1
|
Lin Y, Lu H, Jia Q, Han S. Screening anti-anaphylactoid components in Polygonum cuspidatum via cell membrane chromatography with LC-MS targeting Mas-related G protein-coupled receptor X2. J Sep Sci 2024; 47:e2300924. [PMID: 38819784 DOI: 10.1002/jssc.202300924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Mas-related G protein-coupled receptor X2 (MrgprX2) is acknowledged as a mast cell-specific receptor, playing a crucial role in orchestrating anaphylactoid responses through mast cell degranulation. It holds promise as a target for regulating allergic and inflammatory diseases mediated by mast cells. Polygonum cuspidatum (PC) has shown notable anti-anaphylactoid effects, while its pharmacologically active components remain unclear. In this study, we successfully utilized MrgprX2 high-expressing cell membrane chromatography (CMC), in conjunction with liquid chromatography-mass spectrometry (LC-MS), to identify active anti-anaphylactoid components in PC. Our study pinpointed polydatin, resveratrol, and emodin-8-O-β-d-glucoside as potential anti-anaphylactoid compounds in PC. Their anti-anaphylactoid activities were evaluated through β-aminohexosidase and histamine release assays, demonstrating a concentration-dependent inhibition for both β-aminohexosidase and histamine release. This approach, integrating MrgprX2 high-expression CMC with LC-MS, proves effective in screening potential anti-anaphylactoid ingredients in natural herbal medicines. The findings from this study illuminated the anti-anaphylactoid properties of specific components in PC and provided an efficient method for the drug development of natural products.
Collapse
Affiliation(s)
- Yuanyuan Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, P. R. China
| | - Huaqiu Lu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, P. R. China
- Linyi Traditional Chinese Medical Hospital, Linyi, P. R. China
| | - Qianqian Jia
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
- Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, P. R. China
- Shaanxi Institute for Food and Drug Control, Xi'an, P. R. China
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China
- Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, P. R. China
| |
Collapse
|
2
|
Wagh SB, Maslivetc VA, La Clair JJ, Kornienko A. Lessons in Organic Fluorescent Probe Discovery. Chembiochem 2021; 22:3109-3139. [PMID: 34062039 PMCID: PMC8595615 DOI: 10.1002/cbic.202100171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/22/2021] [Indexed: 02/03/2023]
Abstract
Fluorescent probes have gained profound use in biotechnology, drug discovery, medical diagnostics, molecular and cell biology. The development of methods for the translation of fluorophores into fluorescent probes continues to be a robust field for medicinal chemists and chemical biologists, alike. Access to new experimental designs has enabled molecular diversification and led to the identification of new approaches to probe discovery. This review provides a synopsis of the recent lessons in modern fluorescent probe discovery.
Collapse
Affiliation(s)
- Sachin B Wagh
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| | - Vladimir A Maslivetc
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| | - James J La Clair
- Xenobe Research Institute, P. O. Box 3052, San Diego, CA, 92163-1062, USA
| | - Alexander Kornienko
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| |
Collapse
|
3
|
Ambrose AJ, Pham NT, Sivinski J, Guimarães L, Mollasalehi N, Jimenez P, Abad MA, Jeyaprakash AA, Shave S, Costa-Lotufo LV, La Clair JJ, Auer M, Chapman E. A two-step resin based approach to reveal survivin-selective fluorescent probes. RSC Chem Biol 2021; 2:181-186. [PMID: 34458780 PMCID: PMC8342005 DOI: 10.1039/d0cb00122h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/07/2020] [Indexed: 01/24/2023] Open
Abstract
The identification of modulators for proteins without assayable biochemical activity remains a challenge in chemical biology. The presented approach adapts a high-throughput fluorescence binding assay and functional chromatography, two protein-resin technologies, enabling the discovery and isolation of fluorescent natural product probes that target proteins independently of biochemical function. The resulting probes also suggest targetable pockets for lead discovery. Using human survivin as a model, we demonstrate this method with the discovery of members of the prodiginine family as fluorescent probes to the cancer target survivin.
Collapse
Affiliation(s)
- Andrew J Ambrose
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
| | - Nhan T Pham
- School of Biological Sciences and Edinburgh Medical School, Biomedical Sciences, University of Edinburgh The King's Buildings CH Waddington Building 3.07 Max Born Crescent Edinburgh EH9 3BF UK
| | - Jared Sivinski
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
| | - Larissa Guimarães
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
- Departamento de Farmacologia, Universidade de São Paulo São Paulo SP 05508-900 Brazil
| | - Niloufar Mollasalehi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
| | - Paula Jimenez
- Instituto do Mar, Universidade Federal de São Paulo Santos SP 11.070-100 Brazil
| | - Maria A Abad
- Wellcome Centre for Cell Biology, University of Edinburgh Edinburgh EH9 3BF UK
| | | | - Steven Shave
- School of Biological Sciences and Edinburgh Medical School, Biomedical Sciences, University of Edinburgh The King's Buildings CH Waddington Building 3.07 Max Born Crescent Edinburgh EH9 3BF UK
| | | | - James J La Clair
- Xenobe Research Institute P. O. Box 3052 San Diego CA 92163-1052 USA
| | - Manfred Auer
- School of Biological Sciences and Edinburgh Medical School, Biomedical Sciences, University of Edinburgh The King's Buildings CH Waddington Building 3.07 Max Born Crescent Edinburgh EH9 3BF UK
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
| |
Collapse
|
4
|
Wang L, Huang Y, Huang CH, Yu JC, Zheng YC, Chen Y, She ZG, Yuan J. A Marine Alkaloid, Ascomylactam A, Suppresses Lung Tumorigenesis via Inducing Cell Cycle G1/S Arrest through ROS/Akt/Rb Pathway. Mar Drugs 2020; 18:md18100494. [PMID: 32992455 PMCID: PMC7599880 DOI: 10.3390/md18100494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Ascomylactam A was reported for the first time as a new 13-membered-ring macrocyclic alkaloid in 2019 from the mangrove endophytic fungus Didymella sp. CYSK-4 from the South China Sea. The aim of our study was to delineate the effects of ascomylactam A (AsA) on lung cancer cells and explore the antitumor molecular mechanisms underlying of AsA. In vitro, AsA markedly inhibited the cell proliferation with half-maximal inhibitory concentration (IC50) values from 4 to 8 μM on six lung cancer cell lines, respectively. In vivo, AsA suppressed the tumor growth of A549, NCI-H460 and NCI-H1975 xenografts significantly in mice. Furthermore, by analyses of the soft agar colony formation, 5-ethynyl-20-deoxyuridine (EdU) assay, reactive oxygen species (ROS) imaging, flow cytometry and Western blotting, AsA demonstrated the ability to induce cell cycle arrest in G1 and G1/S phases by increasing ROS generation and decreasing of Akt activity. Conversely, ROS inhibitors and overexpression of Akt could decrease cell growth inhibition and cell cycle arrest induced by AsA. Therefore, we believe that AsA blocks the cell cycle via an ROS-dependent Akt/Cyclin D1/Rb signaling pathway, which consequently leads to the observed antitumor effect both in vitro and in vivo. Our results suggest a novel leading compound for antitumor drug development.
Collapse
Affiliation(s)
- Lan Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (L.W.); (Y.H.); (J.-c.Y.)
- Department of Pathogen Biology and Immunology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Yun Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (L.W.); (Y.H.); (J.-c.Y.)
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Cui-hong Huang
- School of Medicine & Health Care, Shunde Polytechnic, Shunde 528333, China;
| | - Jian-chen Yu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (L.W.); (Y.H.); (J.-c.Y.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Ying-chun Zheng
- Department of Pathogen Biology and Immunology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Yan Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China;
| | - Zhi-gang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China;
- Correspondence: (Z.-g.S.); (J.Y.); Tel.: +86-20-84113356 (Z.-g.S.); +86-20-87330368 (J.Y.)
| | - Jie Yuan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (L.W.); (Y.H.); (J.-c.Y.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Correspondence: (Z.-g.S.); (J.Y.); Tel.: +86-20-84113356 (Z.-g.S.); +86-20-87330368 (J.Y.)
| |
Collapse
|
5
|
Sui X, Pan M, Li YM. Insights into the Design of p97-targeting Small Molecules from Structural Studies on p97 Functional Mechanism. Curr Med Chem 2020; 27:298-316. [PMID: 31584361 DOI: 10.2174/0929867326666191004162411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
p97, also known as valosin-containing protein or CDC48, is a member of the AAA+ protein family that is highly conserved in eukaryotes. It binds to various cofactors in the body to perform its protein-unfolding function and participates in DNA repair, degradation of subcellular membrane proteins, and protein quality control pathways, among other processes. Its malfunction can lead to many diseases, such as inclusion body myopathy, associated with Paget's disease of bone and/or frontotemporal dementia, amyotrophic lateral sclerosis disease, and others. In recent years, many small-molecule inhibitors have been deployed against p97, including bis (diethyldithiocarbamate)- copper and CB-5083, which entered the first phase of clinical tests but failed. One bottleneck in the design of p97 drugs is that its molecular mechanism remains unclear. This paper summarizes recent studies on the molecular mechanisms of p97, which may lead to insight into how the next generation of small molecules targeting p97 can be designed.
Collapse
Affiliation(s)
- Xin Sui
- Department of Chemistry, Tsinghua University, Beijing 100086, China
| | - Man Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Yi-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
6
|
Arai MA, Morita K, Kawano H, Makita Y, Hashimoto M, Suganami A, Tamura Y, Sadhu SK, Ahmed F, Ishibashi M. Target protein-oriented isolation of Hes1 dimer inhibitors using protein based methods. Sci Rep 2020; 10:1381. [PMID: 31992824 PMCID: PMC6987128 DOI: 10.1038/s41598-020-58451-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
Natural products isolation using protein based methods is an attractive for obtaining bioactive compounds. To discover neural stem cell (NSC) differentiation activators, we isolated eight inhibitors of Hes1 dimer formation from Psidium guajava using the Hes1-Hes1 interaction fluorescent plate assay and one inhibitor from Terminalia chebula using the Hes1-immobilized beads method. Of the isolated compounds, gallic acid (8) and 4-O-(4”-O-galloyl-α-L-rhamnopyranosyl)ellagic acid (11) showed potent Hes1 dimer formation inhibitory activity, with IC50 values of 10.3 and 2.53 μM, respectively. Compound 11 accelerated the differentiation activity of C17.2 NSC cells dose dependently, increasing the number of neurons with a 125% increase (5 μM) compared to the control.
Collapse
Affiliation(s)
- Midori A Arai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| | - Kaori Morita
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Haruka Kawano
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Yuna Makita
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Manami Hashimoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Akiko Suganami
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yutaka Tamura
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Samir K Sadhu
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Firoj Ahmed
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| |
Collapse
|
7
|
de Moraes MC, Cardoso CL, Cass QB. Solid-Supported Proteins in the Liquid Chromatography Domain to Probe Ligand-Target Interactions. Front Chem 2019; 7:752. [PMID: 31803714 PMCID: PMC6873629 DOI: 10.3389/fchem.2019.00752] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Ligand-target interactions play a central role in drug discovery processes because these interactions are crucial in biological systems. Small molecules-proteins interactions can regulate and modulate protein function and activity through conformational changes. Therefore, bioanalytical tools to screen new ligands have focused mainly on probing ligand-target interactions. These interactions have been evaluated by using solid-supported proteins, which provide advantages like increased protein stability and easier protein extraction from the reaction medium, which enables protein reuse. In some specific approaches, precisely in the ligand fishing assay, the bioanalytical method allows the ligands to be directly isolated from complex mixtures, including combinatorial libraries and natural products extracts without prior purification or fractionation steps. Most of these screening assays are based on liquid chromatography separation, and the binding events can be monitored through on-line or off-line methods. In the on-line approaches, solid supports containing the immobilized biological target are used as chromatographic columns most of the time. Several terms have been used to refer to such approaches, such as weak affinity chromatography, high-performance affinity chromatography, on-flow activity assays, and high-performance liquid affinity chromatography. On the other hand, in the off-line approaches, the binding event occurs outside the liquid chromatography system and may encompass affinity and activity-based assays in which the biological target is immobilized on magnetic particles or monolithic silica, among others. After the incubation step, the supernatant or the eluate from the binding assay is analyzed by liquid chromatography coupled to various detectors. Regardless of the selected bioanalytical approach, the use of solid supported proteins has significantly contributed to the development of automated and reliable screening methods that enable ligands to be isolated and characterized in complex matrixes without purification, thereby reducing costs and avoiding time-laborious steps. This review provides a critical overview of recently developed assays.
Collapse
Affiliation(s)
- Marcela Cristina de Moraes
- Laboratório SINCROMA, Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, Niterói, Brazil
| | - Carmen Lucia Cardoso
- Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Quezia Bezerra Cass
- Separare, Departamento de Química, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
8
|
Guo J, Lin H, Wang J, Lin Y, Zhang T, Jiang Z. Recent advances in bio-affinity chromatography for screening bioactive compounds from natural products. J Pharm Biomed Anal 2019; 165:182-197. [DOI: 10.1016/j.jpba.2018.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 12/01/2018] [Accepted: 12/07/2018] [Indexed: 01/02/2023]
|
9
|
|
10
|
Bastola P, Oien DB, Cooley M, Chien J. Emerging Cancer Therapeutic Targets in Protein Homeostasis. AAPS JOURNAL 2018; 20:94. [PMID: 30151644 DOI: 10.1208/s12248-018-0254-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022]
Abstract
Genomic aberrations inside malignant cells through copy number alterations, aneuploidy, and mutations can exacerbate misfolded and unfolded protein burden resulting in increased proteotoxic stress. Increased proteotoxic stress can be deleterious to malignant cells; therefore, these cells rely heavily on the protein quality control mechanisms for survival and proliferation. Components of the protein quality control, such as the unfolded protein response, heat shock proteins, autophagy, and the ubiquitin proteasome system, orchestrate a cascade of downstream events that allow the mitigation of the proteotoxic stress. This dependency makes components of the protein quality control mechanisms attractive targets in cancer therapeutics. In this review, we explore the components of the protein homeostasis especially focusing on the emerging cancer therapeutic agents/targets that are being actively pursued actively.
Collapse
Affiliation(s)
- Prabhakar Bastola
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM, 87131, USA.,Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66130, USA
| | - Derek B Oien
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM, 87131, USA
| | - Megan Cooley
- Methods Development, Small Molecules, PRA Health Sciences, Lenexa, KS, 66215, USA
| | - Jeremy Chien
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM, 87131, USA.
| |
Collapse
|
11
|
Tillotson J, Kedzior M, Guimarães L, Ross AB, Peters TL, Ambrose AJ, Schmidlin CJ, Zhang DD, Costa-Lotufo LV, Rodríguez AD, Schatz JH, Chapman E. ATP-competitive, marine derived natural products that target the DEAD box helicase, eIF4A. Bioorg Med Chem Lett 2017; 27:4082-4085. [PMID: 28757063 PMCID: PMC5593424 DOI: 10.1016/j.bmcl.2017.07.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 02/06/2023]
Abstract
Activation of translation initiation is a common trait of cancer cells. Formation of the heterotrimeric eukaryotic initiation factor F (eIF4F) complex is the rate-limiting step in 5' m7GpppN cap-dependent translation. This trimeric complex includes the eIF4E cap binding protein, the eIF4G scaffolding protein, and the DEAD box RNA helicase eIF4A. eIF4A is an ATP-dependent helicase and because it is the only enzyme in the eIF4F complex, it has been shown to be a potential therapeutic target for a variety of malignancies. To this end, we have used a simple ATPase biochemical screen to survey several hundred marine and terrestrial derived natural products. Herein, we report the discovery of two natural products from marine sources, elisabatin A (1) and allolaurinterol (2), which show low µM inhibition of eIF4A ATPase activity. Enzymological analyses revealed 1 and 2 to be ATP-competitive, and cellular evaluations showed reasonable cytotoxicity against A549 (lung cancer) and MDA-MA-468 (breast cancer) cell lines. However, only compound 2 showed potent inhibition of helicase activity congruent with its ATPase inhibitory activity.
Collapse
Affiliation(s)
- Joseph Tillotson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tuscon, AZ 85721, United States
| | - Magdalena Kedzior
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tuscon, AZ 85721, United States
| | - Larissa Guimarães
- Departamento de Farmacologia, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Alison B Ross
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tuscon, AZ 85721, United States
| | - Tara L Peters
- Sheila and David Fuente Graduate Program in Cancer Biology, Department of Medicine, Division of Hematology-Oncology, 1580 NW 10th Ave, Batchelor, Building, Room 419, M877, Miami, FL 33101, United States
| | - Andrew J Ambrose
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tuscon, AZ 85721, United States
| | - Cody J Schmidlin
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tuscon, AZ 85721, United States
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tuscon, AZ 85721, United States
| | - Letícia V Costa-Lotufo
- Departamento de Farmacologia, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Abimael D Rodríguez
- Department of Chemistry, University of Puerto Rico, P.O. Box 23346, UPR Station, San Juan, PR 00931-3346, United States
| | - Jonathan H Schatz
- Sheila and David Fuente Graduate Program in Cancer Biology, Department of Medicine, Division of Hematology-Oncology, 1580 NW 10th Ave, Batchelor, Building, Room 419, M877, Miami, FL 33101, United States
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, P.O. Box 210207, Tuscon, AZ 85721, United States.
| |
Collapse
|
12
|
Ye Y, Tang WK, Zhang T, Xia D. A Mighty "Protein Extractor" of the Cell: Structure and Function of the p97/CDC48 ATPase. Front Mol Biosci 2017; 4:39. [PMID: 28660197 PMCID: PMC5468458 DOI: 10.3389/fmolb.2017.00039] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
p97/VCP (known as Cdc48 in S. cerevisiae or TER94 in Drosophila) is one of the most abundant cytosolic ATPases. It is highly conserved from archaebacteria to eukaryotes. In conjunction with a large number of cofactors and adaptors, it couples ATP hydrolysis to segregation of polypeptides from immobile cellular structures such as protein assemblies, membranes, ribosome, and chromatin. This often results in proteasomal degradation of extracted polypeptides. Given the diversity of p97 substrates, this "segregase" activity has profound influence on cellular physiology ranging from protein homeostasis to DNA lesion sensing, and mutations in p97 have been linked to several human diseases. Here we summarize our current understanding of the structure and function of this important cellular machinery and discuss the relevant clinical implications.
Collapse
Affiliation(s)
- Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, United States
| | - Wai Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| | - Ting Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, United States
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| |
Collapse
|
13
|
Tillotson J, Bashyal BP, Kang M, Shi T, De La Cruz F, Gunatilaka AAL, Chapman E. Selective inhibition of p97 by chlorinated analogues of dehydrocurvularin. Org Biomol Chem 2016; 14:5918-21. [PMID: 27223265 PMCID: PMC5466822 DOI: 10.1039/c6ob00560h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ATPase p97 is a ubiquitin targeted segregase that uses the energy of ATP binding and hydrolysis to extract ubiquitylated substrates from biological membranes, from other proteins, or from protein complexes to carry out myriad tasks in eukaryotes. Increased p97 activity has been linked to a poor prognosis in cancer patients, making p97 an anti-neoplastic target. In the present study, we show that dehydrocurvularin (DHC) and its chlorinated variants are covalent inhibitors of p97, interfering with its ATPase activity. Interestingly, cellular studies revealed both DHC and its monochloro analogue interfere with both the proteasome and p97, whereas its dichloro analogue showed p97 specificity.
Collapse
Affiliation(s)
- Joseph Tillotson
- College of Pharmacy, Department of Pharmacology and Toxicology, The University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Lee TC, Kang M, Kim CH, Schultz PG, Chapman E, Deniz AA. Dual Unnatural Amino Acid Incorporation and Click-Chemistry Labeling to Enable Single-Molecule FRET Studies of p97 Folding. Chembiochem 2016; 17:981-4. [PMID: 27115850 DOI: 10.1002/cbic.201500695] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Indexed: 01/01/2023]
Abstract
Many cellular functions are critically dependent on the folding of complex multimeric proteins, such as p97, a hexameric multidomain AAA+ chaperone. Given the complex architecture of p97, single-molecule (sm) FRET would be a powerful tool for studying folding while avoiding ensemble averaging. However, dual site-specific labeling of such a large protein for smFRET is a significant challenge. Here, we address this issue by using bioorthogonal azide-alkyne chemistry to attach an smFRET dye pair to site-specifically incorporated unnatural amino acids, allowing us to generate p97 variants reporting on inter- or intradomain structural features. An initial proof-of-principle set of smFRET results demonstrated the strengths of this labeling method. Our results highlight this as a powerful tool for structural studies of p97 and other large protein machines.
Collapse
Affiliation(s)
- Taehyung C Lee
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Minjin Kang
- College of Pharmacy, Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Chan Hyuk Kim
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter G Schultz
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Eli Chapman
- College of Pharmacy, Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ, 85721, USA.
| | - Ashok A Deniz
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
15
|
Rijal R, Arhzaouy K, Strucksberg KH, Cross M, Hofmann A, Schröder R, Clemen CS, Eichinger L. Mutant p97 exhibits species-specific changes of its ATPase activity and compromises the UBXD9-mediated monomerisation of p97 hexamers. Eur J Cell Biol 2016; 95:195-207. [PMID: 27132113 DOI: 10.1016/j.ejcb.2016.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022] Open
Abstract
p97 (VCP) is a homo-hexameric triple-A ATPase that exerts a plethora of cellular processes. Heterozygous missense mutations of p97 cause at least five human neurodegenerative disorders. However, the specific molecular consequences of p97 mutations are hitherto widely unknown. Our in silico structural models of human and Dictyostelium p97 showed that the disease-causing human R93C, R155H, and R155C as well as Dictyostelium R154C, E219K, R154C/E219K p97 mutations constitute variations in surface-exposed locations. In-gel ATPase activity measurements of p97 monomers and hexamers revealed significant mutation- and species-specific differences. While all human p97 mutations led to an increase in ATPase activity, no changes could be detected for the Dictyostelium R154C mutant, which is orthologous to human R155C. The E219K mutation led to an almost complete loss of activity, which was partially recuperated in the R154C/E219K double-mutant indicating p97 inter-domain communication. By means of co-immunoprecipitation experiments we identified an UBX-domain containing Dictyostelium protein as a novel p97 interaction partner. We categorized all UBX-domain containing Dictyostelium proteins and named the interaction partner UBXD9. Pull-down assays and surface plasmon resonance analyses of Dictyostelium UBXD9 or the human orthologue TUG/ASPL/UBXD9 demonstrated direct interactions with p97 as well as species-, mutation- and ATP-dependent differences in the binding affinities. Sucrose density gradient assays revealed that both human and Dictyostelium UBXD9 proteins very efficiently disassembled wild-type, but to a lesser extent mutant p97 hexamers into monomers. Our results are consistent with a scenario in which p97 point mutations lead to differences in enzymatic activities and molecular interactions, which in the long-term result in a late-onset and progressive multisystem disease.
Collapse
Affiliation(s)
- Ramesh Rijal
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Khalid Arhzaouy
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Karl-Heinz Strucksberg
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Megan Cross
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland 4111, Australia
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland 4111, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3030, Australia
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Christoph S Clemen
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
| | - Ludwig Eichinger
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
16
|
Wijeratne EMK, Gunaherath GMKB, Chapla VM, Tillotson J, de la Cruz F, Kang M, U'Ren JM, Araujo AR, Arnold AE, Chapman E, Gunatilaka AAL. Oxaspirol B with p97 Inhibitory Activity and Other Oxaspirols from Lecythophora sp. FL1375 and FL1031, Endolichenic Fungi Inhabiting Parmotrema tinctorum and Cladonia evansii. JOURNAL OF NATURAL PRODUCTS 2016; 79:340-52. [PMID: 26812276 PMCID: PMC4926610 DOI: 10.1021/acs.jnatprod.5b00986] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A new metabolite, oxaspirol D (4), together with oxaspirols B (2) and C (3) were isolated from Lecythophora sp. FL1375, an endolichenic fungus isolated from Parmotrema tinctorum, whereas Lecythophora sp. FL1031 inhabiting the lichen Cladonia evansii afforded oxaspirols A (1), B (2), and C (3). Of these, oxaspirol B (2) showed moderate p97 ATPase inhibitory activity. A detailed characterization of all oxaspirols was undertaken because structures proposed for known oxaspirols have involved incomplete assignments of NMR spectroscopic data leading only to their planar structures. Thus, the naturally occurring isomeric mixture (2a and 2b) of oxaspirol B was separated as their diacetates (5a and 5b) and the structures and absolute configurations of 1, 2a, 2b, 3, and 4 were determined by the application of spectroscopic techniques including two-dimensional NMR and the modified Mosher's ester method. Oxaspirol B (2) and its diacetates 5a and 5b were evaluated for their ATPase inhibitory activities of p97, p97 mutants, and other ATP-utilizing enzymes, and only 2 was found to be active, indicating the requirement of some structural features in oxaspirols for their activity. Additional biochemical and cellular assays suggested that 2 was a reversible, non-ATP competitive, and specific inhibitor of p97.
Collapse
Affiliation(s)
- E. M. Kithsiri Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - G. M. Kamal B. Gunaherath
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
- Department of Chemistry, Open University of Sri Lanka, Nugegoda 10250, Sri Lanka
| | - Vanessa M. Chapla
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
- Departamento de Química Orgânica, Instituto de Química, UNESP, Universidade Estadual Paulista, Araraquara, Sao Paulo 14800-900, Brazil
| | - Joseph Tillotson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Fabian de la Cruz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - MinJing Kang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jana M. U'Ren
- School of Plant Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Angela R. Araujo
- Departamento de Química Orgânica, Instituto de Química, UNESP, Universidade Estadual Paulista, Araraquara, Sao Paulo 14800-900, Brazil
| | - A. Elizabeth Arnold
- School of Plant Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona 85721, United States
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, United States
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - A. A. Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
17
|
|
18
|
Alverez C, Arkin MR, Bulfer SL, Colombo R, Kovaliov M, LaPorte MG, Lim C, Liang M, Moore WJ, Neitz RJ, Yan Y, Yue Z, Huryn DM, Wipf P. Structure-Activity Study of Bioisosteric Trifluoromethyl and Pentafluorosulfanyl Indole Inhibitors of the AAA ATPase p97. ACS Med Chem Lett 2015; 6:1225-30. [PMID: 26713109 DOI: 10.1021/acsmedchemlett.5b00364] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/19/2015] [Indexed: 11/30/2022] Open
Abstract
Exploratory SAR studies of a new phenyl indole chemotype for p97 inhibition revealed C-5 indole substituent effects in the ADPGlo assay that did not fully correlate with either electronic or steric factors. A focused series of methoxy-, trifluoromethoxy-, methyl-, trifluoromethyl-, pentafluorosulfanyl-, and nitro-analogues was found to exhibit IC50s from low nanomolar to double-digit micromolar. Surprisingly, we found that the trifluoromethoxy-analogue was biochemically a better match of the trifluoromethyl-substituted lead structure than a pentafluorosulfanyl-analogue. Moreover, in spite of their almost equivalent strongly electron-depleting effect on the indole core, pentafluorosulfanyl- and nitro-derivatives were found to exhibit a 430-fold difference in p97 inhibitory activities. Conversely, the electronically divergent C-5 methyl- and nitro-analogues both showed low nanomolar activities.
Collapse
Affiliation(s)
- Celeste Alverez
- Department
of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michelle R. Arkin
- Department
of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, California 94158, United States
| | - Stacie L. Bulfer
- Department
of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, California 94158, United States
| | - Raffaele Colombo
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Marina Kovaliov
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew G. LaPorte
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Chaemin Lim
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Mary Liang
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - William J. Moore
- Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - R. Jeffrey Neitz
- Department
of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, California 94158, United States
| | - Yongzhao Yan
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhizhou Yue
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Donna M. Huryn
- Department
of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peter Wipf
- Department
of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
19
|
Lau EC, Mason DJ, Eichhorst N, Engelder P, Mesa C, Kithsiri Wijeratne EM, Gunaherath GMKB, Leslie Gunatilaka AA, La Clair JJ, Chapman E. Functional chromatographic technique for natural product isolation. Org Biomol Chem 2015; 13:2255-9. [PMID: 25588099 PMCID: PMC4576851 DOI: 10.1039/c4ob02292k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural product discovery arises through a unique interplay between chromatographic purification and biological assays. Currently, most techniques used for natural product purification deliver leads without a defined biological action. We now describe a technique, referred to herein as functional chromatography, that deploys biological affinity as the matrix for compound isolation.
Collapse
Affiliation(s)
- Eric C. Lau
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Damian J. Mason
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Nicole Eichhorst
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Pearce Engelder
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Celestina Mesa
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, USA
| | - E. M. Kithsiri Wijeratne
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, AZ 85706-6800, USA
| | - G. M. Kamal B. Gunaherath
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, AZ 85706-6800, USA
| | - A. A. Leslie Gunatilaka
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, AZ 85706-6800, USA
| | - James J. La Clair
- Xenobe Research Institute, P. O. Box 3052, San Diego, CA 92163-1052, USA
| | - Eli Chapman
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, USA
| |
Collapse
|
20
|
Chapman E, Maksim N, de la Cruz F, La Clair JJ. Inhibitors of the AAA+ chaperone p97. Molecules 2015; 20:3027-49. [PMID: 25685910 PMCID: PMC4576884 DOI: 10.3390/molecules20023027] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/03/2015] [Indexed: 12/22/2022] Open
Abstract
It is remarkable that a pathway as ubiquitous as protein quality control can be targeted to treat cancer. Bortezomib, an inhibitor of the proteasome, was first approved by the US Food and Drug Administration (FDA) more than 10 years ago to treat refractory myeloma and later extended to lymphoma. Its use has increased the survival rate of myeloma patients by as much as three years. This success was followed with the recent accelerated approval of the natural product derived proteasome inhibitor carfilzomib (Kyprolis®), which is used to treat patients with bortezomib-resistant multiple myeloma. The success of these two drugs has validated protein quality control as a viable target to fight select cancers, but begs the question why are proteasome inhibitors limited to lymphoma and myeloma? More recently, these limitations have encouraged the search for additional targets within the protein quality control system that might offer heightened cancer cell specificity, enhanced clinical utility, a lower rate of resistance, reduced toxicity, and mitigated side effects. One promising target is p97, an ATPase associated with various cellular activities (AAA+) chaperone. p97 figures prominently in protein quality control as well as serving a variety of other cellular functions associated with cancer. More than a decade ago, it was determined that up-regulation of p97 in many forms of cancer correlates with a poor clinical outcome. Since these initial discoveries, a mechanistic explanation for this observation has been partially illuminated, but details are lacking. Understandably, given this clinical correlation, myriad roles within the cell, and its importance in protein quality control, p97 has emerged as a potential therapeutic target. This review provides an overview of efforts towards the discovery of small molecule inhibitors of p97, offering a synopsis of efforts that parallel the excellent reviews that currently exist on p97 structure, function, and physiology.
Collapse
Affiliation(s)
- Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| | - Nick Maksim
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| | - Fabian de la Cruz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| | - James J La Clair
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| |
Collapse
|
21
|
Abstract
Genomic alterations may make cancer cells more dependent than normal cells on mechanisms of proteostasis, including protein folding and degradation. This proposition is the basis for the clinical use of proteasome inhibitors to treat multiple myeloma and mantle cell lymphoma. However, proteasome inhibitors have not proved effective in treating other cancers, and this has called into question the general applicability of this approach. Here, I consider possible explanations for this apparently limited applicability, and discuss whether inhibiting other broadly acting components of the ubiquitin-proteasome system - including ubiquitin-activating enzyme and the AAA-ATPase p97/VCP - might be more generally effective in cancer therapy.
Collapse
Affiliation(s)
- Raymond J Deshaies
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena 91107, CA, USA.
| |
Collapse
|