1
|
Reimer JM, Eivaskhani M, Harb I, Guarné A, Weigt M, Schmeing TM. Structures of a dimodular nonribosomal peptide synthetase reveal conformational flexibility. Science 2020; 366:366/6466/eaaw4388. [PMID: 31699907 DOI: 10.1126/science.aaw4388] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/04/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are biosynthetic enzymes that synthesize natural product therapeutics using a modular synthetic logic, whereby each module adds one aminoacyl substrate to the nascent peptide. We have determined five x-ray crystal structures of large constructs of the NRPS linear gramicidin synthetase, including a structure of a full core dimodule in conformations organized for the condensation reaction and intermodular peptidyl substrate delivery. The structures reveal differences in the relative positions of adjacent modules, which are not strictly coupled to the catalytic cycle and are consistent with small-angle x-ray scattering data. The structures and covariation analysis of homologs allowed us to create mutants that improve the yield of a peptide from a module-swapped dimodular NRPS.
Collapse
Affiliation(s)
- Janice M Reimer
- Department of Biochemistry and Center de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 0B1, Canada
| | - Maximilian Eivaskhani
- Department of Biochemistry and Center de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 0B1, Canada
| | - Ingrid Harb
- Department of Biochemistry and Center de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 0B1, Canada
| | - Alba Guarné
- Department of Biochemistry and Center de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 0B1, Canada
| | - Martin Weigt
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005 Paris, France
| | - T Martin Schmeing
- Department of Biochemistry and Center de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 0B1, Canada.
| |
Collapse
|
2
|
Structural basis of keto acid utilization in nonribosomal depsipeptide synthesis. Nat Chem Biol 2020; 16:493-496. [PMID: 32066969 DOI: 10.1038/s41589-020-0481-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
Nonribosomal depsipeptides are natural products composed of amino and hydroxy acid residues. The hydroxy acid residues often derive from α-keto acids, reduced by ketoreductase domains in the depsipeptide synthetases. Biochemistry and structures reveal the mechanism of discrimination for α-keto acids and a remarkable architecture: flanking intact adenylation and ketoreductase domains are sequences separated by >1,100 residues that form a split 'pseudoAsub' domain, structurally important for the depsipeptide module's synthetic cycle.
Collapse
|
3
|
Duncan D, Auclair K. The coenzyme A biosynthetic pathway: A new tool for prodrug bioactivation. Arch Biochem Biophys 2019; 672:108069. [PMID: 31404525 DOI: 10.1016/j.abb.2019.108069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 11/29/2022]
Abstract
Prodrugs account for more than 5% of pharmaceuticals approved worldwide. Over the past decades several prodrug design strategies have been firmly established; however, only a few functional groups remain amenable to this approach. The aim of this overview is to highlight the use of coenzyme A (CoA) biosynthetic enzymes as a recently explored bioactivation scheme and provide information about its scope of utility. This emerging tool is likely to have a strong impact on future medicinal and biological studies as it offers promiscuity, orthogonal selectivity, and the capability of assembling exceptionally large molecules.
Collapse
Affiliation(s)
- Dustin Duncan
- Department of Chemistry, McGill University, Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada.
| |
Collapse
|
4
|
Gulick AM, Aldrich CC. Trapping interactions between catalytic domains and carrier proteins of modular biosynthetic enzymes with chemical probes. Nat Prod Rep 2019; 35:1156-1184. [PMID: 30046790 DOI: 10.1039/c8np00044a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to early 2018 The Nonribosomal Peptide Synthetases (NRPSs) and Polyketide Synthases (PKSs) are families of modular enzymes that produce a tremendous diversity of natural products, with antibacterial, antifungal, immunosuppressive, and anticancer activities. Both enzymes utilize a fascinating modular architecture in which the synthetic intermediates are covalently attached to a peptidyl- or acyl-carrier protein that is delivered to catalytic domains for natural product elongation, modification, and termination. An investigation of the structural mechanism therefore requires trapping the often transient interactions between the carrier and catalytic domains. Many novel chemical probes have been produced to enable the structural and functional investigation of multidomain NRPS and PKS structures. This review will describe the design and implementation of the chemical tools that have proven to be useful in biochemical and biophysical studies of these natural product biosynthetic enzymes.
Collapse
Affiliation(s)
- Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 955 Main St, Buffalo, NY 14203, USA.
| | | |
Collapse
|
5
|
Hemmerling F, Lebe KE, Wunderlich J, Hahn F. An Unusual Fatty Acyl:Adenylate Ligase (FAAL)-Acyl Carrier Protein (ACP) Didomain in Ambruticin Biosynthesis. Chembiochem 2018. [DOI: 10.1002/cbic.201800084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Franziska Hemmerling
- Professur für Organische Chemie (Lebensmittelchemie); Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstrasse 30 95447 Bayreuth Germany
- Biomolekulares Wirkstoffzentrum; Leibniz Universität Hannover; Schneiderberg 38 30167 Hannover Germany
| | - Karen E. Lebe
- Biomolekulares Wirkstoffzentrum; Leibniz Universität Hannover; Schneiderberg 38 30167 Hannover Germany
| | - Johannes Wunderlich
- Professur für Organische Chemie (Lebensmittelchemie); Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstrasse 30 95447 Bayreuth Germany
| | - Frank Hahn
- Professur für Organische Chemie (Lebensmittelchemie); Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstrasse 30 95447 Bayreuth Germany
- Biomolekulares Wirkstoffzentrum; Leibniz Universität Hannover; Schneiderberg 38 30167 Hannover Germany
| |
Collapse
|
6
|
Skiba MA, Maloney FP, Dan Q, Fraley AE, Aldrich CC, Smith JL, Brown WC. PKS-NRPS Enzymology and Structural Biology: Considerations in Protein Production. Methods Enzymol 2018; 604:45-88. [PMID: 29779664 PMCID: PMC5992914 DOI: 10.1016/bs.mie.2018.01.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The structural diversity and complexity of marine natural products have made them a rich and productive source of new bioactive molecules for drug development. The identification of these new compounds has led to extensive study of the protein constituents of the biosynthetic pathways from the producing microbes. Essential processes in the dissection of biosynthesis have been the elucidation of catalytic functions and the determination of 3D structures for enzymes of the polyketide synthases and nonribosomal peptide synthetases that carry out individual reactions. The size and complexity of these proteins present numerous difficulties in the process of going from gene to structure. Here, we review the problems that may be encountered at the various steps of this process and discuss some of the solutions devised in our and other labs for the cloning, production, purification, and structure solution of complex proteins using Escherichia coli as a heterologous host.
Collapse
Affiliation(s)
| | | | - Qingyun Dan
- University of Michigan, Ann Arbor, MI, United States
| | - Amy E Fraley
- University of Michigan, Ann Arbor, MI, United States
| | | | - Janet L Smith
- University of Michigan, Ann Arbor, MI, United States.
| | - W Clay Brown
- University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
7
|
Nonribosomal peptides for iron acquisition: pyochelin biosynthesis as a case study. Curr Opin Struct Biol 2018; 53:1-11. [PMID: 29455106 DOI: 10.1016/j.sbi.2018.01.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 01/03/2023]
Abstract
Microbes synthesize small, iron-chelating molecules known as siderophores to acquire iron from the environment. One way siderophores are generated is by nonribosomal peptide synthetases (NRPSs). The bioactive peptides generated by NRPS enzymes have unique chemical features, which are incorporated by accessory and tailoring domains or proteins. The first part of this review summarizes recent progress in NRPS structural biology. The second part uses the biosynthesis of pyochelin, a siderophore from Pseudomonas aeruginosa, as a case study to examine enzymatic methods for generating the observed diversity in NRPS-derived natural products.
Collapse
|
8
|
Ishikawa F, Tanabe G, Kakeya H. Activity-Based Protein Profiling of Non-ribosomal Peptide Synthetases. Curr Top Microbiol Immunol 2018; 420:321-349. [PMID: 30178264 DOI: 10.1007/82_2018_133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-ribosomal peptide (NRP) natural products are one of the most promising resources for drug discovery and development because of their wide-ranging of therapeutic potential, and their behavior as virulence factors and signaling molecules. The NRPs are biosynthesized independently of the ribosome by enzyme assembly lines known as the non-ribosomal peptide synthetase (NRPS) machinery. Genetic, biochemical, and bioinformatics analyses have provided a detailed understanding of the mechanism of NRPS catalysis. However, proteomic techniques for natural product biosynthesis remain a developing field. New strategies are needed to investigate the proteomes of diverse producer organisms and directly analyze the endogenous NRPS machinery. Advanced platforms should verify protein expression, protein folding, and activities and also enable the profiling of the NRPS machinery in biological samples from wild-type, heterologous, and engineered bacterial systems. Here, we focus on activity-based protein profiling strategies that have been recently developed for studies aimed at visualizing and monitoring the NRPS machinery and also for rapid labeling, identification, and biochemical analysis of NRPS enzyme family members as required for proteomic chemistry in natural product sciences.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
9
|
Ishikawa F, Kasai S, Kakeya H, Tanabe G. Visualizing the Adenylation Activities and Protein-Protein Interactions of Aryl Acid Adenylating Enzymes. Chembiochem 2017; 18:2199-2204. [DOI: 10.1002/cbic.201700361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Fumihiro Ishikawa
- Faculty of Pharmacy; Kindai University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Shota Kasai
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo Kyoto 606-8501 Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo Kyoto 606-8501 Japan
| | - Genzoh Tanabe
- Faculty of Pharmacy; Kindai University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| |
Collapse
|
10
|
Alfermann J, Sun X, Mayerthaler F, Morrell TE, Dehling E, Volkmann G, Komatsuzaki T, Yang H, Mootz HD. FRET monitoring of a nonribosomal peptide synthetase. Nat Chem Biol 2017; 13:1009-1015. [PMID: 28759017 DOI: 10.1038/nchembio.2435] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 06/14/2017] [Indexed: 12/16/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are multidomain enzyme templates for the synthesis of bioactive peptides. Large-scale conformational changes during peptide assembly are obvious from crystal structures, yet their dynamics and coupling to catalysis are poorly understood. We have designed an NRPS FRET sensor to monitor, in solution and in real time, the adoption of the productive transfer conformation between phenylalanine-binding adenylation (A) and peptidyl-carrier-protein domains of gramicidin synthetase I from Aneurinibacillus migulanus. The presence of ligands, substrates or intermediates induced a distinct fluorescence resonance energy transfer (FRET) readout, which was pinpointed to the population of specific conformations or, in two cases, mixtures of conformations. A pyrophosphate switch and lysine charge sensors control the domain alternation of the A domain. The phenylalanine-thioester and phenylalanine-AMP products constitute a mechanism of product inhibition and release that is involved in ordered assembly-line peptide biosynthesis. Our results represent insights from solution measurements into the conformational dynamics of the catalytic cycle of NRPSs.
Collapse
Affiliation(s)
- Jonas Alfermann
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster, Münster, Germany
| | - Xun Sun
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Florian Mayerthaler
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster, Münster, Germany
| | - Thomas E Morrell
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Eva Dehling
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster, Münster, Germany
| | - Gerrit Volkmann
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster, Münster, Germany
| | - Tamiki Komatsuzaki
- Molecule and Life Nonlinear Sciences Laboratory, Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo, Japan
| | - Haw Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Henning D Mootz
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster, Münster, Germany
| |
Collapse
|
11
|
Li K, Fielding EN, Condurso HL, Bruner SD. Probing the structural basis of oxygen binding in a cofactor-independent dioxygenase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:573-580. [DOI: 10.1107/s2059798317007045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/10/2017] [Indexed: 11/11/2022]
Abstract
The enzyme DpgC is included in the small family of cofactor-independent dioxygenases. The chemistry of DpgC is uncommon as the protein binds and utilizes dioxygen without the aid of a metal or organic cofactor. Previous structural and biochemical studies identified the substrate-binding mode and the components of the active site that are important in the catalytic mechanism. In addition, the results delineated a putative binding pocket and migration pathway for the co-substrate dioxygen. Here, structural biology is utilized, along with site-directed mutagenesis, to probe the assigned dioxygen-binding pocket. The key residues implicated in dioxygen trafficking were studied to probe the process of binding, activation and chemistry. The results support the proposed chemistry and provide insight into the general mechanism of dioxygen binding and activation.
Collapse
|
12
|
Sanichar R, Vederas JC. One-Step Transformation of Coenzyme A into Analogues by Transamidation. Org Lett 2017; 19:1950-1953. [PMID: 28393528 DOI: 10.1021/acs.orglett.7b00291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several coenzyme A (CoA) analogues are made in a single step under mild conditions via transamidation reactions catalyzed by boric acid in water. This approach offers rapid access to compounds useful for the study of a wide spectrum of enzyme catalyzed reactions, especially processes involving acyl carrier proteins (ACP) of polyketide synthases (PKS), fatty acid synthases (FAS), and nonribosomal peptide synthetases (NRPS). The CoA analogues presented are readily elaborated or extended by precedented reactions for specific applications that may be required.
Collapse
Affiliation(s)
- Randy Sanichar
- Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | - John C Vederas
- Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
13
|
Owen JG, Calcott MJ, Robins KJ, Ackerley DF. Generating Functional Recombinant NRPS Enzymes in the Laboratory Setting via Peptidyl Carrier Protein Engineering. Cell Chem Biol 2016; 23:1395-1406. [PMID: 27984027 DOI: 10.1016/j.chembiol.2016.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/08/2016] [Accepted: 10/07/2016] [Indexed: 01/29/2023]
Abstract
Non-ribosomal peptide synthetases (NRPSs) are modular enzymatic assembly lines where substrates and intermediates undergo rounds of transformation catalyzed by adenylation (A), condensation (C), and thioesterase (TE) domains. Central to the NRPS biosynthesis are peptidyl carrier protein (PCP) domains, small, catalytically inactive domains that shuttle substrates and intermediates between the catalytic modules and govern product release from TE domains. There is strong interest in recombination of NRPS systems to generate new chemical entities. However, the intrinsic complexity of these systems has been a major challenge. Here, we employ domain substitution and random mutagenesis to recapitulate NRPS evolution, focusing on PCP domains. Using NRPS model systems that produce two different pigmented molecules, pyoverdine and indigoidine, we found that only evolutionarily specialized recombinant PCP domains could interact effectively with the native TE domain for product release. Overall, we highlight that substituted PCP domains require very minor changes to result in functional NRPSs, and infer that positive selection pressure may improve recombinant NRPS outcomes.
Collapse
Affiliation(s)
- Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Mark J Calcott
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Katherine J Robins
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, Wellington 6140, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
14
|
Abe T, Hashimoto Y, Sugimoto S, Kobayashi K, Kumano T, Kobayashi M. Amide compound synthesis by adenylation domain of bacillibactin synthetase. J Antibiot (Tokyo) 2016; 70:435-442. [DOI: 10.1038/ja.2016.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/07/2016] [Accepted: 08/29/2016] [Indexed: 11/09/2022]
|
15
|
Reimer JM, Aloise MN, Harrison PM, Schmeing TM. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Nature 2016; 529:239-42. [PMID: 26762462 DOI: 10.1038/nature16503] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/02/2015] [Indexed: 12/22/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are very large proteins that produce small peptide molecules with wide-ranging biological activities, including environmentally friendly chemicals and many widely used therapeutics. NRPSs are macromolecular machines, with modular assembly-line logic, a complex catalytic cycle, moving parts and many active sites. In addition to the core domains required to link the substrates, they often include specialized tailoring domains, which introduce chemical modifications and allow the product to access a large expanse of chemical space. It is still unknown how the NRPS tailoring domains are structurally accommodated into megaenzymes or how they have adapted to function in nonribosomal peptide synthesis. Here we present a series of crystal structures of the initiation module of an antibiotic-producing NRPS, linear gramicidin synthetase. This module includes the specialized tailoring formylation domain, and states are captured that represent every major step of the assembly-line synthesis in the initiation module. The transitions between conformations are large in scale, with both the peptidyl carrier protein domain and the adenylation subdomain undergoing huge movements to transport substrate between distal active sites. The structures highlight the great versatility of NRPSs, as small domains repurpose and recycle their limited interfaces to interact with their various binding partners. Understanding tailoring domains is important if NRPSs are to be utilized in the production of novel therapeutics.
Collapse
Affiliation(s)
- Janice M Reimer
- Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montréal, Québec H3G 0B1, Canada
| | - Martin N Aloise
- Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montréal, Québec H3G 0B1, Canada
| | - Paul M Harrison
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montréal, Québec H3A 1B1, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montréal, Québec H3G 0B1, Canada
| |
Collapse
|
16
|
Abstract
The nonribosomal peptide synthetases are modular enzymes that catalyze synthesis of important peptide products from a variety of standard and non-proteinogenic amino acid substrates. Within a single module are multiple catalytic domains that are responsible for incorporation of a single residue. After the amino acid is activated and covalently attached to an integrated carrier protein domain, the substrates and intermediates are delivered to neighboring catalytic domains for peptide bond formation or, in some modules, chemical modification. In the final module, the peptide is delivered to a terminal thioesterase domain that catalyzes release of the peptide product. This multi-domain modular architecture raises questions about the structural features that enable this assembly line synthesis in an efficient manner. The structures of the core component domains have been determined and demonstrate insights into the catalytic activity. More recently, multi-domain structures have been determined and are providing clues to the features of these enzyme systems that govern the functional interaction between multiple domains. This chapter describes the structures of NRPS proteins and the strategies that are being used to assist structural studies of these dynamic proteins, including careful consideration of domain boundaries for generation of truncated proteins and the use of mechanism-based inhibitors that trap interactions between the catalytic and carrier protein domains.
Collapse
|
17
|
Tufar P, Rahighi S, Kraas F, Kirchner D, Löhr F, Henrich E, Köpke J, Dikic I, Güntert P, Marahiel M, Dötsch V. Crystal Structure of a PCP/Sfp Complex Reveals the Structural Basis for Carrier Protein Posttranslational Modification. ACTA ACUST UNITED AC 2014; 21:552-562. [DOI: 10.1016/j.chembiol.2014.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/02/2014] [Accepted: 02/06/2014] [Indexed: 11/17/2022]
|
18
|
Crosby J, Crump MP. The structural role of the carrier protein--active controller or passive carrier. Nat Prod Rep 2012; 29:1111-37. [PMID: 22930263 DOI: 10.1039/c2np20062g] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Common to all FASs, PKSs and NRPSs is a remarkable component, the acyl or peptidyl carrier protein (A/PCP). These take the form of small individual proteins in type II systems or discrete folded domains in the multi-domain type I systems and are characterized by a fold consisting of three major α-helices and between 60-100 amino acids. This protein is central to these biosynthetic systems and it must bind and transport a wide variety of functionalized ligands as well as mediate numerous protein-protein interactions, all of which contribute to efficient enzyme turnover. This review covers the structural and biochemical characterization of carrier proteins, as well as assessing their interactions with different ligands, and other synthase components. Finally, their role as an emerging tool in biotechnology is discussed.
Collapse
Affiliation(s)
- John Crosby
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | | |
Collapse
|
19
|
Dimise EJ, Condurso HL, Stoker GE, Bruner SD. Synthesis and structure confirmation of fuscachelins A and B, structurally unique natural product siderophores from Thermobifida fusca. Org Biomol Chem 2012; 10:5353-6. [DOI: 10.1039/c2ob26010g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Liu Y, Zheng T, Bruner SD. Structural basis for phosphopantetheinyl carrier domain interactions in the terminal module of nonribosomal peptide synthetases. CHEMISTRY & BIOLOGY 2011; 18:1482-8. [PMID: 22118682 PMCID: PMC3238681 DOI: 10.1016/j.chembiol.2011.09.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/14/2011] [Accepted: 09/26/2011] [Indexed: 01/07/2023]
Abstract
Phosphopantetheine-modified carrier domains play a central role in the template-directed, biosynthesis of several classes of primary and secondary metabolites. Fatty acids, polyketides, and nonribosomal peptides are constructed on multidomain enzyme assemblies using phosphopantetheinyl thioester-linked carrier domains to traffic and activate building blocks. The carrier domain is a dynamic component of the process, shuttling pathway intermediates to sequential enzyme active sites. Here, we report an approach to structurally fix carrier domain/enzyme constructs suitable for X-ray crystallographic analysis. The structure of a two-domain construct of Escherichia coli EntF was determined with a conjugated phosphopantetheinyl-based inhibitor. The didomain structure is locked in an active orientation relevant to the chemistry of nonribosomal peptide biosynthesis. This structure provides details into the interaction of phosphopantetheine arm with the carrier domain and the active site of the thioesterase domain.
Collapse
Affiliation(s)
- Ye Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts USA 02167
| | - Tengfei Zheng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts USA 02167
| | - Steven D. Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida, USA 32611,Correspondence: Steven Bruner, , (352) 392-0525
| |
Collapse
|
21
|
Li HJ, Li X, Liu N, Zhang H, Truglio JJ, Mishra S, Kisker C, Garcia-Diaz M, Tonge PJ. Mechanism of the intramolecular Claisen condensation reaction catalyzed by MenB, a crotonase superfamily member. Biochemistry 2011; 50:9532-44. [PMID: 21830810 PMCID: PMC4119599 DOI: 10.1021/bi200877x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MenB, the 1,4-dihydroxy-2-naphthoyl-CoA synthase from the bacterial menaquinone biosynthesis pathway, catalyzes an intramolecular Claisen condensation (Dieckmann reaction) in which the electrophile is an unactivated carboxylic acid. Mechanistic studies on this crotonase family member have been hindered by partial active site disorder in existing MenB X-ray structures. In the current work the 2.0 Å structure of O-succinylbenzoyl-aminoCoA (OSB-NCoA) bound to the MenB from Escherichia coli provides important insight into the catalytic mechanism by revealing the position of all active site residues. This has been accomplished by the use of a stable analogue of the O-succinylbenzoyl-CoA (OSB-CoA) substrate in which the CoA thiol has been replaced by an amine. The resulting OSB-NCoA is stable, and the X-ray structure of this molecule bound to MenB reveals the structure of the enzyme-substrate complex poised for carbon-carbon bond formation. The structural data support a mechanism in which two conserved active site Tyr residues, Y97 and Y258, participate directly in the intramolecular transfer of the substrate α-proton to the benzylic carboxylate of the substrate, leading to protonation of the electrophile and formation of the required carbanion. Y97 and Y258 are also ideally positioned to function as the second oxyanion hole required for stabilization of the tetrahedral intermediate formed during carbon-carbon bond formation. In contrast, D163, which is structurally homologous to the acid-base catalyst E144 in crotonase (enoyl-CoA hydratase), is not directly involved in carbanion formation and may instead play a structural role by stabilizing the loop that carries Y97. When similar studies were performed on the MenB from Mycobacterium tuberculosis, a twisted hexamer was unexpectedly observed, demonstrating the flexibility of the interfacial loops that are involved in the generation of the novel tertiary and quaternary structures found in the crotonase superfamily. This work reinforces the utility of using a stable substrate analogue as a mechanistic probe in which only one atom has been altered leading to a decrease in α-proton acidity.
Collapse
Affiliation(s)
- Huei-Jiun Li
- Institute for Chemical Biology & Drug Discovery and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Xiaokai Li
- Institute for Chemical Biology & Drug Discovery and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Nina Liu
- Institute for Chemical Biology & Drug Discovery and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Huaning Zhang
- Institute for Chemical Biology & Drug Discovery and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - James J. Truglio
- Institute for Chemical Biology & Drug Discovery and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Shambhavi Mishra
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, USA
| | - Peter J. Tonge
- Institute for Chemical Biology & Drug Discovery and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
22
|
Leggans EK, Akey DL, Smith JL, Fecik RA. A general scheme for synthesis of substrate-based polyketide labels for acyl carrier proteins. Bioorg Med Chem Lett 2010; 20:5939-42. [PMID: 20801036 PMCID: PMC2992964 DOI: 10.1016/j.bmcl.2010.05.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 05/19/2010] [Accepted: 05/21/2010] [Indexed: 10/19/2022]
Abstract
A general strategy to enzymatically label acyl carrier proteins (ACPs) of polyketide synthases has been developed. Incorporation of a chloromethyl ketone or vinyl ketone moiety into polyketide chain elongation intermediate mimics allows for the synthesis of CoA adducts. These CoA adducts undergo enzymatic reaction with Sfp, a phosphopantetheinyl transferase, to afford labeled CurB carrier proteins.
Collapse
Affiliation(s)
- Erick K. Leggans
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street S.E., Room 456, Minneapolis, Minnesota 55414-2959, Fax: (+) 1-612-626-6318,
| | - David L. Akey
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216
| | - Janet L. Smith
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216
| | - Robert A. Fecik
- Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street S.E., Room 456, Minneapolis, Minnesota 55414-2959, Fax: (+) 1-612-626-6318,
| |
Collapse
|
23
|
|
24
|
Zettler J, Mootz HD. Biochemical evidence for conformational changes in the cross-talk between adenylation and peptidyl-carrier protein domains of nonribosomal peptide synthetases. FEBS J 2010; 277:1159-71. [PMID: 20121951 DOI: 10.1111/j.1742-4658.2009.07551.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Nonribosomal peptide synthetases serve as multidomain protein templates for producing a wealth of pharmaceutically important natural products. For the correct assembly of the desired natural product the interactions between the different catalytic centres and the reaction intermediates bound to the peptidyl carrier protein must be precisely controlled at spatial and temporal levels. We have investigated the interplay between the adenylation (A) domain and the peptidyl carrier protein in the gramicidin S synthetase I (EC 5.1.1.11) via partial tryptic digests, native PAGE and gel-filtration analysis, as well as by chemical labeling experiments. Our data imply that the 4'-phosphopantetheine moiety of the peptidyl carrier protein changes its position as a result of a conformational change in the A domain, which is induced by the binding of an amino acyl adenylate mimic. The productive interaction between the two domains at the stage of the amino acyl transfer onto the 4'-phosphopantetheine moiety is accompanied by a highly compact protein conformation of the holo-protein. These results provide the first biochemical evidence for the occurrence of conformational changes in the cross-talk between A and peptidyl carrier protein domains of a multidomain nonribosomal peptide synthetase.
Collapse
|
25
|
Strieker M, Nolan EM, Walsh CT, Marahiel MA. Stereospecific synthesis of threo- and erythro-beta-hydroxyglutamic acid during kutzneride biosynthesis. J Am Chem Soc 2010; 131:13523-30. [PMID: 19722489 DOI: 10.1021/ja9054417] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The antifungal and antimicrobial kutznerides, hexadepsipeptides composed of one alpha-hydroxy acid and five nonproteinogenic amino acids, are remarkable examples of the structural diversity found in nonribosomally produced natural products. They contain D-3-hydroxyglutamic acid, which is found in the threo and erythro isomers in mature kutznerides. In this study, two putative nonheme iron oxygenase enzymes, KtzO and KtzP, were recombinantly expressed, characterized biochemically in vitro, and found to stereospecifically hydroxylate the beta-position of glutamic acid. KtzO generates threo-L-hydroxyglutamic acid and KtzP catalyzes the formation of the erythro-isomer bound to the peptidyl carrier protein of the third module of the nonribosomal peptide synthetase KtzH. This module has a truncated adenylation domain and is unable to activate and incorporate glutamic acid. The lack of a functional adenylation domain in the third KtzH module is compensated in trans by the stand-alone adenylation domain KtzN, which activates and transfers glutamic acid onto the carrier of KtzH in the presence of the truncated adenylation domain and either KtzO or KtzP. A method that employs nonhydrolyzable coenzyme A analogs was developed and used to determine the kinetic parameters for KtzO- and KtzP-catalyzed hydroxylation of glutamic acid bound to the carrier protein. A detailed mechanism for the in trans compensation of the truncated adenylation domain and the stereospecific hydroxyglutamic acid generation and incorporation is presented. These insights may guide the use of KtzO/KtzP and KtzN or other in trans modification/restoration tools in biocombinatorial engineering approaches.
Collapse
Affiliation(s)
- Matthias Strieker
- Department of Chemistry/Biochemistry, Philipps-University, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | | | | | | |
Collapse
|
26
|
Tosin M, Spiteller D, Spencer JB. Malonyl carba(dethia)- and malonyl oxa(dethia)-coenzyme A as tools for trapping polyketide intermediates. Chembiochem 2009; 10:1714-23. [PMID: 19507202 DOI: 10.1002/cbic.200900093] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In order to study intermediates in polyketide biosynthesis two nonhydrolyzable malonyl coenzyme A analogues were synthesised by a chemoenzymatic route. In these analogues the sulfur atom of CoA was replaced either by a methylene group (carbadethia analogue) or by an oxygen atom (oxadethia analogue). These malonyl-CoA analogues were found to compete with the natural extender unit malonyl-CoA and to trap intermediates from stilbene synthase, a type III polyketide synthase (PKS). From the reaction of stilbene synthase with its natural phenylpropanoid substrates, diketide, triketide and tetraketide species were successfully off-loaded and characterised by LC-MS. Moreover, the reactivity of the nonhydrolyzable analogues offers insights into the flexibility of substrate alignment in the PKS active site for efficient malonyl decarboxylation and condensation.
Collapse
Affiliation(s)
- Manuela Tosin
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, UK.
| | | | | |
Collapse
|
27
|
Sunbul M, Marshall NJ, Zou Y, Zhang K, Yin J. Catalytic turnover-based phage selection for engineering the substrate specificity of Sfp phosphopantetheinyl transferase. J Mol Biol 2009; 387:883-98. [PMID: 19340948 DOI: 10.1016/j.jmb.2009.02.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report a high-throughput phage selection method to identify mutants of Sfp phosphopantetheinyl transferase with altered substrate specificities from a large library of the Sfp enzyme. In this method, Sfp and its peptide substrates are co-displayed on the M13 phage surface as fusions to the phage capsid protein pIII. Phage-displayed Sfp mutants that are active with biotin-conjugated coenzyme A (CoA) analogues would covalently transfer biotin to the peptide substrates anchored on the same phage particle. Affinity selection for biotin-labeled phages would enrich Sfp mutants that recognize CoA analogues for carrier protein modification. We used this method to successfully change the substrate specificity of Sfp and identified mutant enzymes with more than 300-fold increase in catalytic efficiency with 3'-dephospho CoA as the substrate. The method we developed in this study provides a useful platform to display enzymes and their peptide substrates on the phage surface and directly couples phage selection with enzyme catalysis. We envision this method to be applied to engineering the catalytic activities of other protein posttranslational modification enzymes.
Collapse
Affiliation(s)
- Murat Sunbul
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
28
|
Meier JL, Burkart MD. The chemical biology of modular biosynthetic enzymes. Chem Soc Rev 2009; 38:2012-45. [DOI: 10.1039/b805115c] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Chapter 9. Synthetic probes for polyketide and nonribosomal peptide biosynthetic enzymes. Methods Enzymol 2009; 458:219-54. [PMID: 19374985 DOI: 10.1016/s0076-6879(09)04809-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Polyketides and nonribosomal peptides constitute two classes of small molecule natural products that are well-known for their ability to impact important biological processes in a multitude of ways. The modular biosynthetic enzymes responsible for production of these compounds (PKS and NRPS enzymes) have been the subject of extensive genetic, biochemical, and structural characterization, in part due to the potential utility their successful reengineering may have for the production of new therapeutics. In this chapter, we provide background as well as specific techniques in which synthetically produced small molecule probes have been applied to help better understand the mechanism and structure of PKS and NRPS biosynthetic pathways, as well as to help streamline their discovery process. The continued development and application of these methods has the potential to greatly complement our current approaches to the study of natural product biosynthesis.
Collapse
|
30
|
Weissman KJ, Müller R. Crystal structure of a molecular assembly line. Angew Chem Int Ed Engl 2008; 47:8344-6. [PMID: 18780402 DOI: 10.1002/anie.200803293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kira J Weissman
- Department of Pharmaceutical Biotechnology, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
| | | |
Collapse
|
31
|
Weissman K, Müller R. Kristallstruktur einer molekularen Synthesemaschine. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200803293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Meier JL, Barrows-Yano T, Foley TL, Wike CL, Burkart MD. The unusual macrocycle forming thioesterase of mycolactone. MOLECULAR BIOSYSTEMS 2008; 4:663-71. [PMID: 18493665 DOI: 10.1039/b801397g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mycolactone is a polyketide natural product secreted by Mycobacterium ulcerans, the organism responsible for the tropical skin disease Buruli ulcer. The finding that this small molecule virulence factor is sufficient to reconstitute the necrotic pathology associated with Buruli ulcer suggests that a better understanding of mycolactone biosynthesis, particularly the processes which are distinct from those in human metabolism, may provide a unique avenue for the development of selective therapeutics. In the present study we have cloned, expressed, and biochemically characterized the putative macrocycle forming thioesterase for mycolactone, MLSA2 TE. We have evaluated the enzyme both as the truncated thioesterase domain and as a carrier protein-linked didomain construct. The results of these analyses distinguish MLSA2 TE from traditional fatty acid and polyketide synthase TE-domains in terms of its sequence, kinetic parameters, and susceptibility to traditional active-site directed inhibitors. These findings suggest that MLSA2 TE utilizes a unique biochemical mechanism for macrocycle formation.
Collapse
Affiliation(s)
- Jordan L Meier
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, USA
| | | | | | | | | |
Collapse
|