1
|
Quaye J, Gadda G. Metal-Triggered FAD Reduction in d-2-Hydroxyglutarate Dehydrogenase from Pseudomonas aeruginosa PAO1. ACS BIO & MED CHEM AU 2025; 5:204-214. [PMID: 39990952 PMCID: PMC11843331 DOI: 10.1021/acsbiomedchemau.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 02/25/2025]
Abstract
Alcohol oxidation is an indispensable chemical reaction in biological systems. This process, biologically catalyzed by alcohol dehydrogenases (ADHs) and alcohol oxidases (AOXs), follows two distinct chemical routes depending on the cofactor. ADHs have been widely demonstrated to require Zn2+- and NAD(P)+-based cosubstrates. Except for galactose oxidase, AOXs achieve their conversion of alcohols to aldehydes or ketones using flavin-based cofactors. The FMN-dependent α-hydroxy acid-oxidizing enzymes and the glucose-methanol-choline (GMC) superfamily abstract their substrate's α-OH proton using a catalytic histidine, leading to substrate oxidation and flavin reduction. However, there is no known alcohol oxidation mechanism for enzymes requiring both a flavin and a metal. The Pseudomonas aeruginosad-2-hydroxyglutarate dehydrogenase (PaD2HGDH) is a recently characterized α-hydroxy acid dehydrogenase that converts d-2-hydroxyglutarate or d-malate to 2-ketoglutarate or oxaloacetate, respectively. PaD2HGDH requires FAD and Zn2+ for catalysis. Previous studies on PaD2HGDH have identified a highly conserved active site histidine residue whose position is topologically conserved for catalytic bases in FMN-dependent α-hydroxy acid-oxidizing enzymes and the GMC superfamily of oxidoreductases. In this study, solvent isotope effects (SIEs) coupled with pL-rate profiles and a viscosity control have been used to probe the role of the Zn2+ cofactor in the C2-OH oxidation of d-malate and flavin reduction of PaD2HGDH. The data revealed an inverse solvent equilibrium isotope effect (SEIE) of 0.51 ± 0.09 consistent with a Zn2+-triggered abstraction of the substrate C2-OH proton that initiates d-malate oxidation and flavin reduction. The system provides insights into the role of Zn2+ in the oxidation mechanism of PaD2HGDH and, by extension, metallo flavoprotein dehydrogenases.
Collapse
Affiliation(s)
- Joanna
Afokai Quaye
- Departments
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States of
America
| | - Giovanni Gadda
- Departments
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States of
America
- Biology, Georgia State University, Atlanta, Georgia 30302-3965, United States of
America
- The
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-3965, United States of America
| |
Collapse
|
2
|
Santema LL, Rozeboom HJ, Borger VP, Kaya SG, Fraaije MW. Identification of a robust bacterial pyranose oxidase that displays an unusual pH dependence. J Biol Chem 2024; 300:107885. [PMID: 39395808 DOI: 10.1016/j.jbc.2024.107885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
Pyranose oxidases are valuable biocatalysts, yet only a handful of bacterial pyranose oxidases are known. These bacterial enzymes exhibit noteworthy distinctions from their extensively characterized fungal counterparts, encompassing variations in substrate specificity and structural attributes. Herein a bacterial pyranose oxidase from Oscillatoria princeps (OPOx) was biochemically characterized in detail. In contrast to the fungal pyranose oxidases, OPOx could be well expressed in Escherichia coli as soluble, fully flavinylated, and active oxidase. It was found to be highly thermostable (melting temperature >90 °C) and showed activity on glucose, exhibiting an exceptionally low KM value (48 μM). Elucidation of its crystal structure revealed similarities with fungal pyranose oxidases, such as being a tetramer with a large central void leading to a narrow substrate access tunnel. In the active site, the FAD cofactor is covalently bound to a histidine. OPOx displays a relatively narrow pH optimum for activity with a sharp decline at relatively basic pH values which is accompanied by a drastic change in its flavin absorbance spectrum. The pH-dependent switch in flavin absorbance features and oxidase activity was shown to be fully reversible. It is hypothesized that a glutamic acid helps to stabilize the protonated form of the histidine that is tethered to the FAD. OPOx presents itself as a valuable biocatalyst as it is highly robust, well-expressed in E. coli, shows low KM values for monosaccharides, and has a peculiar pH-dependent "on-off switch".
Collapse
Affiliation(s)
- Lars L Santema
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | | | - Veronica P Borger
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | - Saniye G Kaya
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Quaye JA, Wood KE, Snelgrove C, Ouedraogo D, Gadda G. An active site mutation induces oxygen reactivity in D-arginine dehydrogenase: A case of superoxide diverting protons. J Biol Chem 2024; 300:107381. [PMID: 38762175 PMCID: PMC11193025 DOI: 10.1016/j.jbc.2024.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
Enzymes are potent catalysts that increase biochemical reaction rates by several orders of magnitude. Flavoproteins are a class of enzymes whose classification relies on their ability to react with molecular oxygen (O2) during catalysis using ionizable active site residues. Pseudomonas aeruginosa D-arginine dehydrogenase (PaDADH) is a flavoprotein that oxidizes D-arginine for P. aeruginosa survival and biofilm formation. The crystal structure of PaDADH reveals the interaction of the glutamate 246 (E246) side chain with the substrate and at least three other active site residues, establishing a hydrogen bond network in the active site. Additionally, E246 likely ionizes to facilitate substrate binding during PaDADH catalysis. This study aimed to investigate how replacing the E246 residue with leucine affects PaDADH catalysis and its ability to react with O2 using steady-state kinetics coupled with pH profile studies. The data reveal a gain of O2 reactivity in the E246L variant, resulting in a reduced flavin semiquinone species and superoxide (O2•-) during substrate oxidation. The O2•- reacts with active site protons, resulting in an observed nonstoichiometric slope of 1.5 in the enzyme's log (kcat/Km) pH profile with D-arginine. Adding superoxide dismutase results in an observed correction of the slope to 1.0. This study demonstrates how O2•- can alter the slopes of limbs in the pH profiles of flavin-dependent enzymes and serves as a model for correcting nonstoichiometric slopes in elucidating reaction mechanisms of flavoproteins.
Collapse
Affiliation(s)
- Joanna A Quaye
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Kendall E Wood
- Biology Department, Morehouse College, Atlanta, Georgia, USA
| | - Claire Snelgrove
- The Gwinnett School of Mathematics, Science, and Technology, Lawrenceville, Georgia, USA
| | - Daniel Ouedraogo
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Department of Biology, Georgia State University, Atlanta, Georgia, USA; Department of the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.
| |
Collapse
|
4
|
Furlanetto V, Kalyani DC, Kostelac A, Puc J, Haltrich D, Hällberg BM, Divne C. Structural and Functional Characterization of a Gene Cluster Responsible for Deglycosylation of C-glucosyl Flavonoids and Xanthonoids by Deinococcus aerius. J Mol Biol 2024; 436:168547. [PMID: 38508304 DOI: 10.1016/j.jmb.2024.168547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Plant C-glycosylated aromatic polyketides are important for plant and animal health. These are specialized metabolites that perform functions both within the plant, and in interaction with soil or intestinal microbes. Despite the importance of these plant compounds, there is still limited knowledge of how they are metabolized. The Gram-positive aerobic soil bacterium Deinococcus aerius strain TR0125 and other Deinococcus species thrive in a wide range of harsh environments. In this work, we identified a C-glycoside deglycosylation gene cluster in the genome of D. aerius. The cluster includes three genes coding for a GMC-type oxidoreductase (DaCGO1) that oxidizes the glucosyl C3 position in aromatic C-glucosyl compounds, which in turn provides the substrate for the C-glycoside deglycosidase (DaCGD; composed of α+β subunits) that cleaves the glucosyl-aglycone C-C bond. Our results from size-exclusion chromatography, single particle cryo-electron microscopy and X-ray crystallography show that DaCGD is an α2β2 heterotetramer, which represents a novel oligomeric state among bacterial CGDs. Importantly, the high-resolution X-ray structure of DaCGD provides valuable insights into the activation of the catalytic hydroxide ion by Lys261. DaCGO1 is specific for the 6-C-glucosyl flavones isovitexin, isoorientin and the 2-C-glucosyl xanthonoid mangiferin, and the subsequent C-C-bond cleavage by DaCGD generated apigenin, luteolin and norathyriol, respectively. Of the substrates tested, isovitexin was the preferred substrate (DaCGO1, Km 0.047 mM, kcat 51 min-1; DaCGO1/DaCGD, Km 0.083 mM, kcat 0.42 min-1).
Collapse
Affiliation(s)
- Valentina Furlanetto
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, CBH, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Dayanand C Kalyani
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, CBH, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Anja Kostelac
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria; Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Jolanta Puc
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Dietmar Haltrich
- Laboratory of Food Biotechnology, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Christina Divne
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, CBH, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
| |
Collapse
|
5
|
Taborda A, Frazão T, Rodrigues MV, Fernández-Luengo X, Sancho F, Lucas MF, Frazão C, Melo EP, Ventura MR, Masgrau L, Borges PT, Martins LO. Mechanistic insights into glycoside 3-oxidases involved in C-glycoside metabolism in soil microorganisms. Nat Commun 2023; 14:7289. [PMID: 37963862 PMCID: PMC10646112 DOI: 10.1038/s41467-023-42000-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/27/2023] [Indexed: 11/16/2023] Open
Abstract
C-glycosides are natural products with important biological activities but are recalcitrant to degradation. Glycoside 3-oxidases (G3Oxs) are recently identified bacterial flavo-oxidases from the glucose-methanol-coline (GMC) superfamily that catalyze the oxidation of C-glycosides with the concomitant reduction of O2 to H2O2. This oxidation is followed by C-C acid/base-assisted bond cleavage in two-step C-deglycosylation pathways. Soil and gut microorganisms have different oxidative enzymes, but the details of their catalytic mechanisms are largely unknown. Here, we report that PsG3Ox oxidizes at 50,000-fold higher specificity (kcat/Km) the glucose moiety of mangiferin to 3-keto-mangiferin than free D-glucose to 2-keto-glucose. Analysis of PsG3Ox X-ray crystal structures and PsG3Ox in complex with glucose and mangiferin, combined with mutagenesis and molecular dynamics simulations, reveal distinctive features in the topology surrounding the active site that favor catalytically competent conformational states suitable for recognition, stabilization, and oxidation of the glucose moiety of mangiferin. Furthermore, their distinction to pyranose 2-oxidases (P2Oxs) involved in wood decay and recycling is discussed from an evolutionary, structural, and functional viewpoint.
Collapse
Grants
- EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- Fundação para a Ciência e Tecnologia, Portugal, grants 2022.02027.PTDC, UIDB/04612/2020 and UIDP/04612/2020, LA/P/0087/2020, PTDC/BII-BBF/29564/2017, and AAC 01/SAICT/2016 Fundação para a Ciência e Tecnologia, Portugal, Ph.D. fellowships 2020.07928, 2022.13872, and 2022.09426 Ministry of Science and Innovation, Spain, grant PID2021-126897NB-I00 and fellowship PRE2019-088412, funded by the MCIN/AEI/10.13039/501100011033/ FEDER, EU
- Fundação para a Ciência e Tecnologia (FCT), Portugal, grants UIDB/04326/2020, UIDP/043226/2020 and LA/P/0101/2020
Collapse
Affiliation(s)
- André Taborda
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Tomás Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Miguel V Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | | | - Ferran Sancho
- Zymvol Biomodeling, C/ Pau Claris, 94, 3B, 08010, Barcelona, Spain
| | | | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Eduardo P Melo
- Centro de Ciências do Mar, Universidade do Algarve, 8005-139, Faro, Portugal
| | - M Rita Ventura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Laura Masgrau
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Zymvol Biomodeling, C/ Pau Claris, 94, 3B, 08010, Barcelona, Spain
| | - Patrícia T Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
6
|
Quaye JA, Gadda G. The Pseudomonas aeruginosa PAO1 metallo flavoprotein d-2-hydroxyglutarate dehydrogenase requires Zn 2+ for substrate orientation and activation. J Biol Chem 2023; 299:103008. [PMID: 36775127 PMCID: PMC10034468 DOI: 10.1016/j.jbc.2023.103008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Pseudomonas aeruginosa PAO1 d-2-hydroxyglutarate (D2HG) dehydrogenase (PaD2HGDH) oxidizes D2HG to 2-ketoglutarate during the vital l-serine biosynthesis and is a potential therapeutic target against P. aeruginosa. PaD2HGDH, which oxidizes d-malate as an alternative substrate, has been demonstrated to be a metallo flavoprotein that requires Zn2+ for activity. However, the role of Zn2+ in the enzyme has not been elucidated, making it difficult to rationalize why nature employs both a redox center and a metal ion for catalysis in PaD2HGDH and other metallo flavoenzymes. In this study, recombinant His-tagged PaD2HGDH was purified to high levels in the presence of Zn2+ or Co2+ to investigate the metal's role in catalysis. We found that the flavin reduction step was reversible and partially rate limiting for the enzyme's turnover at pH 7.4 with either D2HG or d-malate with similar rate constants for both substrates, irrespective of whether Zn2+ or Co2+ was bound to the enzyme. The steady-state pL profiles of the kcat and kcat/Km values with d-malate demonstrate that Zn2+ mediates the activation of water coordinated to the metal. Our data are consistent with a dual role for the metal, which orients the hydroxy acid substrate in the enzyme's active site and rapidly deprotonates the substrate to yield an alkoxide species for hydride transfer to the flavin. Thus, we propose a catalytic mechanism for PaD2HGDH oxidation that establishes Zn2+ as a cofactor required for substrate orientation and activation during enzymatic turnover.
Collapse
Affiliation(s)
- Joanna A Quaye
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Department of Biology, Georgia State University, Atlanta, Georgia, USA; Department of The Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.
| |
Collapse
|
7
|
Pimviriyakul P, Chaiyen P. Formation and stabilization of C4a-hydroperoxy-FAD by the Arg/Asn pair in HadA monooxygenase. FEBS J 2023; 290:176-195. [PMID: 35942637 DOI: 10.1111/febs.16591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 01/14/2023]
Abstract
HadA monooxygenase catalyses the detoxification of halogenated phenols and nitrophenols via dehalogenation and denitration respectively. C4a-hydroperoxy-FAD is a key reactive intermediate wherein its formation, protonation and stabilization reflect enzyme efficiency. Herein, transient kinetics, site-directed mutagenesis and pH-dependent behaviours of HadA reaction were employed to identify key features stabilizing C4a-adducts in HadA. The formation of C4a-hydroperoxy-FAD is pH independent, whereas its decay and protonation of distal oxygen are associated with pKa values of 8.5 and 8.4 respectively. These values are correlated with product formation within a pH range of 7.6-9.1, indicating the importance of adduct stabilization to enzymatic efficiency. We identified Arg101 as a key residue for reduced FAD (FADH- ) binding and C4a-hydroperoxy-FAD formation due to the loss of these abilities as well as enzyme activity in HadAR101A and HadAR101Q . Mutations of the neighbouring Asn447 do not affect the rate of C4a-hydroperoxy-FAD formation; however, they impair FADH- binding. The disruption of Arg101/Asn447 hydrogen bond networking in HadAN447A increases the pKa value of C4a-hydroperoxy-FAD decay to 9.5; however, this pKa was not altered in HadAN447D (pKa of 8.5). Thus, Arg101/Asn447 pair should provide important interactions for FADH- binding and maintain the pKa associated with H2 O2 elimination from C4a-hydroperoxy-FAD in HadA. In the presence of substrate, the formation of C4a-hydroxy-FAD at the hydroxylation step is pH insensitive, and it dehydrates to form the oxidized FAD with pKa of 7.9. This structural feature might help elucidate how the reactive intermediate was stabilized in other flavin-dependent monooxygenases.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
8
|
Švecová L, Østergaard LH, Skálová T, Schnorr KM, Koval’ T, Kolenko P, Stránský J, Sedlák D, Dušková J, Trundová M, Hašek J, Dohnálek J. Crystallographic fragment screening-based study of a novel FAD-dependent oxidoreductase from Chaetomium thermophilum. Acta Crystallogr D Struct Biol 2021; 77:755-775. [PMID: 34076590 PMCID: PMC8171062 DOI: 10.1107/s2059798321003533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/01/2021] [Indexed: 11/20/2022] Open
Abstract
The FAD-dependent oxidoreductase from Chaetomium thermophilum (CtFDO) is a novel thermostable glycoprotein from the glucose-methanol-choline (GMC) oxidoreductase superfamily. However, CtFDO shows no activity toward the typical substrates of the family and high-throughput screening with around 1000 compounds did not yield any strongly reacting substrate. Therefore, protein crystallography, including crystallographic fragment screening, with 42 fragments and 37 other compounds was used to describe the ligand-binding sites of CtFDO and to characterize the nature of its substrate. The structure of CtFDO reveals an unusually wide-open solvent-accessible active-site pocket with a unique His-Ser amino-acid pair putatively involved in enzyme catalysis. A series of six crystal structures of CtFDO complexes revealed five different subsites for the binding of aryl moieties inside the active-site pocket and conformational flexibility of the interacting amino acids when adapting to a particular ligand. The protein is capable of binding complex polyaromatic substrates of molecular weight greater than 500 Da.
Collapse
Affiliation(s)
- Leona Švecová
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
| | | | - Tereza Skálová
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | | | - Tomáš Koval’
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Petr Kolenko
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
| | - Jan Stránský
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - David Sedlák
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jarmila Dušková
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Mária Trundová
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Jindřich Hašek
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Jan Dohnálek
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
9
|
Quaye JA, Gadda G. Kinetic and Bioinformatic Characterization of d-2-Hydroxyglutarate Dehydrogenase from Pseudomonas aeruginosa PAO1. Biochemistry 2020; 59:4833-4844. [PMID: 33301690 DOI: 10.1021/acs.biochem.0c00832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
d-2-Hydroxyglutarate dehydrogenase from Pseudomonas aeruginosa PAO1 (PaD2HGDH) catalyzes the oxidation of d-2-hydroxyglutarate to 2-ketoglutarate, which is a necessary step in the serine biosynthetic pathway. The dependence of P. aeruginosa on PaD2HGDH makes the enzyme a potential therapeutic target against P. aeruginosa. In this study, recombinant His-tagged PaD2HGDH was expressed and purified to high levels from gene PA0317, which was previously annotated as an FAD-binding PCMH-type domain-containing protein. The enzyme cofactor was identified as FAD with fluorescence emission after phosphodiesterase treatment and with mass spectrometry analysis. PaD2HGDH had a kcat value of 11 s-1 and a Km value of 60 μM with d-2-hydroxyglutarate at pH 7.4 and 25 °C. The enzyme was also active with d-malate but did not react with molecular oxygen. Steady-state kinetics with d-malate and phenazine methosulfate as an electron acceptor established a mechanism that was consistent with ping-pong bi-bi steady-state kinetics at pH 7.4. A comparison of the kcat/Km values with d-2-hydroxyglutarate and d-malate suggested that the C5 carboxylate of d-2-hydroxyglutarate is important for the substrate specificity of the enzyme. Other homologues of the enzyme have been previously grouped in the VAO/PMCH family of flavoproteins. PaD2HGDH shares fully conserved residues with other α-hydroxy acid oxidizing enzymes, and these conserved residues are found in the active site of the PaD2HDGH homology model. An Enzyme Function Initiative-Enzyme Similarity Tool Sequence Similarity Network analysis suggests a functional difference between PaD2HGDH and human D2HGDH, and no relationship with VAO. A phylogenetic tree analysis of PaD2HGDH, VAO, and human D2HGDH establishes genetic diversity among these enzymes.
Collapse
|
10
|
Sriwaiyaphram K, Punthong P, Sucharitakul J, Wongnate T. Structure and function relationships of sugar oxidases and their potential use in biocatalysis. Enzymes 2020; 47:193-230. [PMID: 32951824 DOI: 10.1016/bs.enz.2020.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Several sugar oxidases that catalyze the oxidation of sugars have been isolated and characterized. These enzymes can be classified as flavoenzyme due to the presence of flavin adenine dinucleotide (FAD) as a cofactor. Sugar oxidases have been proposed to be the key biocatalyst in biotransformation of carbohydrates which can potentially convert sugars to provide a pool of intermediates for synthesis of rare sugars, fine chemicals and drugs. Moreover, sugar oxidases have been applied in biosensing of various biomolecules in food industries, diagnosis of diseases and environmental pollutant detection. This review provides the discussions on general properties, current mechanistic understanding, structural determination, biocatalytic application, and biosensor integration of representative sugar oxidase enzymes, namely pyranose 2-oxidase (P2O), glucose oxidase (GO), hexose oxidase (HO), and oligosaccharide oxidase. The information regarding the relationship between structure and function of these sugar oxidases points out the key properties of this particular group of enzymes that can be modified by engineering, which had resulted in a remarkable economic importance.
Collapse
Affiliation(s)
- Kanokkan Sriwaiyaphram
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Pangrum Punthong
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
11
|
Peterbauer CK. Pyranose dehydrogenases: Rare enzymes for electrochemistry and biocatalysis. Bioelectrochemistry 2020; 132:107399. [DOI: 10.1016/j.bioelechem.2019.107399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
|
12
|
Milazzo L, Gabler T, Pühringer D, Jandova Z, Maresch D, Michlits H, Pfanzagl V, Djinović-Carugo K, Oostenbrink C, Furtmüller PG, Obinger C, Smulevich G, Hofbauer S. Redox Cofactor Rotates during Its Stepwise Decarboxylation: Molecular Mechanism of Conversion of Coproheme to Heme b. ACS Catal 2019; 9:6766-6782. [PMID: 31423350 PMCID: PMC6691569 DOI: 10.1021/acscatal.9b00963] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/20/2019] [Indexed: 12/24/2022]
Abstract
Coproheme decarboxylase (ChdC) catalyzes the last step in the heme biosynthesis pathway of monoderm bacteria with coproheme acting both as redox cofactor and substrate. Hydrogen peroxide mediates the stepwise decarboxylation of propionates 2 and 4 of coproheme. Here we present the crystal structures of coproheme-loaded ChdC from Listeria monocytogenes (LmChdC) and the three-propionate intermediate, for which the propionate at position 2 (p2) has been converted to a vinyl group and is rotated by 90° compared to the coproheme complex structure. Single, double, and triple mutants of LmChdC, in which H-bonding interactions to propionates 2, 4, 6, and 7 were eliminated, allowed us to obtain the assignment of the coproheme propionates by resonance Raman spectroscopy and to follow the H2O2-mediated conversion of coproheme to heme b. Substitution of H2O2 by chlorite allowed us to monitor compound I formation in the inactive Y147H variant which lacks the catalytically essential Y147. This residue was demonstrated to be oxidized during turnover by using the spin-trap 2-methyl-2-nitrosopropane. Based on these findings and the data derived from molecular dynamics simulations of cofactor structures in distinct poses, we propose a reaction mechanism for the stepwise decarboxylation of coproheme that includes a 90° rotation of the intermediate three-propionate redox cofactor.
Collapse
Affiliation(s)
- Lisa Milazzo
- Dipartimento
di Chimica “Ugo Schiff”, Università
di Firenze, Via della
Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Thomas Gabler
- Department
of Chemistry, Division of Biochemistry, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Dominic Pühringer
- Department
for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Zuzana Jandova
- Department
of Material Sciences and Process Engineering, Institute of Molecular
Modeling and Simulation, BOKU−University
of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Daniel Maresch
- Department
of Chemistry, Division of Biochemistry, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Hanna Michlits
- Department
of Chemistry, Division of Biochemistry, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Vera Pfanzagl
- Department
of Chemistry, Division of Biochemistry, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Kristina Djinović-Carugo
- Department
for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
- Department
of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Chris Oostenbrink
- Department
of Material Sciences and Process Engineering, Institute of Molecular
Modeling and Simulation, BOKU−University
of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Paul G. Furtmüller
- Department
of Chemistry, Division of Biochemistry, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christian Obinger
- Department
of Chemistry, Division of Biochemistry, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Giulietta Smulevich
- Dipartimento
di Chimica “Ugo Schiff”, Università
di Firenze, Via della
Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Stefan Hofbauer
- Department
of Chemistry, Division of Biochemistry, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
13
|
Wongnate T, Surawatanawong P, Chuaboon L, Lawan N, Chaiyen P. The Mechanism of Sugar C−H Bond Oxidation by a Flavoprotein Oxidase Occurs by a Hydride Transfer Before Proton Abstraction. Chemistry 2019; 25:4460-4471. [DOI: 10.1002/chem.201806078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/16/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Thanyaporn Wongnate
- School of Biomolecular Science & EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley Rayong 21210 Thailand
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence, for Innovation in ChemistryMahidol University Bangkok 10400 Thailand
| | - Litavadee Chuaboon
- Department of Biochemistry and Center for Excellence, in Protein and Enzyme Technology, Faculty of ScienceMahidol University Bangkok 10400 Thailand
| | - Narin Lawan
- Department of Chemistry, Faculty of ScienceChiang Mai University Chiang Mai 50200 Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science & EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley Rayong 21210 Thailand
| |
Collapse
|
14
|
Şahin S, Wongnate T, Chuaboon L, Chaiyen P, Yu EH. Enzymatic fuel cells with an oxygen resistant variant of pyranose-2-oxidase as anode biocatalyst. Biosens Bioelectron 2018; 107:17-25. [DOI: 10.1016/j.bios.2018.01.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 01/11/2023]
|
15
|
Graf MMH, Sucharitakul J, Bren U, Chu DB, Koellensperger G, Hann S, Furtmüller PG, Obinger C, Peterbauer CK, Oostenbrink C, Chaiyen P, Haltrich D. Reaction of pyranose dehydrogenase from Agaricus meleagris with its carbohydrate substrates. FEBS J 2015; 282:4218-41. [PMID: 26284701 PMCID: PMC4950071 DOI: 10.1111/febs.13417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/04/2015] [Accepted: 08/13/2015] [Indexed: 01/25/2023]
Abstract
Monomeric Agaricus meleagris pyranose dehydrogenase (AmPDH) belongs to the glucose-methanol-choline family of oxidoreductases. An FAD cofactor is covalently tethered to His103 of the enzyme. AmPDH can double oxidize various mono- and oligosaccharides at different positions (C1 to C4). To study the structure/function relationship of selected active-site residues of AmPDH pertaining to substrate (carbohydrate) turnover in more detail, several active-site variants were generated, heterologously expressed in Pichia pastoris, and characterized by biochemical, biophysical and computational means. The crystal structure of AmPDH shows two active-site histidines, both of which could take on the role as the catalytic base in the reductive half-reaction. Steady-state kinetics revealed that His512 is the only catalytic base because H512A showed a reduction in (kcat /KM )glucose by a factor of 10(5) , whereas this catalytic efficiency was reduced by two or three orders of magnitude for His556 variants (H556A, H556N). This was further corroborated by transient-state kinetics, where a comparable decrease in the reductive rate constant was observed for H556A, whereas the rate constant for the oxidative half-reaction (using benzoquinone as substrate) was increased for H556A compared to recombinant wild-type AmPDH. Steady-state kinetics furthermore indicated that Gln392, Tyr510, Val511 and His556 are important for the catalytic efficiency of PDH. Molecular dynamics (MD) simulations and free energy calculations were used to predict d-glucose oxidation sites, which were validated by GC-MS measurements. These simulations also suggest that van der Waals interactions are the main driving force for substrate recognition and binding.
Collapse
Affiliation(s)
- Michael M H Graf
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| | - Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Urban Bren
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
- Laboratory for Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Technology, University of Maribor, Slovenia
| | - Dinh Binh Chu
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
- School of Chemical Engineering, Department of Analytical Chemistry, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Stephan Hann
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| | - Paul G Furtmüller
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| | - Christian Obinger
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| | - Clemens K Peterbauer
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| | - Pimchai Chaiyen
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna (BOKU), Austria
| |
Collapse
|
16
|
Visitsatthawong S, Chenprakhon P, Chaiyen P, Surawatanawong P. Mechanism of Oxygen Activation in a Flavin-Dependent Monooxygenase: A Nearly Barrierless Formation of C4a-Hydroperoxyflavin via Proton-Coupled Electron Transfer. J Am Chem Soc 2015; 137:9363-74. [DOI: 10.1021/jacs.5b04328] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Surawit Visitsatthawong
- Department
of Chemistry and Center of Excellence for Innovation in
Chemistry, Faculty of Science, †Institute for Innovative Learning, and ∥Department of
Biochemistry and Center of Excellence in Protein Structure and Function,
Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pirom Chenprakhon
- Department
of Chemistry and Center of Excellence for Innovation in
Chemistry, Faculty of Science, †Institute for Innovative Learning, and ∥Department of
Biochemistry and Center of Excellence in Protein Structure and Function,
Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pimchai Chaiyen
- Department
of Chemistry and Center of Excellence for Innovation in
Chemistry, Faculty of Science, †Institute for Innovative Learning, and ∥Department of
Biochemistry and Center of Excellence in Protein Structure and Function,
Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Panida Surawatanawong
- Department
of Chemistry and Center of Excellence for Innovation in
Chemistry, Faculty of Science, †Institute for Innovative Learning, and ∥Department of
Biochemistry and Center of Excellence in Protein Structure and Function,
Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
17
|
Dijkman WP, Binda C, Fraaije MW, Mattevi A. Structure-Based Enzyme Tailoring of 5-Hydroxymethylfurfural Oxidase. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00031] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Willem P. Dijkman
- Molecular
Enzymology Group, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Claudia Binda
- Department
of Biology and Biotechnology, University of Pavia, via Ferrata
1, 27100 Pavia, Italy
| | - Marco W. Fraaije
- Molecular
Enzymology Group, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andrea Mattevi
- Department
of Biology and Biotechnology, University of Pavia, via Ferrata
1, 27100 Pavia, Italy
| |
Collapse
|
18
|
|
19
|
Smitherman C, Rungsrisuriyachai K, Germann MW, Gadda G. Identification of the Catalytic Base for Alcohol Activation in Choline Oxidase. Biochemistry 2014; 54:413-21. [DOI: 10.1021/bi500982y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Crystal Smitherman
- Department
of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug
Design, ∥Center for Diagnostics and Therapeutics, and ⊥Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Kunchala Rungsrisuriyachai
- Department
of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug
Design, ∥Center for Diagnostics and Therapeutics, and ⊥Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Markus W. Germann
- Department
of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug
Design, ∥Center for Diagnostics and Therapeutics, and ⊥Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Giovanni Gadda
- Department
of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug
Design, ∥Center for Diagnostics and Therapeutics, and ⊥Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
20
|
Brugger D, Krondorfer I, Shelswell C, Huber-Dittes B, Haltrich D, Peterbauer CK. Engineering pyranose 2-oxidase for modified oxygen reactivity. PLoS One 2014; 9:e109242. [PMID: 25296188 PMCID: PMC4190269 DOI: 10.1371/journal.pone.0109242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/12/2014] [Indexed: 01/15/2023] Open
Abstract
Pyranose 2-oxidase (POx), a member of the GMC family of flavoproteins, catalyzes the regioselective oxidation of aldopyranoses at position C2 to the corresponding 2-ketoaldoses. During the first half-reaction, FAD is reduced to FADH2 and reoxidized in the second half-reaction by reducing molecular oxygen to H2O2. Alternative electron acceptors including quinones, radicals or chelated metal ions show significant and in some cases even higher activity. While oxygen as cheap and abundantly available electron acceptor is favored for many processes, reduced oxygen reactivity is desirable for some applications such as in biosensors/biofuel cells because of reduced oxidative damages to the biocatalyst from concomitant H2O2 production as well as reduced electron "leakage" to oxygen. The reactivity of flavoproteins with oxygen is of considerable scientific interest, and the determinants of oxygen activation and reactivity are the subject of numerous studies. We applied site-saturation mutagenesis on a set of eleven amino acids around the active site based on the crystal structure of the enzyme. Using microtiter plate screening assays with peroxidase/2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) and 2,6-dichlorophenolindophenol, variants of POx with decreased oxidase activity and maintained dehydrogenase activity were identified. Variants T166R, Q448H, L545C, L547R and N593C were characterized with respect to their apparent steady-state constants with oxygen and the alternative electron acceptors DCPIP, 1,4-benzoquinone and ferricenium ion, and the effect of the mutations was rationalized based on structural properties.
Collapse
Affiliation(s)
- Dagmar Brugger
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Iris Krondorfer
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christopher Shelswell
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Huber-Dittes
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens K. Peterbauer
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
21
|
Romero E, Gadda G. Alcohol oxidation by flavoenzymes. Biomol Concepts 2014; 5:299-318. [DOI: 10.1515/bmc-2014-0016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/05/2014] [Indexed: 12/26/2022] Open
Abstract
AbstractThis review article describes the occurrence, general properties, and substrate specificity of the flavoenzymes belonging to the glucose-methanol-choline oxidoreductase superfamily and the l-α-hydroxyacid dehydrogenase family. Most of these enzymes catalyze the oxidations of hydroxyl groups, yielding carbonyl moieties. Over the years, carbanion, hydride transfer, and radical mechanisms have been discussed for these enzymes, and the main experimental evidences supporting these mechanisms are presented here. Regardless of the chemical nature of the organic substrate (i.e., activated and non-activated alcohols), a hydride transfer mechanism appears to be the most plausible for the flavoenzymes acting on CH-OH groups. The reaction of most of these enzymes likely starts with proton abstraction from the substrate hydroxyl group by a conserved active site histidine. Among the different approaches carried out to determine the chemical mechanisms with physiological substrates, primary substrate and solvent deuterium kinetic isotope effect studies have provided the most unambiguous evidences. It is expected that the numerous studies reported for these enzymes over the years will be instrumental in devising efficient industrial biocatalysts and drugs.
Collapse
Affiliation(s)
- Elvira Romero
- 1Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA
| | | |
Collapse
|
22
|
Salvi F, Wang YF, Weber IT, Gadda G. Structure of choline oxidase in complex with the reaction product glycine betaine. ACTA ACUST UNITED AC 2014; 70:405-13. [DOI: 10.1107/s1399004713029283] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/23/2013] [Indexed: 11/10/2022]
Abstract
Choline oxidase fromArthrobacter globiformis, which is involved in the biosynthesis of glycine betaine from choline, has been extensively characterized in its mechanistic and structural properties. Despite the knowledge gained on the enzyme, the details of substrate access to the active site are not fully understood. The `loop-and-lid' mechanism described for the glucose–methanol–choline enzyme superfamily has not been confirmed for choline oxidase. Instead, a hydrophobic cluster on the solvent-accessible surface of the enzyme has been proposed by molecular dynamics to control substrate access to the active site. Here, the crystal structure of the enzyme was solved in complex with glycine betaine at pH 6.0 at 1.95 Å resolution, allowing a structural description of the ligand–enzyme interactions in the active site. This structure is the first of choline oxidase in complex with a physiologically relevant ligand. The protein structures with and without ligand are virtually identical, with the exception of a loop at the dimer interface, which assumes two distinct conformations. The different conformations of loop 250–255 define different accessibilities of the proposed active-site entrance delimited by the hydrophobic cluster on the other subunit of the dimer, suggesting a role in regulating substrate access to the active site.
Collapse
|
23
|
Wongnate T, Surawatanawong P, Visitsatthawong S, Sucharitakul J, Scrutton NS, Chaiyen P. Proton-Coupled Electron Transfer and Adduct Configuration Are Important for C4a-Hydroperoxyflavin Formation and Stabilization in a Flavoenzyme. J Am Chem Soc 2013; 136:241-53. [DOI: 10.1021/ja4088055] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Thanyaporn Wongnate
- Department
of Biochemistry and Center of Excellence in Protein Structure and
Function, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Panida Surawatanawong
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry, Mahidol University, Bangkok 10400 Thailand
| | - Surawit Visitsatthawong
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry, Mahidol University, Bangkok 10400 Thailand
| | - Jeerus Sucharitakul
- Department
of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant
Road, Patumwan, Bangkok, 10300 Thailand
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, Manchester M1 7DN United Kingdom
| | - Pimchai Chaiyen
- Department
of Biochemistry and Center of Excellence in Protein Structure and
Function, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| |
Collapse
|
24
|
Bach RD, Mattevi A. Mechanistic Aspects Regarding the Elimination of H2O2 from C(4a)-Hydroperoxyflavin. The Role of a Proton Shuttle Required for H2O2 Elimination. J Org Chem 2013; 78:8585-93. [DOI: 10.1021/jo401274u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Robert D. Bach
- Department of Chemistry and
Biochemistry, University of Delaware, Newark,
Delaware 19716, United States
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
25
|
Wongnate T, Chaiyen P. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily. FEBS J 2013; 280:3009-27. [DOI: 10.1111/febs.12280] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/01/2013] [Accepted: 04/04/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Thanyaporn Wongnate
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science; Mahidol University; Bangkok; Thailand
| | - Pimchai Chaiyen
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science; Mahidol University; Bangkok; Thailand
| |
Collapse
|
26
|
Molecular dynamics simulations give insight into D-glucose dioxidation at C2 and C3 by Agaricus meleagris pyranose dehydrogenase. J Comput Aided Mol Des 2013; 27:295-304. [PMID: 23591812 PMCID: PMC3657087 DOI: 10.1007/s10822-013-9645-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/04/2013] [Indexed: 11/11/2022]
Abstract
The flavin-dependent sugar oxidoreductase pyranose dehydrogenase (PDH) from the plant litter-degrading fungus Agaricus meleagris oxidizes d-glucose (GLC) efficiently at positions C2 and C3. The closely related pyranose 2-oxidase (P2O) from Trametes multicolor oxidizes GLC only at position C2. Consequently, the electron output per molecule GLC is twofold for PDH compared to P2O making it a promising catalyst for bioelectrochemistry or for introducing novel carbonyl functionalities into sugars. The aim of this study was to rationalize the mechanism of GLC dioxidation employing molecular dynamics simulations of GLC–PDH interactions. Shape complementarity through nonpolar van der Waals interactions was identified as the main driving force for GLC binding. Together with a very diverse hydrogen-bonding pattern, this has the potential to explain the experimentally observed promiscuity of PDH towards different sugars. Based on geometrical analysis, we propose a similar reaction mechanism as in P2O involving a general base proton abstraction, stabilization of the transition state, an alkoxide intermediate, through interaction with a protonated catalytic histidine followed by a hydride transfer to the flavin N5 atom. Our data suggest that the presence of the two potential catalytic bases His-512 and His-556 increases the versatility of the enzyme, by employing the most suitably oriented base depending on the substrate and its orientation in the active site. Our findings corroborate and rationalize the experimentally observed dioxidation of GLC by PDH and its promiscuity towards different sugars.
Collapse
|
27
|
Mugo AN, Kobayashi J, Yamasaki T, Mikami B, Ohnishi K, Yoshikane Y, Yagi T. Crystal structure of pyridoxine 4-oxidase from Mesorhizobium loti. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:953-63. [PMID: 23501672 DOI: 10.1016/j.bbapap.2013.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/21/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
Abstract
Pyridoxine 4-oxidase (PNOX) from Mesorhizobium loti is a monomeric glucose-methanol-choline (GMC) oxidoreductase family enzyme, catalyzes FAD-dependent oxidation of pyridoxine (PN) into pyridoxal, and is the first enzyme in pathway I for the degradation of PN. The tertiary structures of PNOX with a C-terminal His6-tag and PNOX-pyridoxamine (PM) complex were determined at 2.2Å and at 2.1Å resolutions, respectively. The overall structure consisted of FAD-binding and substrate-binding domains. In the active site, His460, His462, and Pro504 were located on the re-face of the isoalloxazine ring of FAD. PM binds to the active site through several hydrogen bonds. The side chains of His462 and His460 are located at 2.7 and 3.1Å from the N4' atom of PM. The activities of His460Ala and His462Ala mutant PNOXs were very low, and 460Ala/His462Ala double mutant PNOX exhibited no activity. His462 may act as a general base for the abstraction of a proton from the 4'-hydroxyl of PN. His460 may play a role in the binding and positioning of PN. The C4' atom in PM is located at 3.2Å, and the hydride ion from the C4' atom may be transferred to the N5 atom of the isoalloxazine ring. The comparison of active site residues in GMC oxidoreductase shows that Pro504 in PNOX corresponds to Asn or His of the conserved His-Asn or His-His pair in other GMC oxidoreductases. The function of the novel proline residue was discussed.
Collapse
Affiliation(s)
- Andrew Njagi Mugo
- Graduate School of Integral Arts and Science, Kochi University, Nankoku, Kochi, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Prongjit M, Sucharitakul J, Palfey BA, Chaiyen P. Oxidation mode of pyranose 2-oxidase is controlled by pH. Biochemistry 2013; 52:1437-45. [PMID: 23356577 DOI: 10.1021/bi301442x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyranose 2-oxidase (P2O) from Trametes multicolor is a flavoenzyme that catalyzes the oxidation of d-glucose and other aldopyranose sugars at the C2 position by using O₂ as an electron acceptor to form the corresponding 2-keto-sugars and H₂O₂. In this study, the effects of pH on the oxidative half-reaction of P2O were investigated using stopped-flow spectrophotometry. The results showed that flavin oxidation occurred via different pathways depending on the pH of the environment. At pH values lower than 8.0, reduced P2O reacts with O₂ to form a C4a-hydroperoxyflavin intermediate, leading to elimination of H₂O₂. At pH 8.0 and higher, the majority of the reduced P2O reacts with O₂ via a pathway that does not allow detection of the C4a-hydroperoxyflavin, and flavin oxidation occurs with decreased rate constants upon the rise in pH. The switching between the two modes of P2O oxidation is controlled by protonation of a group which has a pK(a) of 7.6 ± 0.1. Oxidation reactions of reduced P2O under rapid pH change as performed by stopped-flow mixing were different from the same reactions performed with enzyme pre-equilibrated at the same specified pH values, implying that the protonation of the group which controls the mode of flavin oxidation cannot be rapidly equilibrated with outside solvent. Using a double-mixing stopped-flow experiment, a rate constant for proton dissociation from the reaction site was determined to be 21.0 ± 0.4 s⁻¹.
Collapse
Affiliation(s)
- Methinee Prongjit
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | | |
Collapse
|
29
|
Tan TC, Spadiut O, Wongnate T, Sucharitakul J, Krondorfer I, Sygmund C, Haltrich D, Chaiyen P, Peterbauer CK, Divne C. The 1.6 Å crystal structure of pyranose dehydrogenase from Agaricus meleagris rationalizes substrate specificity and reveals a flavin intermediate. PLoS One 2013; 8:e53567. [PMID: 23326459 PMCID: PMC3541233 DOI: 10.1371/journal.pone.0053567] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/29/2012] [Indexed: 11/18/2022] Open
Abstract
Pyranose dehydrogenases (PDHs) are extracellular flavin-dependent oxidoreductases secreted by litter-decomposing fungi with a role in natural recycling of plant matter. All major monosaccharides in lignocellulose are oxidized by PDH at comparable yields and efficiencies. Oxidation takes place as single-oxidation or sequential double-oxidation reactions of the carbohydrates, resulting in sugar derivatives oxidized primarily at C2, C3 or C2/3 with the concomitant reduction of the flavin. A suitable electron acceptor then reoxidizes the reduced flavin. Whereas oxygen is a poor electron acceptor for PDH, several alternative acceptors, e.g., quinone compounds, naturally present during lignocellulose degradation, can be used. We have determined the 1.6-Å crystal structure of PDH from Agaricus meleagris. Interestingly, the flavin ring in PDH is modified by a covalent mono- or di-atomic species at the C(4a) position. Under normal conditions, PDH is not oxidized by oxygen; however, the related enzyme pyranose 2-oxidase (P2O) activates oxygen by a mechanism that proceeds via a covalent flavin C(4a)-hydroperoxide intermediate. Although the flavin C(4a) adduct is common in monooxygenases, it is unusual for flavoprotein oxidases, and it has been proposed that formation of the intermediate would be unfavorable in these oxidases. Thus, the flavin adduct in PDH not only shows that the adduct can be favorably accommodated in the active site, but also provides important details regarding the structural, spatial and physicochemical requirements for formation of this flavin intermediate in related oxidases. Extensive in silico modeling of carbohydrates in the PDH active site allowed us to rationalize the previously reported patterns of substrate specificity and regioselectivity. To evaluate the regioselectivity of D-glucose oxidation, reduction experiments were performed using fluorinated glucose. PDH was rapidly reduced by 3-fluorinated glucose, which has the C2 position accessible for oxidation, whereas 2-fluorinated glucose performed poorly (C3 accessible), indicating that the glucose C2 position is the primary site of attack.
Collapse
Affiliation(s)
- Tien Chye Tan
- School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Spadiut
- School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Thanyaporn Wongnate
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Iris Krondorfer
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christoph Sygmund
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Pimchai Chaiyen
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Clemens K. Peterbauer
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christina Divne
- School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
30
|
Chaiyen P, Fraaije MW, Mattevi A. The enigmatic reaction of flavins with oxygen. Trends Biochem Sci 2012; 37:373-80. [DOI: 10.1016/j.tibs.2012.06.005] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/19/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
|
31
|
Hernández-Ortega A, Lucas F, Ferreira P, Medina M, Guallar V, Martínez AT. Role of Active Site Histidines in the Two Half-Reactions of the Aryl-Alcohol Oxidase Catalytic Cycle. Biochemistry 2012; 51:6595-608. [DOI: 10.1021/bi300505z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Fátima Lucas
- Joint BSC-IRB
Research Program
in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain
| | - Patricia Ferreira
- Department of Biochemistry and
Molecular and Cellular Biology and Institute of Biocomputation and
Physics of Complex Systems, University of Zaragoza, E-50009 Zaragoza, Spain
| | - Milagros Medina
- Department of Biochemistry and
Molecular and Cellular Biology and Institute of Biocomputation and
Physics of Complex Systems, University of Zaragoza, E-50009 Zaragoza, Spain
| | - Victor Guallar
- Joint BSC-IRB
Research Program
in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, E-08010 Barcelona, Spain
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040
Madrid, Spain
| |
Collapse
|
32
|
Hernández-Ortega A, Ferreira P, Merino P, Medina M, Guallar V, Martínez AT. Stereoselective Hydride Transfer by Aryl-Alcohol Oxidase, a Member of the GMC Superfamily. Chembiochem 2012; 13:427-35. [PMID: 22271643 DOI: 10.1002/cbic.201100709] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Aitor Hernández-Ortega
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|