolecular Engineering, and ∥Department of Biomedical Engineering, University of Connecticut , Storrs, Connecticut 06269, United States
| | | | | | | |
Collapse
|
4
|
Idili A, Amodio A, Vidonis M, Feinberg-Somerson J, Castronovo M, Ricci F. Folding-upon-binding and signal-on electrochemical DNA sensor with high affinity and specificity. Anal Chem 2014; 86:9013-9. [PMID: 24947124 PMCID: PMC4165453 DOI: 10.1021/ac501418g] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Here we investigate a novel signal-on
electrochemical DNA sensor
based on the use of a clamp-like DNA probe that binds a complementary
target sequence through two distinct and sequential events, which
lead to the formation of a triplex DNA structure. We demonstrate that
this target-binding mechanism can improve both the affinity
and specificity of recognition as opposed to classic probes solely
based on Watson–Crick recognition. By using electrochemical
signaling to report the conformational change, we demonstrate a signal-on
E-DNA sensor with up to 400% signal gain upon target binding. Moreover,
we were able to detect with nanomolar affinity a perfectly matched
target as short as 10 bases (KD = 0.39
nM). Finally, thanks to the molecular “double-check”
provided by the concomitant Watson–Crick and Hoogsteen base
pairings involved in target recognition, our sensor provides excellent
discrimination efficiency toward a single-base mismatched target.
Collapse
Affiliation(s)
- Andrea Idili
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata , Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Manicardi A, Guidi L, Ghidini A, Corradini R. Pyrene-modified PNAs: Stacking interactions and selective excimer emission in PNA2DNA triplexes. Beilstein J Org Chem 2014; 10:1495-503. [PMID: 25161706 PMCID: PMC4142857 DOI: 10.3762/bjoc.10.154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/03/2014] [Indexed: 12/17/2022] Open
Abstract
Pyrene derivatives can be incorporated into nucleic acid analogs in order to obtain switchable probes or supramolecular architectures. In this paper, peptide nucleic acids (PNAs) containing 1 to 3 1-pyreneacetic acid units (PNA1–6) with a sequence with prevalence of pyrimidine bases, complementary to cystic fibrosis W1282X point mutation were synthesized. These compounds showed sequence-selective switch-on of pyrene excimer emission in the presence of target DNA, due to PNA2DNA triplex formation, with stability depending on the number and positioning of the pyrene units along the chain. An increase in triplex stability and a very high mismatch-selectivity, derived from combined stacking and base-pairing interactions, were found for PNA2, bearing two distant pyrene units.
Collapse
Affiliation(s)
- Alex Manicardi
- Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy. ; Tel: +39 0521 905410
| | - Lucia Guidi
- Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy. ; Tel: +39 0521 905410
| | - Alice Ghidini
- Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy. ; Tel: +39 0521 905410 ; Present Address: Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Hälsovägen 7, 14183, Huddinge, Sweden
| | - Roberto Corradini
- Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy. ; Tel: +39 0521 905410
| |
Collapse
|
6
|
Qing Z, He X, Huang J, Wang K, Zou Z, Qing T, Mao Z, Shi H, He D. Target-Catalyzed Dynamic Assembly-Based Pyrene Excimer Switching for Enzyme-Free Nucleic Acid Amplified Detection. Anal Chem 2014; 86:4934-9. [DOI: 10.1021/ac500834g] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Zhihe Qing
- State Key
Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering
of Hunan Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Xiaoxiao He
- State Key
Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering
of Hunan Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Jin Huang
- State Key
Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering
of Hunan Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Kemin Wang
- State Key
Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering
of Hunan Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Zhen Zou
- State Key
Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering
of Hunan Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Taiping Qing
- State Key
Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering
of Hunan Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Zhengui Mao
- State Key
Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering
of Hunan Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Hui Shi
- State Key
Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering
of Hunan Province, Hunan University, Changsha 410082, People’s Republic of China
| | - Dinggeng He
- State Key
Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering
of Hunan Province, Hunan University, Changsha 410082, People’s Republic of China
| |
Collapse
|
7
|
Idili A, Plaxco KW, Vallée-Bélisle A, Ricci F. Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp nanoswitches. ACS NANO 2013; 7:10863-9. [PMID: 24219761 PMCID: PMC4281346 DOI: 10.1021/nn404305e] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Naturally occurring chemoreceptors almost invariably employ structure-switching mechanisms, an observation that has inspired the use of biomolecular switches in a wide range of artificial technologies in the areas of diagnostics, imaging, and synthetic biology. In one mechanism for generating such behavior, clamp-based switching, binding occurs via the clamplike embrace of two recognition elements onto a single target molecule. In addition to coupling recognition with a large conformational change, this mechanism offers a second advantage: it improves both affinity and specificity simultaneously. To explore the physics of such switches we have dissected here the thermodynamics of a clamp-switch that recognizes a target DNA sequence through both Watson-Crick base pairing and triplex-forming Hoogsteen interactions. When compared to the equivalent linear DNA probe (which relies solely on Watson-Crick interactions), the extra Hoogsteen interactions in the DNA clamp-switch increase the probe's affinity for its target by ∼0.29 ± 0.02 kcal/mol/base. The Hoogsteen interactions of the clamp-switch likewise provide an additional specificity check that increases the discrimination efficiency toward a single-base mismatch by 1.2 ± 0.2 kcal/mol. This, in turn, leads to a 10-fold improvement in the width of the "specificity window" of this probe relative to that of the equivalent linear probe. Given these attributes, clamp-switches should be of utility not only for sensing applications but also, in the specific field of DNA nanotechnology, for applications calling for a better control over the building of nanostructures and nanomachines.
Collapse
Affiliation(s)
- Andrea Idili
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
- Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”, Rome, Italy
| | - Kevin W. Plaxco
- Center for Bioengineering & Department of Chemistry and Biochemistry, University of California, Santa Barbara CA 93106 USA
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara CA 93106 USA
| | - Alexis Vallée-Bélisle
- Laboratory of Biosensors and Nanomachines, Département de Chimie, Université de Montréal, Québec, Canada
| | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
- Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”, Rome, Italy
| |
Collapse
|
8
|
|
9
|
Ingale SA, Pujari SS, Sirivolu VR, Ding P, Xiong H, Mei H, Seela F. 7-Deazapurine and 8-aza-7-deazapurine nucleoside and oligonucleotide pyrene "click" conjugates: synthesis, nucleobase controlled fluorescence quenching, and duplex stability. J Org Chem 2011; 77:188-99. [PMID: 22129276 DOI: 10.1021/jo202103q] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
7-Deazapurine and 8-aza-7-deazapurine nucleosides related to dA and dG bearing 7-octadiynyl or 7-tripropargylamine side chains as well as corresponding oligonucleotides were synthesized. "Click" conjugation with 1-azidomethyl pyrene (10) resulted in fluorescent derivatives. Octadiynyl conjugates show only monomer fluorescence, while the proximal alignment of pyrene residues in the tripropargylamine derivatives causes excimer emission. 8-Aza-7-deazapurine pyrene "click" conjugates exhibit fluorescence emission much higher than that of 7-deazapurine derivatives. They are quenched by intramolecular charge transfer between the nucleobase and the dye. Oligonucleotide single strands decorated with two "double clicked" pyrenes show weak or no excimer fluorescence. However, when duplexes carry proximal pyrenes in complementary strands, strong excimer fluorescence is observed. A single replacement of a canonical nucleoside by a pyrene conjugate stabilizes the duplex substantially, most likely by stacking interactions: 6-12 °C for duplexes with a modified "adenine" base and 2-6 °C for a modified "guanine" base. The favorable photophysical properties of 8-aza-7-deazapurine pyrene conjugates improve the utility of pyrene fluorescence reporters in oligonucleotide sensing as these nucleoside conjugates are not affected by nucleobase induced quenching.
Collapse
Affiliation(s)
- Sachin A Ingale
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology , Heisenbergstraße 11, 48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Li X, Wang Y, Guo J, Tang X. Fluorescence Detection of Single-Nucleotide Polymorphism with Single-Strand Triplex-Forming DNA Probes. Chembiochem 2011; 12:2863-70. [DOI: 10.1002/cbic.201100534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Indexed: 12/31/2022]
|
11
|
Biner SM, Häner R. A two-color, self-controlled molecular beacon. Chembiochem 2011; 12:2733-6. [PMID: 22076865 DOI: 10.1002/cbic.201100651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Indexed: 12/22/2022]
Abstract
Control yourself! A two-color molecular beacon with non-nucleosidic chromophores in a triplex stem is presented. Pyrene and PDI fluorophores act as mutual quenchers by formation of a donor-acceptor complex in the closed form. Hybridization with the target results in two independent fluorescence signals. The two-color read-out provides a "self-control" feature, which helps to eliminate false positive signals in imaging and screening applications.
Collapse
Affiliation(s)
- Sarah M Biner
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | |
Collapse
|
12
|
Li MC, Ho RM, Lee YD. Photo-induced excimer formation of pyrene-labeled polymers for optical recording. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm03543b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Biner SM, Kummer D, Malinovskii VL, Häner R. Signal control by self-assembly of fluorophores in a molecular beacon—a model study. Org Biomol Chem 2011; 9:2628-33. [DOI: 10.1039/c0ob01132k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Seela F, Jiang D, Budow S. Triplexes with 8-Aza-2'-deoxyisoguanosine replacing protonated dC: probing third strand stability with a fluorescent nucleobase targeting duplex DNA. Chembiochem 2010; 11:1443-50. [PMID: 20544775 DOI: 10.1002/cbic.201000162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The fluorescent 8-aza-2'-deoxyisoguanosine (4) as well as the parent 2'-deoxyisoguanosine (1) were used as protonated dCH(+) surrogates in the third strand of oligonucleotide triplexes. Stable triplexes were formed by Hoogsteen base pairing. In contrast to dC, triplexes containing nucleoside 1 or 4 in place of dCH(+) are already formed under neutral conditions or even at alkaline pH values. Triplex melting can be monitored separately from duplex dissociation in cases in which the third strand contains the fluorescent nucleoside 4. Third-strand binding of oligonucleotides with 4, opposite to dG, was selective as demonstrated by hybridisation experiments studying mismatch discrimination. Third-strand binding is more efficient when the stability of the DNA duplex is reduced by mismatches, giving third-strand binding more flexibility.
Collapse
Affiliation(s)
- Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster Germany
| | | | | |
Collapse
|
15
|
Dukši M, Baretić D, Čaplar V, Piantanida I. Novel bis-phenanthridine derivatives with easily tunable linkers, study of their interactions with DNA and screening of antiproliferative activity. Eur J Med Chem 2010; 45:2671-6. [DOI: 10.1016/j.ejmech.2010.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 12/28/2009] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
|
16
|
Seela F, Ingale SA. "Double click" reaction on 7-deazaguanine DNA: synthesis and excimer fluorescence of nucleosides and oligonucleotides with branched side chains decorated with proximal pyrenes. J Org Chem 2010; 75:284-95. [PMID: 20000692 DOI: 10.1021/jo902300e] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 7-tripropargylamine-7-deaza-2'-deoxyguanosine (2) containing two terminal triple bonds in the side chain was synthesized by the Sonogashira cross-coupling reaction from the corresponding 7-iodo nucleoside 1b. This was protected at the 2-amino group with an iso-butyryl residue, affording the protected intermediate 5. Then, compound 5 was converted to the 5'-O-DMT derivative 6, which on phosphitylation afforded the phosphoramidite 7. This was employed in solid-phase synthesis of a series of oligonucleotides. T(m) measurements demonstrate that a covalently attached tripropargylamine side chain increases duplex stability. Both terminal triple bonds of nucleoside 2 and corresponding oligonucleotides were functionalized by the Cu(I)-mediated 1,3-dipolar cycloaddition "double click reaction" with 1-azidomethyl pyrene 3, decorating the side chain with two proximal pyrenes. While the monomeric tripropargylamine nucleoside with two proximal pyrenes (4) shows strong excimer fluorescence, the ss-oligonucleotide containing 4 does not. This was also observed for ds-oligonucleotides when the complementary strand was unmodified. However, duplex DNA bearing pyrene residues in both strands exhibits strong excimer fluorescence when each strand contains two pyrene residues linked to the tripropargylamine moiety. This pyrene-pyrene interstrand interaction occurs when the pyrene modification sites of the duplex are separated by two base pairs which bring the fluorescent dyes in a proximal position. Molecular modeling indicates that only two out of four pyrene residues are interacting forming the exciplex while the other two do not communicate.
Collapse
Affiliation(s)
- Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany.
| | | |
Collapse
|
17
|
Häner R, Biner S, Langenegger S, Meng T, Malinovskii V. A Highly Sensitive, Excimer-Controlled Molecular Beacon. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905829] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Häner R, Biner S, Langenegger S, Meng T, Malinovskii V. A Highly Sensitive, Excimer-Controlled Molecular Beacon. Angew Chem Int Ed Engl 2010; 49:1227-30. [DOI: 10.1002/anie.200905829] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Filichev V, Astakhova I, Malakhov A, Korshun V, Pedersen E. 1-, 2-, and 4-Ethynylpyrenes in the Structure of Twisted Intercalating Nucleic Acids: Structure, Thermal Stability, and Fluorescence Relationship. Chemistry 2008; 14:9968-80. [DOI: 10.1002/chem.200800380] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Bittermann H, Siegemund D, Malinovskii VL, Häner R. Dialkynylpyrenes: Strongly Fluorescent, Environment-Sensitive DNA Building Blocks. J Am Chem Soc 2008; 130:15285-7. [DOI: 10.1021/ja806747h] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Holger Bittermann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| | - Doreen Siegemund
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| | - Vladimir L. Malinovskii
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| |
Collapse
|
21
|
Fujimoto J, Bando T, Minoshima M, Uchida S, Iwasaki M, Shinohara KI, Sugiyama H. Detection of triplet repeat sequences in the double-stranded DNA using pyrene-functionalized pyrrole-imidazole polyamides with rigid linkers. Bioorg Med Chem 2008; 16:5899-907. [PMID: 18468906 DOI: 10.1016/j.bmc.2008.04.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 04/23/2008] [Accepted: 04/24/2008] [Indexed: 11/16/2022]
Abstract
Methods for sequence-specific detection in double-stranded DNA (dsDNA) are becoming increasingly useful and important as diagnostic and imaging tools. Recently, we designed and synthesized pyrrole (Py)-imidazole (Im) polyamides possessing two pyrene moieties, 1, which showed an increased excimer emission in the presence of (CAG)(12)-containing oligodeoxynucleotides (ODN) 1 and 2. In this study, we synthesized bis-pyrenyl Py-Im polyamides with rigid linkers 2, 3, and 4 to improve their fluorescence properties. Among the conjugates, 2 showed a marked increase in excimer emission, which was dependent on the concentration of the target ODN and the number of CAG repeats in the dsDNA. Unlike conjugate 1, which has flexible linkers, the excimer emission intensity of 2 was retained at over 85%, even after 4h. Py-Im polyamides have the potential to be important diagnostic molecules for detecting genetic differences between individuals.
Collapse
Affiliation(s)
- Jun Fujimoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Werder S, Malinovskii VL, Häner R. Triazolylpyrenes: Synthesis, FluorescenceProperties, and Incorporation into DNA. Org Lett 2008; 10:2011-4. [DOI: 10.1021/ol8006474] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sarah Werder
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Vladimir L. Malinovskii
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
23
|
Hernandez-Folgado L, Schmuck C, Tomić S, Piantanida I. A novel pyrene-guanidiniocarbonyl-pyrrole cation efficiently differentiates between ds-DNA and ds-RNA by two independent, sensitive spectroscopic methods. Bioorg Med Chem Lett 2008; 18:2977-81. [PMID: 18395444 DOI: 10.1016/j.bmcl.2008.03.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/19/2008] [Accepted: 03/20/2008] [Indexed: 11/16/2022]
Abstract
At micromolar concentrations and equimolar conditions in respect to basepairs, a novel pyrene-guanidiniocarbonyl-pyrrole cation 1 exhibited a strong ICD signal at about lambda=300nm specifically upon the interaction with ds-DNA, while under the same conditions a new fluorescence maximum at lambda=480nm appeared exclusively upon the addition of ds-RNA.
Collapse
|
24
|
Krueger AT, Kool ET. Fluorescence of size-expanded DNA bases: reporting on DNA sequence and structure with an unnatural genetic set. J Am Chem Soc 2008; 130:3989-99. [PMID: 18311973 DOI: 10.1021/ja0782347] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We recently described the synthesis and helix assembly properties of expanded DNA (xDNA), which contains base pairs 2.4 A larger than natural DNA pairs. This designed genetic set is under study with the goals of mimicking the functions of the natural DNA-based genetic system and of developing useful research tools. Here, we study the fluorescence properties of the four expanded bases of xDNA (xA, xC, xG, xT) and evaluate how their emission varies with changes in oligomer length, composition, and hybridization. Experiments were carried out with short oligomers of xDNA nucleosides conjugated to a DNA oligonucleotide, and we investigated the effects of hybridizing these fluorescent oligomers to short complementary DNAs with varied bases opposite the xDNA bases. As monomer nucleosides, the xDNA bases absorb light in two bands: one at approximately 260 nm (similar to DNA) and one at longer wavelength ( approximately 330 nm). All are efficient violet-blue fluorophores with emission maxima at approximately 380-410 nm and quantum yields (Phifl) of 0.30-0.52. Short homo-oligomers of the xDNA bases (length 1-4 monomers) showed moderate self-quenching except xC, which showed enhancement of Phifl with increasing length. Interestingly, multimers of xA emitted at longer wavelengths (520 nm) as an apparent excimer. Hybridization of an oligonucleotide to the DNA adjacent to the xDNA bases (with the xDNA portion overhanging) resulted in no change in fluorescence. However, addition of one, two, or more DNA bases in these duplexes opposite the xDNA portion resulted in a number of significant fluorescence responses, including wavelength shifts, enhancements, or quenching. The strongest responses were the enhancement of (xG)n emission by hybridization of one or more adenines opposite them, and the quenching of (xT)n and (xC)n emission by guanines opposite. The data suggest multiple ways in which the xDNA bases, both alone and in oligomers, may be useful as tools in biophysical analysis and biotechnological applications.
Collapse
Affiliation(s)
- Andrew T Krueger
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
25
|
Bouquin N, Malinovskii VL, Häner R. Highly efficient quenching of excimer fluorescence by perylene diimide in DNA. Chem Commun (Camb) 2008:1974-6. [DOI: 10.1039/b802193g] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
26
|
Abstract
The quenching properties of a series of oligodeoxyribosides bearing fluorophore ‘bases’ is described. Sequences of adjacent, π-stacked pyrenes exhibit stronger electronic interactions visible in both absorbance and emission spectra than pyrenes that are insulated by intervening adenines. Quenching by N, N′-dimethyl-4,4′-bipyridinium dichloride is efficient for excimer-and exciplex-forming oligomers, with Stern-Volmer constants comparable to conjugated polymer “superquenching” schemes.
Collapse
Affiliation(s)
- James N. Wilson
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Yin Nah Teo
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
27
|
Astakhova IV, Malakhov AD, Stepanova IA, Ustinov AV, Bondarev SL, Paramonov AS, Korshun VA. 1-Phenylethynylpyrene (1-PEPy) as Refined Excimer Forming Alternative to Pyrene: Case of DNA Major Groove Excimer. Bioconjug Chem 2007; 18:1972-80. [PMID: 17896811 DOI: 10.1021/bc700280h] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1-Phenylethynylpyrene fluorochrome was studied as meta- and para-derivatives of arabino-uridine-2'-carbamates in ss and dsDNA. 1-PEPy showed red-shifted emission and increased fluorescence quantum yield compared to pyrene. Although 1-PEPy has very short excited lifetime (<2.5 ns), it is able to form inter- and intrastrand excimers on DNA, probably resulting from spatial preorganization of two dye molecules.
Collapse
Affiliation(s)
- Irina V Astakhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
28
|
Grossmann T, Röglin L, Seitz O. Triplex-basierte “molecular beacons” als modulare Sonden zur DNA-Detektion. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200700289] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Grossmann TN, Röglin L, Seitz O. Triplex Molecular Beacons as Modular Probes for DNA Detection. Angew Chem Int Ed Engl 2007; 46:5223-5. [PMID: 17535003 DOI: 10.1002/anie.200700289] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tom N Grossmann
- Institut für Chemie der Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | | | | |
Collapse
|
30
|
Abstract
The construction of artificial triple helical structures with oligonucleotides containing non-nucleosidic phenanthrenes and pyrenes is described. The polyaromatic building blocks, which are used as connectors between the Hoogsteen strand and the Watson-Crick hairpin, lead to a significant stabilization of intramolecular triple helices. Description of the relative orientation of pyrene building blocks is rendered possible by the observation of exciton coupling in the circular dichroism spectra. In addition, the formation of heterodimeric triple helical constructs is explored. Again, the polyaromatic residues are found to have a positive effect on the stability of these structures. The results are important for the design and construction of nucleic-acid-based, triple helical architectures. Furthermore, they will help in the development of analogues of biologically important, naturally occurring triplex structures.
Collapse
Affiliation(s)
- Ivan Trkulja
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | |
Collapse
|