1
|
Cooper GID, Saha I, Newman J, Shin RH, Harran PG. Indolizinylalanine Regioisomers: Tryptophan Isosteres with Bathochromic Fluorescence Emission. J Org Chem 2024; 89:14665-14672. [PMID: 39307984 DOI: 10.1021/acs.joc.4c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
We have developed a high yielding synthesis of indolizine and directly elaborated the molecule into three optically active indolizinylalanine regioisomers. The protocols exploit metal catalyzed coupling of indolizinyl-halides with organozinc reagents derived from carbamoylated iodoalanine esters. The scalable protocols provide products in a form amenable to solid-phase peptide synthesis (SPPS). When incorporated into peptides, the indolizine heterocycle is more basic and markedly less nucleophilic than tryptophan. Its protonated vinylpyridinium form is deeply colored in solution while the neutral heterocycle is highly fluorescent. The fluorescence quantum yield of indolizine exceeds that of indole and aza-indoles in water, suggesting that indolizinylalanines could be powerful optical probes of protein structure and dynamics, functioning as true tryptophan isosteres.
Collapse
Affiliation(s)
- Gabriella I D Cooper
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ishika Saha
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jacob Newman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ruthy H Shin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Patrick G Harran
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Yi S, Kim D, Cho W, Lee JH, Kwon JH, Kim J, Park SB. Rational Design of Pyrido[3,2- b]indolizine as a Tunable Fluorescent Scaffold for Fluorogenic Bioimaging. JACS AU 2024; 4:2896-2906. [PMID: 39211616 PMCID: PMC11350592 DOI: 10.1021/jacsau.4c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 09/04/2024]
Abstract
Novel fluorescent scaffolds are highly demanding for a wide range of applications in biomedical investigation. To meet this demand, the pyrido[3,2-b]indolizine scaffold was designed as a versatile organic fluorophore. With the aid of computational modeling, fluorophores offering tunable emission colors (blue to red) were constructed. Notably, constructed fluorophores absorb lights in the visible range (>400 nm) despite their small sizes (<300 g/mol). Among the fluorophores was discovered a highly fluorogenic fluorophore with a unique turn-on property, 1, and it was developed into a washing-free bioprobe for visualizing cellular lipid droplets in living cells. Furthermore, motivated by the core's compact size and structural analogy to indole, unprecedented tryptophan-analogous fluorogenic unnatural amino acids were constructed and incorporated into fluorogenic peptide probes for monitoring peptide-protein interactions.
Collapse
Affiliation(s)
- Sihyeong Yi
- CRI
Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Dahham Kim
- CRI
Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Wansang Cho
- CRI
Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jung Ho Lee
- Department
of Biophysics and Chemical Biology, Seoul
National University, Seoul 08826, Korea
| | - Ji Hoon Kwon
- CRI
Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jonghoon Kim
- Department
of Chemistry and Integrative Institute of Basic Science, Department
of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Korea
| | - Seung Bum Park
- CRI
Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Department
of Biophysics and Chemical Biology, Seoul
National University, Seoul 08826, Korea
| |
Collapse
|
3
|
Feng RR, Wang M, Zhang W, Gai F. Unnatural Amino Acids for Biological Spectroscopy and Microscopy. Chem Rev 2024; 124:6501-6542. [PMID: 38722769 DOI: 10.1021/acs.chemrev.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.
Collapse
Affiliation(s)
- Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Manxi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Lamas I, Montero R, Martínez-Martínez V, Longarte A. Photodynamics of azaindoles in polar media: the influence of the environment. Phys Chem Chem Phys 2024; 26:3240-3252. [PMID: 38193884 DOI: 10.1039/d3cp03412g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
We have studied the relaxation dynamics of a family of azaindole (AI) structural isomers, 4-, 5-, 6- and 7-AI, by steady-state and time-resolved methods (fs-transient absorption and fluorescence up-conversion), in solvents of different polarity. The measurements in aprotic solvents show distinctive fluorescence yields and excited state lifetimes among the isomers, which are tuned by the polarity of the medium. Guided by simple TD-DFT calculations and based on the behavior observed in the isolated species, it has been possible to address the influence of the environment polarity on the relaxation route. According to the obtained picture, the energy of the nπ* state, which is strongly dependent on the position of the pyridinic nitrogen, controls the rate of the internal conversion channel that accounts for the distinctive photophysical behavior of the isomers. On the other hand, preliminary measurements in protic media (methanol) show a very different photodynamical behavior, in which the anomalous measured fluorescent patterns are very likely the result of reactive channels (proton transfer) triggered by the electronic excitation.
Collapse
Affiliation(s)
- Iker Lamas
- Departamento de Química-Física Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU) Apart. 644, 48080 Bilbao, Spain.
| | - Raúl Montero
- SGIKER Laser Facility Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU) 48940, Leioa, Spain.
| | - Virginia Martínez-Martínez
- Departamento de Química-Física Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU) Apart. 644, 48080 Bilbao, Spain.
| | - Asier Longarte
- Departamento de Química-Física Facultad de Ciencia y Tecnología. Universidad del País Vasco (UPV/EHU) Apart. 644, 48080 Bilbao, Spain.
| |
Collapse
|
5
|
Abdelkader EH, Qianzhu H, Huber T, Otting G. Genetic Encoding of 7-Aza-l-tryptophan: Isoelectronic Substitution of a Single CH-Group in a Protein for a Nitrogen Atom for Site-Selective Isotope Labeling. ACS Sens 2023; 8:4402-4406. [PMID: 37890165 DOI: 10.1021/acssensors.3c01904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Genetic encoding of a noncanonical amino acid (ncAA) in an in vivo expression system requires an aminoacyl-tRNA synthetase that specifically recognizes the ncAA, while the ncAA must not be recognized by the canonical protein expression machinery. We succeeded in genetically encoding 7-aza-tryptophan (7AW), which is isoelectronic with tryptophan. The system is fully orthogonal to protein expression in Escherichia coli, enabling high-yielding site-selective isotope labeling in vivo. 7AW is readily synthesized from serine and 7-aza-indole using a tryptophan synthetase β-subunit (TrpB) mutant, affording easy access to isotope-labeled 7AW. Using labeled 7AW produced from 15N/13C-labeled serine, we produced 7AW mutants of the 25 kDa Zika virus NS2B-NS3 protease. 15N-HSQC spectra display single cross-peaks at chemical shifts near those observed for the wild-type protein labeled with 15N/13C-tryptophan, confirming the structural integrity of the protein and yielding straightforward NMR resonance assignments for site-specific probing.
Collapse
Affiliation(s)
- Elwy H Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Haocheng Qianzhu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Mansour R, Mukherjee S, Pinheiro M, Noble JA, Jouvet C, Barbatti M. Pre-Dewar structure modulates protonated azaindole photodynamics. Phys Chem Chem Phys 2022; 24:12346-12353. [PMID: 35546500 DOI: 10.1039/d2cp01056a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent experimental work revealed that the lifetime of the S3 state of protonated 7-azaindole is about ten times longer than that of protonated 6-azaindole. We simulated the nonradiative decay pathways of these molecules using trajectory surface hopping dynamics after photoexcitation into S3 to elucidate the reason for this difference. Both isomers mainly follow a common ππ* relaxation pathway involving multiple state crossings while coming down from S3 to S1 in the subpicosecond time scale. However, the simulations reveal that the excited-state topographies are such that while the 6-isomer can easily access the region of nonadiabatic transitions, the internal conversion of the 7-isomer is delayed by a pre-Dewar bond formation with a boat conformation.
Collapse
Affiliation(s)
- Ritam Mansour
- Aix Marseille University, CNRS, ICR, Marseille, France.
| | | | - Max Pinheiro
- Aix Marseille University, CNRS, ICR, Marseille, France.
| | | | | | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille, France. .,Institut Universitaire de France, 75231 Paris, France.
| |
Collapse
|
7
|
Lu M, Toptygin D, Xiang Y, Shi Y, Schwieters CD, Lipinski EC, Ahn J, Byeon IJL, Gronenborn AM. The Magic of Linking Rings: Discovery of a Unique Photoinduced Fluorescent Protein Crosslink. J Am Chem Soc 2022; 144:10809-10816. [PMID: 35574633 PMCID: PMC9233106 DOI: 10.1021/jacs.2c02054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Fluorosubstituted tryptophans serve
as valuable probes for fluorescence
and nuclear magnetic resonance (NMR) studies of proteins. Here, we
describe an unusual photoreactivity introduced by replacing the single
tryptophan in cyclophilin A with 7-fluoro-tryptophan. UV exposure
at 282 nm defluorinates 7-fluoro-tryptophan and crosslinks it to a
nearby phenylalanine, generating a bright fluorophore. The crosslink-containing
fluorescent protein possesses a large quantum yield of ∼0.40
with a fluorescence lifetime of 2.38 ns. The chemical nature of the
crosslink and the three-dimensional protein structure were determined
by mass spectrometry and NMR spectroscopy. To the best of our knowledge,
this is the first report of a Phe–Trp crosslink in a protein.
Our finding may break new ground for developing novel fluorescence
probes and for devising new strategies to exploit aromatic crosslinks
in proteins.
Collapse
Affiliation(s)
- Manman Lu
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Dmitri Toptygin
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Charles D. Schwieters
- Computational Biomolecular Magnetic Resonance Core, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Emma C. Lipinski
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - In-Ja L. Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Angela M. Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
8
|
Micikas RJ, Acharyya A, Smith AB, Gai F. Synthesis and characterization of the fluorescence utility of two Visible-Light-Absorbing tryptophan derivatives. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Han J, Lyutenko NV, Sorochinsky AE, Okawara A, Konno H, White S, Soloshonok VA. Tailor-Made Amino Acids in Pharmaceutical Industry: Synthetic Approaches to Aza-Tryptophan Derivatives. Chemistry 2021; 27:17510-17528. [PMID: 34913215 DOI: 10.1002/chem.202102485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022]
Abstract
Over the recent years there has been a noticeable upsurge of interest in aza-analogs of tryptophan which are isosteric to the latter and found numerous applications in medicinal, bioorganic chemistry, and peptide research. In the present review article, five aza-tryptophan derivatives are profiled, including aza-substitution in the positions 2, on the five-membered ring, as well as in positions 4, 5, 6, and 7 on the six-membered ring. A detailed and comprehensive literature overview of the synthetic methods for the preparation of these aza-tryptophans is presented and general facets of the biological properties and most promising applications are discussed.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Nataliya V Lyutenko
- Department of Fine Organic Synthesis V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, The National Academy of Sciences of Ukraine, 1 Murmanska str., Kyiv, 02094, Ukraine
| | - Alexander E Sorochinsky
- Department of Fine Organic Synthesis V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, The National Academy of Sciences of Ukraine, 1 Murmanska str., Kyiv, 02094, Ukraine
| | - Ayaka Okawara
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Konno
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Sarah White
- Oakwood Chemical, Inc., 730 Columbia Hwy. N, Estill, SC, 29918, USA
| | - Vadim A Soloshonok
- Department of Organic Chemistry I Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain
| |
Collapse
|
10
|
Liu Y, He Y, Yang Y, Liu Y. Theoretical study on the detailed excited state triple proton transfer mechanism of cyclic 6-Azaindole trimer. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Noble JA, Marceca E, Dedonder C, Phasayavan W, Féraud G, Inceesungvorn B, Jouvet C. Influence of the N atom position on the excited state photodynamics of protonated azaindole. Phys Chem Chem Phys 2020; 22:27280-27289. [PMID: 33227118 DOI: 10.1039/d0cp03608k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present a study of the photofragmentation of three protonated azaindole molecules - 7-azaindole, 6-azaindole, and 5-azaindole - consisting of fused pyrrole-pyridine bicyclic aromatic systems, in which the pyridinic (protonated) nitrogen heteroatom is located at the 7, 6, and 5 positions, respectively. Photofragmentation electronic spectra of the isolated aforementioned azaindolinium cations reveal that their photodynamics extends over timescales covering nine orders of magnitude and provide evidence about the resultant fragmentation pathways. Moreover, we show how the position of the heteroatom in the aromatic skeleton influences the excited state energetics, fragmentation pathways, and fragmentation timescales. Computed ab initio adiabatic transition energies are used to assist the assignation of the spectra, while geometry optimisation in the excited electronic states as well as ab initio calculations along the potential surfaces demonstrate the role of ππ*/πσ* coupling and/or large geometry changes in the dynamics of these species. Evidence supporting the formation of Dewar valence isomers as intermediates involved in sub-picosecond relaxation processes is discussed.
Collapse
Affiliation(s)
- Jennifer A Noble
- CNRS, Aix Marseille Univ., PIIM, Physique des Interactions Ioniques et Moléculaires, UMR 7345, 13397, Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
A rationally designed orthogonal synthetase for genetically encoded fluorescent amino acids. Heliyon 2020; 6:e05140. [PMID: 33083608 PMCID: PMC7550906 DOI: 10.1016/j.heliyon.2020.e05140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 01/25/2023] Open
Abstract
The incorporation of non-canonical amino acids into proteins has emerged as a promising strategy to manipulate and study protein structure-function relationships with superior precision in vitro and in vivo. To date, fluorescent non-canonical amino acids (f-ncAA) have been successfully incorporated in proteins expressed in bacterial systems, Xenopus oocytes, and HEK-293T cells. Here, we describe the rational generation of a novel orthogonal aminoacyl-tRNA synthetase based on the E. coli tyrosine synthetase that is capable of encoding the f-ncAA tyr-coumarin in HEK-293T cells.
Collapse
|
13
|
Lamas I, Montero R, Martínez-Martínez V, Longarte A, Blancafort L. An nπ* gated decay mediates excited-state lifetimes of isolated azaindoles. Phys Chem Chem Phys 2020; 22:18639-18645. [PMID: 32789383 DOI: 10.1039/d0cp02635b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aiming to serve as a guide to understand the relaxation mechanisms of more complex aza-aromatic compounds, such as purine bases, we have studied the non-radiative channels of a set of azaindole structural isomers: 4-, 5-, 6- and 7-azaindole (AI). The relaxation of the isolated molecules, after excitation at the low energy portion of their spectra, has been tracked by femtosecond time-resolved ionization, and the decay paths have been obtained with MS-CASPT2//TD-DFT calculations. Although the ultrashort measured lifetimes for 5- and 6-AI are in contrast to the long-living excited state found in 7-AI, the calculations describe a common relaxation pathway. Along it, the initially excited ππ* states decay to the ground state through a conical intersection accessed through an nπ* state that functions as a gate state. The work reveals that the position of the nitrogen atoms in the purine ring determines the barrier to access the gate state and therefore, the rate of the non-radiative relaxation.
Collapse
Affiliation(s)
- Iker Lamas
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain.
| | | | | | | | | |
Collapse
|
14
|
Fluorescent amino acids as versatile building blocks for chemical biology. Nat Rev Chem 2020; 4:275-290. [PMID: 37127957 DOI: 10.1038/s41570-020-0186-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Fluorophores have transformed the way we study biological systems, enabling non-invasive studies in cells and intact organisms, which increase our understanding of complex processes at the molecular level. Fluorescent amino acids have become an essential chemical tool because they can be used to construct fluorescent macromolecules, such as peptides and proteins, without disrupting their native biomolecular properties. Fluorescent and fluorogenic amino acids with unique photophysical properties have been designed for tracking protein-protein interactions in situ or imaging nanoscopic events in real time with high spatial resolution. In this Review, we discuss advances in the design and synthesis of fluorescent amino acids and how they have contributed to the field of chemical biology in the past 10 years. Important areas of research that we review include novel methodologies to synthesize building blocks with tunable spectral properties, their integration into peptide and protein scaffolds using site-specific genetic encoding and bioorthogonal approaches, and their application to design novel artificial proteins, as well as to investigate biological processes in cells by means of optical imaging.
Collapse
|
15
|
Noble JA, Marceca E, Dedonder C, Jouvet C. Influence of the N atom and its position on electron photodetachment of deprotonated indole and azaindole. Phys Chem Chem Phys 2020; 22:27290-27299. [DOI: 10.1039/d0cp03609a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dipole bound state and its vibrational structure observed in deprotonated 7-azaindole by recording the signal of 7-azaindolyl stable neutral radical.
Collapse
Affiliation(s)
- Jennifer A. Noble
- CNRS
- Aix Marseille Univ
- PIIM
- Physique des Interactions Ioniques et Moléculaires
- UMR 7345
| | - Ernesto Marceca
- INQUIMAE (CONICET – Universidad de Buenos Aires)
- DQIAQF (Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires)
- Ciudad Universitaria
- 1428 Buenos Aires
| | - Claude Dedonder
- CNRS
- Aix Marseille Univ
- PIIM
- Physique des Interactions Ioniques et Moléculaires
- UMR 7345
| | - Christophe Jouvet
- CNRS
- Aix Marseille Univ
- PIIM
- Physique des Interactions Ioniques et Moléculaires
- UMR 7345
| |
Collapse
|
16
|
Newton LD, Pascu SI, Tyrrell RM, Eggleston IM. Development of a peptide-based fluorescent probe for biological heme monitoring. Org Biomol Chem 2019; 17:467-471. [PMID: 30574967 PMCID: PMC6350759 DOI: 10.1039/c8ob02290a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/18/2018] [Indexed: 02/01/2023]
Abstract
Heme plays a vital role in cell biology and dysregulation of heme levels is implicated in a wide range of diseases. However, monitoring heme levels in biological systems is currently not straightforward. A short synthetic peptide probe containing 7-azatryptophan is shown to bind hemin in vitro with quenching of the azatryptophan fluorescence. This chemical tool can be used to detect the change in free heme induced in human skin cells upon exposure to UVA irradiation.
Collapse
Affiliation(s)
- Laura D. Newton
- Department of Pharmacy and Pharmacology
, University of Bath
,
Bath BA2 7AY
, UK
.
| | - Sofia I. Pascu
- Department of Chemistry
, University of Bath
,
Bath BA2 7AY
, UK
| | - Rex M. Tyrrell
- Department of Pharmacy and Pharmacology
, University of Bath
,
Bath BA2 7AY
, UK
.
| | - Ian M. Eggleston
- Department of Pharmacy and Pharmacology
, University of Bath
,
Bath BA2 7AY
, UK
.
| |
Collapse
|
17
|
Tu TH, Chen YT, Chen YA, Wei YC, Chen YH, Chen CL, Shen JY, Chen YH, Ho SY, Cheng KY, Lee SL, Chen CH, Chou PT. The Cyclic Hydrogen-Bonded 6-Azaindole Trimer and its Prominent Excited-State Triple-Proton-Transfer Reaction. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ting-Hsun Tu
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Yi-Ting Chen
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Yi-An Chen
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Yu-Chen Wei
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - You-Hua Chen
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Chi-Lin Chen
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Jiun-Yi Shen
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Yi-Han Chen
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Ssu-Yu Ho
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Kum-Yi Cheng
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Shern-Long Lee
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Chun-hsien Chen
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Pi-Tai Chou
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| |
Collapse
|
18
|
Tu TH, Chen YT, Chen YA, Wei YC, Chen YH, Chen CL, Shen JY, Chen YH, Ho SY, Cheng KY, Lee SL, Chen CH, Chou PT. The Cyclic Hydrogen-Bonded 6-Azaindole Trimer and its Prominent Excited-State Triple-Proton-Transfer Reaction. Angew Chem Int Ed Engl 2018; 57:5020-5024. [DOI: 10.1002/anie.201800944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/14/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Ting-Hsun Tu
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Yi-Ting Chen
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Yi-An Chen
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Yu-Chen Wei
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - You-Hua Chen
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Chi-Lin Chen
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Jiun-Yi Shen
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Yi-Han Chen
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Ssu-Yu Ho
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Kum-Yi Cheng
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Shern-Long Lee
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Chun-hsien Chen
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| | - Pi-Tai Chou
- Department of Chemistry; National Taiwan University; Taipei 10617 Taiwan
| |
Collapse
|
19
|
Völler JS, Thi To TM, Biava H, Koksch B, Budisa N. Global substitution of hemeproteins with noncanonical amino acids in Escherichia coli with intact cofactor maturation machinery. Enzyme Microb Technol 2017; 106:55-59. [PMID: 28859810 DOI: 10.1016/j.enzmictec.2017.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Global substitution of canonical amino acids (cAAs) with noncanonical (ncAAs) counterparts in proteins whose function is dependent on post-translational events such as cofactor binding is still a methodically challenging and difficult task as ncAA insertion generally interferes with the cofactor biosynthesis machinery. Here, we report a technology for the expression of fully substituted and functionally active cofactor-containing hemeproteins. The maturation process which yields an intact cofactor is timely separated from cAA→ncAA substitutions. This is achieved by an optimised expression and fermentation procedure which includes pre-induction of the heme cofactor biosynthesis followed by an incorporation experiment at multiple positions in the protein sequence. This simple strategy can be potentially applied for engineering of other cofactor-containing enzymes.
Collapse
Affiliation(s)
- Jan-Stefan Völler
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany; Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Tuyet Mai Thi To
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany; Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Hernan Biava
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Nediljko Budisa
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany.
| |
Collapse
|
20
|
Talukder P, Chen S, Roy B, Yakovchuk P, Spiering MM, Alam MP, Madathil MM, Bhattacharya C, Benkovic SJ, Hecht SM. Cyanotryptophans as Novel Fluorescent Probes for Studying Protein Conformational Changes and DNA–Protein Interaction. Biochemistry 2015; 54:7457-69. [DOI: 10.1021/acs.biochem.5b01085] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Poulami Talukder
- Center
for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Shengxi Chen
- Center
for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Basab Roy
- Center
for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Petro Yakovchuk
- Center
for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Michelle M. Spiering
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mohammad P. Alam
- Center
for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Manikandadas M. Madathil
- Center
for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Chandrabali Bhattacharya
- Center
for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Stephen J. Benkovic
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sidney M. Hecht
- Center
for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
21
|
Noichl BP, Durkin PM, Budisa N. Toward intrinsically colored peptides: Synthesis and investigation of the spectral properties of methylated azatryptophans in tryptophan-cage mutants. Biopolymers 2015; 104:585-600. [DOI: 10.1002/bip.22709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Benjamin P. Noichl
- Department of Chemistry; Berlin Institute of Technology; Müller-Breslau-Straße 10 10623 Berlin Germany
| | - Patrick M. Durkin
- Department of Chemistry; Berlin Institute of Technology; Müller-Breslau-Straße 10 10623 Berlin Germany
| | - Nediljko Budisa
- Department of Chemistry; Berlin Institute of Technology; Müller-Breslau-Straße 10 10623 Berlin Germany
| |
Collapse
|
22
|
Wierzchowski J. Excited-state proton transfer and phototautomerism in nucleobase and nucleoside analogs: a mini-review. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 33:626-44. [PMID: 25105453 DOI: 10.1080/15257770.2014.913065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intermolecular excited-state proton transfer (ESPT) has been observed in several fluorescent nucleobase and/or nucleoside analogs. In the present work, some new examples of ESPT in this class of compounds are presented together with a brief recapitulation of the previously published data. The nucleobases, nucleosides, and their analogs contain many basic and acidic centers and therefore their ESPT behavior may be complex. To interpret the complex data, it is usually necessary to determine the microscopic pK* values for each (or most) of the possible ESPT centers. Typical approach to solve this problem is by analysis of the alkyl derivatives, in which the possibility of the ESPT is reduced. Of particular interest are examples of "phototautomerization via the cation," observed in several systems, which in the neutral media do not undergo ESPT. Protonation of the molecule in the ground state facilitates the two-step phototautomerism in several systems, including formycin A and 2-amino-8-azadenine. Fluorescence of the nucleobase and nucleoside analogs undergoing ESPT is usually solvent-, isotope-, and buffer-ion sensitive, and in some systems the ESPT can be promoted by environmental factors, e.g., the presence of buffer ions. This sensitivity to the microenvironment parameters makes the ESPT systems potentially useful for biological applications.
Collapse
Affiliation(s)
- Jacek Wierzchowski
- a Department of Biophysics , University of Varmia & Masuria in Olsztyn , Olsztyn , Poland
| |
Collapse
|
23
|
Talukder P, Chen S, Liu CT, Baldwin EA, Benkovic SJ, Hecht SM. Tryptophan-based fluorophores for studying protein conformational changes. Bioorg Med Chem 2014; 22:5924-34. [PMID: 25284250 PMCID: PMC4254292 DOI: 10.1016/j.bmc.2014.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 11/19/2022]
Abstract
With the continuing interest in deciphering the interplay between protein function and conformational changes, small fluorescence probes will be especially useful for tracking changes in the crowded protein interior space. Presently, we describe the potential utility of six unnatural amino acid fluorescence donors structurally related to tryptophan and show how they can be efficiently incorporated into a protein as fluorescence probes. We also examine the various photophysical properties of the new Trp analogues, which are significantly redshifted in their fluorescence spectra relative to tryptophan. In general, the Trp analogues were well tolerated when inserted into Escherichia coli DHFR, and did not perturb enzyme activity, although substitution for Trp22 did result in a diminution in DHFR activity. Further, it was demonstrated that D and E at position 37 formed efficient FRET pairs with acridon-2-ylalanine (Acd) at position 17. The same was also true for a DHFR construct containing E at position 79 and Acd at position 17. Together, these findings demonstrate that these tryptophan analogues can be introduced into DHFR with minimal disruption of function, and that they can be employed for the selective study of targeted conformational changes in proteins, even in the presence of unmodified tryptophans.
Collapse
Affiliation(s)
- Poulami Talukder
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Shengxi Chen
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - C Tony Liu
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Edwin A Baldwin
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Sidney M Hecht
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
24
|
Gagner JE, Kim W, Chaikof EL. Designing protein-based biomaterials for medical applications. Acta Biomater 2014; 10:1542-57. [PMID: 24121196 PMCID: PMC3960372 DOI: 10.1016/j.actbio.2013.10.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/29/2013] [Accepted: 10/01/2013] [Indexed: 02/01/2023]
Abstract
Biomaterials produced by nature have been honed through billions of years, evolving exquisitely precise structure-function relationships that scientists strive to emulate. Advances in genetic engineering have facilitated extensive investigations to determine how changes in even a single peptide within a protein sequence can produce biomaterials with unique thermal, mechanical and biological properties. Elastin, a naturally occurring protein polymer, serves as a model protein to determine the relationship between specific structural elements and desirable material characteristics. The modular, repetitive nature of the protein facilitates the formation of well-defined secondary structures with the ability to self-assemble into complex three-dimensional architectures on a variety of length scales. Furthermore, many opportunities exist to incorporate other protein-based motifs and inorganic materials into recombinant protein-based materials, extending the range and usefulness of these materials in potential biomedical applications. Elastin-like polypeptides (ELPs) can be assembled into 3-D architectures with precise control over payload encapsulation, mechanical and thermal properties, as well as unique functionalization opportunities through both genetic and enzymatic means. An overview of current protein-based materials, their properties and uses in biomedicine will be provided, with a focus on the advantages of ELPs. Applications of these biomaterials as imaging and therapeutic delivery agents will be discussed. Finally, broader implications and future directions of these materials as diagnostic and therapeutic systems will be explored.
Collapse
Affiliation(s)
- Jennifer E Gagner
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, and the Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA 02215, USA
| | - Wookhyun Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, and the Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA 02215, USA
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, and the Wyss Institute of Biologically Inspired Engineering of Harvard University, Boston, MA 02215, USA.
| |
Collapse
|
25
|
Talukder P, Chen S, Arce PM, Hecht SM. Efficient asymmetric synthesis of tryptophan analogues having useful photophysical properties. Org Lett 2014; 16:556-9. [PMID: 24392870 DOI: 10.1021/ol403429e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Two new fluorescent probes of protein structure and dynamics have been prepared by concise asymmetric syntheses using the Schöllkopf chiral auxiliary. The site-specific incorporation of one probe into dihydrofolate reductase is reported. The utility of these tryptophan derivatives lies in their absorption and emission maxima which differ from those of tryptophan, as well as in their large Stokes shifts and high molar absorptivities.
Collapse
Affiliation(s)
- Poulami Talukder
- Center for BioEnergetics, The Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85827, United States
| | | | | | | |
Collapse
|
26
|
Speight LC, Samanta M, Petersson EJ. Minimalist Approaches to Protein Labelling: Getting the Most Fluorescent Bang for Your Steric Buck. Aust J Chem 2014. [DOI: 10.1071/ch13554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorescence methods allow one to monitor protein conformational changes, protein–protein associations, and proteolysis in real time, at the single molecule level and in living cells. The information gained in such experiments is a function of the spectroscopic techniques used and the strategic placement of fluorophore labels within the protein structure. There is often a trade-off between size and utility for fluorophores, whereby large size can be disruptive to the protein’s fold or function, but valuable characteristics, such as visible wavelength absorption and emission or brightness, require sizable chromophores. Three major types of fluorophore readouts are commonly used: (1) Förster resonance energy transfer (FRET); (2) photoinduced electron transfer (PET); and (3) environmental sensitivity. This review focuses on those probes small enough to be incorporated into proteins during ribosomal translation, which allows the probes to be placed on the interiors of proteins as they are folded during synthesis. The most broadly useful method for doing so is site-specific unnatural amino acid (UAA) mutagenesis. We discuss the use of UAA probes in applications relying on FRET, PET, and environmental sensitivity. We also briefly review other methods of protein labelling and compare their relative merits to UAA mutagenesis. Finally, we discuss small probes that have thus far been used only in synthetic peptides, but which have unusual value and may be candidates for incorporation using UAA methods.
Collapse
|
27
|
|
28
|
Johnson JA, Lu YY, Van Deventer JA, Tirrell DA. Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. Curr Opin Chem Biol 2010; 14:774-80. [PMID: 21071259 DOI: 10.1016/j.cbpa.2010.09.013] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 09/20/2010] [Indexed: 12/30/2022]
Abstract
Residue-specific incorporation of non-canonical amino acids into proteins allows facile alteration and enhancement of protein properties. In this review, we describe recent technical developments and applications of residue-specific incorporation to problems ranging from elucidation of biochemical mechanisms to engineering of protein-based biomaterials. We hope to inform the reader of the ease and broad utility of residue-specific non-canonical amino acid incorporation with the goal of inspiring investigators outside the field to consider applying this tool to their own research.
Collapse
Affiliation(s)
- Jeremiah A Johnson
- Division of Chemistry and Chemical Engineering, Joseph J. Jacobs Institute for Molecular Engineering for Medicine, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
29
|
Yengo CM, Berger CL. Fluorescence anisotropy and resonance energy transfer: powerful tools for measuring real time protein dynamics in a physiological environment. Curr Opin Pharmacol 2010; 10:731-7. [PMID: 20971683 DOI: 10.1016/j.coph.2010.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 01/14/2023]
Abstract
Fluorescence spectroscopy/microscopy is a versatile method for examining protein dynamics in vitro and in vivo that can be combined with other techniques to simultaneously examine complementary pharmacological parameters. The following review will highlight the advantages and challenges of using fluorescence spectroscopic methods for examining protein dynamics with a special emphasis on fluorescence resonance energy transfer and fluorescence anisotropy. Both of these methods are amenable to measurements on an ensemble of molecules as well as at the single molecule level, in live cells and in high throughput screening assays, providing a powerful set of tools to aid in the design and testing of new drugs under a variety of experimental conditions.
Collapse
Affiliation(s)
- Christopher M Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA.
| | | |
Collapse
|
30
|
Lepthien S, Merkel L, Budisa N. Doppelte und dreifache In-vivo-Funktionalisierung von Proteinen mit synthetischen Aminosäuren. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201000439] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Lepthien S, Merkel L, Budisa N. In Vivo Double and Triple Labeling of Proteins Using Synthetic Amino Acids. Angew Chem Int Ed Engl 2010; 49:5446-50. [DOI: 10.1002/anie.201000439] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|