1
|
Zhang F, Yang J, Cheng Y. Impact of RANGAP1 SUMOylation on Smad4 nuclear export by bioinformatic analysis and cell assays. BIOMOLECULES & BIOMEDICINE 2024; 24:1620-1636. [PMID: 38801243 PMCID: PMC11496865 DOI: 10.17305/bb.2024.10443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Small Ubiquitin-like Modifier (SUMOylation) regulates a variety of cellular activities, and its dysregulation has been associated with glioma etiology. The aim of this research was to clarify the function of SUMOylation-related genes in glioma and determine relevant prognostic markers. The Cancer Genome Atlas (TCGA) Glioma and GSE16011 datasets were analyzed through bioinformatics to identify Ran GTPase activating protein 1 (RANGAP1) as the hub gene for further study. Experimental validation consisted of quantitative real-time polymerase chain reaction (qRT-PCR), western blotting (WB), and immunoprecipitation (IP) to evaluate RANGAP1 expression, function, and interaction with SUMO1. To assess the role of RANGAP1 knockdown and SUMOylation in glioma cells, various assays were conducted, including cell proliferation, migration, invasion, and apoptosis. In addition, cell cycle analysis and immunofluorescence were performed. Through bioinformatics, RANGAP1 was identified as a crucial prognostic gene for glioma. Experimental studies confirmed the downregulation of RANGAP1 in glioma cells and verified that RANGAP1 repair impedes tumor growth. When it comes to RANGAP1 silencing, it enhanced cell proliferation, invasion and migration. Additionally, SUMO1 was identified as a specific SUMO molecule coupled to RANGAP1, affecting the location of Sma and Mad related protein 4 (Smad4) in the nucleocytoplasm and the transforming growth factor (TGF)-β/Smad signaling pathway. The functional impact of RANGAP1 SUMOylation on cell proliferation and migration was further confirmed through experiments using a SUMOylation-impairing mutation (K524R). Our findings suggest that RANGAP1 may be a potential prognostic marker in gliomas and could play a role in regulating cell proliferation, migration, and invasion. SUMOylation of RANGAP1 is responsible for regulating the TGF-β/Smad signaling pathway, which is crucial for the progression of tumors. Further investigations and experiments are necessary to confirm these results.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Yang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yifei Cheng
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Khai NX, Huy DQ, Trang DT, Minh NT, Tien TD, Phuong NV, Dung NV, Hang NT, Khanh LV, Hoang NH, Xuan NT, Mao CV, Tong HV. Expression of SUMO and NF-κB genes in hepatitis B virus-associated hepatocellular carcinoma patients: An observational study. Medicine (Baltimore) 2024; 103:e38737. [PMID: 38941371 PMCID: PMC11466154 DOI: 10.1097/md.0000000000038737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024] Open
Abstract
Alterations in signaling pathways and modulation of cell metabolism are associated with the pathogenesis of cancers, including hepatocellular carcinoma (HCC). Small ubiquitin-like modifier (SUMO) proteins and NF-κB family play major roles in various cellular processes. The current study aims to determine the expression profile of SUMO and NF-κB genes in HCC tumors and investigate their association with the clinical outcome of HCC. The expression of 5 genes - SUMO1, SUMO2, SUMO3, NF-κB p65, and NF-κB p50 - was quantified in tumor and adjacent non-tumor tissues of 58 HBV-related HCC patients by real-time quantitative PCR and was analyzed for the possible association with clinical parameters of HCC. The expression of SUMO2 was significantly higher in HCC tumor tissues compared to the adjacent non-tumor tissues (P = .01), while no significant difference in SUMO1, SUMO3, NF-κB p65, and NF-κB p50 expression was observed between HCC tumor and non-tumor tissues (P > .05). In HCC tissues, a strong correlation was observed between the expression of SUMO2 and NF-κB p50, between SUMO3 and NF-κB p50, between SUMO3 and NF-κB p65 (Spearman rho = 0.83; 0.82; 0.772 respectively; P < .001). The expression of SUMO1, SUMO2, SUMO3, NF-κB p65, and NF-κB p50 was decreased in grade 3 compared to grades 1 and 2 in HCC tumors according to the World Health Organization grades system. Our results highlighted that the SUMO2 gene is upregulated in tumor tissues of patients with HCC, and is related to the development of HCC, thus it may be associated with the pathogenesis of HCC.
Collapse
Affiliation(s)
- Nguyen Xuan Khai
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Duong Quang Huy
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Do Thi Trang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ngo Tuan Minh
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Truong Dinh Tien
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Viet Phuong
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | | | - Ngo Thu Hang
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Le Van Khanh
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thi Xuan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Can Van Mao
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoang Van Tong
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| |
Collapse
|
3
|
Acuña ML, García-Morin A, Orozco-Sepúlveda R, Ontiveros C, Flores A, Diaz AV, Gutiérrez-Zubiate I, Patil AR, Alvarado LA, Roy S, Russell WK, Rosas-Acosta G. Alternative splicing of the SUMO1/2/3 transcripts affects cellular SUMOylation and produces functionally distinct SUMO protein isoforms. Sci Rep 2023; 13:2309. [PMID: 36759644 PMCID: PMC9911741 DOI: 10.1038/s41598-023-29357-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Substantial increases in the conjugation of the main human SUMO paralogs, SUMO1, SUMO2, and SUMO3, are observed upon exposure to different cellular stressors, and such increases are considered important to facilitate cell survival to stress. Despite their critical cellular role, little is known about how the levels of the SUMO modifiers are regulated in the cell, particularly as it relates to the changes observed upon stress. Here we characterize the contribution of alternative splicing towards regulating the expression of the main human SUMO paralogs under normalcy and three different stress conditions, heat-shock, cold-shock, and Influenza A Virus infection. Our data reveal that the normally spliced transcript variants are the predominant mature mRNAs produced from the SUMO genes and that the transcript coding for SUMO2 is by far the most abundant of all. We also provide evidence that alternatively spliced transcripts coding for protein isoforms of the prototypical SUMO proteins, which we refer to as the SUMO alphas, are also produced, and that their abundance and nuclear export are affected by stress in a stress- and cell-specific manner. Additionally, we provide evidence that the SUMO alphas are actively synthesized in the cell as their coding mRNAs are found associated with translating ribosomes. Finally, we provide evidence that the SUMO alphas are functionally different from their prototypical counterparts, with SUMO1α and SUMO2α being non-conjugatable to protein targets, SUMO3α being conjugatable but targeting a seemingly different subset of protein from those targeted by SUMO3, and all three SUMO alphas displaying different cellular distributions from those of the prototypical SUMOs. Thus, alternative splicing appears to be an important contributor to the regulation of the expression of the SUMO proteins and the cellular functions of the SUMOylation system.
Collapse
Affiliation(s)
- Myriah L Acuña
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Andrea García-Morin
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Rebeca Orozco-Sepúlveda
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Carlos Ontiveros
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, TX, 78229, USA
| | - Alejandra Flores
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Arely V Diaz
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | - Abhijeet R Patil
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Luis A Alvarado
- Biostatistics and Epidemiology Consulting Lab, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Sourav Roy
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Germán Rosas-Acosta
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
4
|
Yuan H, Lu Y, Chan YT, Zhang C, Wang N, Feng Y. The Role of Protein SUMOylation in Human Hepatocellular Carcinoma: A Potential Target of New Drug Discovery and Development. Cancers (Basel) 2021; 13:5700. [PMID: 34830854 PMCID: PMC8616375 DOI: 10.3390/cancers13225700] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) is a highly conserved post-translational modification protein, mainly found in eukaryotes. They are widely expressed in different tissues, including the liver. As an essential post-translational modification, SUMOylation is involved in many necessary regulations in cells. It plays a vital role in DNA repair, transcription regulation, protein stability and cell cycle progression. Increasing shreds of evidence show that SUMOylation is closely related to Hepatocellular carcinoma (HCC). The high expression of SUMOs in the inflammatory hepatic tissue may lead to the carcinogenesis of HCC. At the same time, SUMOs will upregulate the proliferation and survival of HCC, migration, invasion and metastasis of HCC, tumour microenvironment as well as drug resistance. This study reviewed the role of SUMOylation in liver cancer. In addition, it also discussed natural compounds that modulate SUMO and target SUMO drugs in clinical trials. Considering the critical role of SUMO protein in the occurrence of HCC, the drug regulation of SUMOylation may become a potential target for treatment, prognostic monitoring and adjuvant chemotherapy of HCC.
Collapse
Affiliation(s)
| | | | | | | | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; (H.Y.); (Y.L.); (Y.-T.C.); (C.Z.)
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; (H.Y.); (Y.L.); (Y.-T.C.); (C.Z.)
| |
Collapse
|
5
|
Liang CT, Roscow OMA, Zhang W. Recent developments in engineering protein-protein interactions using phage display. Protein Eng Des Sel 2021; 34:6297171. [PMID: 34117768 DOI: 10.1093/protein/gzab014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/09/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Targeted inhibition of misregulated protein-protein interactions (PPIs) has been a promising area of investigation in drug discovery and development for human diseases. However, many constraints remain, including shallow binding surfaces and dynamic conformation changes upon interaction. A particularly challenging aspect is the undesirable off-target effects caused by inherent structural similarity among the protein families. To tackle this problem, phage display has been used to engineer PPIs for high-specificity binders with improved binding affinity and greatly reduced undesirable interactions with closely related proteins. Although general steps of phage display are standardized, library design is highly variable depending on experimental contexts. Here in this review, we examined recent advances in the structure-based combinatorial library design and the advantages and limitations of different approaches. The strategies described here can be explored for other protein-protein interactions and aid in designing new libraries or improving on previous libraries.
Collapse
Affiliation(s)
- Chen T Liang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G2W1, Canada
| | - Olivia M A Roscow
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G2W1, Canada
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G2W1, Canada.,CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, MaRS Centre West Tower, 661 University Avenue, Toronto, Ontario M5G1M1, Canada
| |
Collapse
|
6
|
Abstract
Post-translational modifications of cellular substrates with ubiquitin and ubiquitin-like proteins (UBLs), including ubiquitin, SUMOs, and neural precursor cell-expressed developmentally downregulated protein 8, play a central role in regulating many aspects of cell biology. The UBL conjugation cascade is initiated by a family of ATP-dependent enzymes termed E1 activating enzymes and executed by the downstream E2-conjugating enzymes and E3 ligases. Despite their druggability and their key position at the apex of the cascade, pharmacologic modulation of E1s with potent and selective drugs has remained elusive until 2009. Among the eight E1 enzymes identified so far, those initiating ubiquitylation (UBA1), SUMOylation (SAE), and neddylation (NAE) are the most characterized and are implicated in various aspects of cancer biology. To date, over 40 inhibitors have been reported to target UBA1, SAE, and NAE, including the NAE inhibitor pevonedistat, evaluated in more than 30 clinical trials. In this Review, we discuss E1 enzymes, the rationale for their therapeutic targeting in cancer, and their different inhibitors, with emphasis on the pharmacologic properties of adenosine sulfamates and their unique mechanism of action, termed substrate-assisted inhibition. Moreover, we highlight other less-characterized E1s-UBA6, UBA7, UBA4, UBA5, and autophagy-related protein 7-and the opportunities for targeting these enzymes in cancer. SIGNIFICANCE STATEMENT: The clinical successes of proteasome inhibitors in cancer therapy and the emerging resistance to these agents have prompted the exploration of other signaling nodes in the ubiquitin-proteasome system including E1 enzymes. Therefore, it is crucial to understand the biology of different E1 enzymes, their roles in cancer, and how to translate this knowledge into novel therapeutic strategies with potential implications in cancer treatment.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| | - Aaron D Schimmer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| |
Collapse
|
7
|
Lysine acylation using conjugating enzymes for site-specific modification and ubiquitination of recombinant proteins. Nat Chem 2020; 12:1008-1015. [DOI: 10.1038/s41557-020-0528-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 07/22/2020] [Indexed: 12/31/2022]
|
8
|
Zhao B, Tsai YC, Jin B, Wang B, Wang Y, Zhou H, Carpenter T, Weissman AM, Yin J. Protein Engineering in the Ubiquitin System: Tools for Discovery and Beyond. Pharmacol Rev 2020; 72:380-413. [PMID: 32107274 PMCID: PMC7047443 DOI: 10.1124/pr.118.015651] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin (UB) transfer cascades consisting of E1, E2, and E3 enzymes constitute a complex network that regulates a myriad of biologic processes by modifying protein substrates. Deubiquitinating enzymes (DUBs) reverse UB modifications or trim UB chains of diverse linkages. Additionally, many cellular proteins carry UB-binding domains (UBDs) that translate the signals encoded in UB chains to target proteins for degradation by proteasomes or in autophagosomes, as well as affect nonproteolytic outcomes such as kinase activation, DNA repair, and transcriptional regulation. Dysregulation of the UB transfer pathways and malfunctions of DUBs and UBDs play causative roles in the development of many diseases. A greater understanding of the mechanism of UB chain assembly and the signals encoded in UB chains should aid in our understanding of disease pathogenesis and guide the development of novel therapeutics. The recent flourish of protein-engineering approaches such as unnatural amino acid incorporation, protein semisynthesis by expressed protein ligation, and high throughput selection by phage and yeast cell surface display has generated designer proteins as powerful tools to interrogate cell signaling mediated by protein ubiquitination. In this study, we highlight recent achievements of protein engineering on mapping, probing, and manipulating UB transfer in the cell. SIGNIFICANCE STATEMENT: The post-translational modification of proteins with ubiquitin alters the fate and function of proteins in diverse ways. Protein engineering is fundamentally transforming research in this area, providing new mechanistic insights and allowing for the exploration of concepts that can potentially be applied to therapeutic intervention.
Collapse
Affiliation(s)
- Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Yien Che Tsai
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Bo Jin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Bufan Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Yiyang Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Han Zhou
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Tomaya Carpenter
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Allan M Weissman
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Jun Yin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| |
Collapse
|
9
|
Zhang Y, Xu S, Chen Z, Xie M, Ma Y, Wu G, Huang X, Luo C, Huang Z, Sun Y, Huang Y, Li X, Hou Y, Chen J. Zfp521 SUMOylation facilities erythroid hematopoietic reconstitution under stress. Biosci Biotechnol Biochem 2020; 84:943-953. [PMID: 31916512 DOI: 10.1080/09168451.2019.1703639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Zinc finger protein 521 (Zfp521) is a key transcriptional factor in regulation of hematopoiesis. SUMOylation, a protein post-translational modification process, plays important roles in various biological process including hematopoiesis. However, whether Zfp521 can be SUMOylated and how it affects hematopoiesis is unknown. In this study, we confirmed that Zfp521 can be modified by SUMO1 and lysine 1146 was the primary SUMOylation site. Under homeostatic condition, Zfp521 SUMOylation-deficient mice had normal mature blood cells and primitive cells. However, in bone marrow (BM) transplantation assay, recipient mice transplanted with BM cells from Zfp521 SUMOylation-deficient mice had a significantly decreased R2 population of erythroid lineage in BM and spleen compared with those transplanted with BM cells from wild-type mice. Our results found a novel function of Zfp521 SUMOylation in erythroid reconstitution under stress, which might be a new therapeutic target in future.
Collapse
Affiliation(s)
- Yali Zhang
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Shuangnian Xu
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Zhe Chen
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Mingling Xie
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yanni Ma
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Guixian Wu
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Xiangtao Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Chengxin Luo
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Zhen Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yanni Sun
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yongxiu Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Xi Li
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yu Hou
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Jieping Chen
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
10
|
Fox BM, Janssen A, Estevez-Ordonez D, Gessler F, Vicario N, Chagoya G, Elsayed G, Sotoudeh H, Stetler W, Friedman GK, Bernstock JD. SUMOylation in Glioblastoma: A Novel Therapeutic Target. Int J Mol Sci 2019; 20:ijms20081853. [PMID: 30991648 PMCID: PMC6514907 DOI: 10.3390/ijms20081853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
Protein SUMOylation is a dynamic post-translational modification which is involved in a diverse set of physiologic processes throughout the cell. Of note, SUMOylation also plays a role in the pathobiology of a myriad of cancers, one of which is glioblastoma (GBM). Accordingly, herein, we review core aspects of SUMOylation as it relates to GBM and in so doing highlight putative methods/modalities capable of therapeutically engaging the pathway for treatment of this deadly neoplasm.
Collapse
Affiliation(s)
- Brandon M Fox
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
- Medical Scientist Training Program, University of Alabama at Birmingham, 1825 University Boulevard, SHEL 121, Birmingham, AL 35294, USA.
| | - Andrew Janssen
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
| | - Dagoberto Estevez-Ordonez
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
| | - Florian Gessler
- Department of Neurosurgery, University Hospital Frankfurt, Goethe-University, Schleusenweg 2-16, 60528 Frankfurt, Germany.
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Via S. Sofia n. 97, Torre Biologica, 95123 Catania, Italy.
| | - Gustavo Chagoya
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
| | - Galal Elsayed
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
| | - Houman Sotoudeh
- Division of Neuroradiology, Department of Radiology, University of Alabama at Birmingham, Jefferson Tower N419-619 19th Street South, Birmingham, AL 35223, USA.
| | - William Stetler
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
| | - Gregory K Friedman
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
- Division of Neuroradiology, Department of Radiology, University of Alabama at Birmingham, Jefferson Tower N419-619 19th Street South, Birmingham, AL 35223, USA.
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Lowder 512, 1600 7th Avenue South, Birmingham, AL 35223, USA.
| | - Joshua D Bernstock
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
- Medical Scientist Training Program, University of Alabama at Birmingham, 1825 University Boulevard, SHEL 121, Birmingham, AL 35294, USA.
| |
Collapse
|
11
|
Ubiquitin-Mimicking Peptides Transfer Differentiates by E1 and E2 Enzymes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6062520. [PMID: 30246024 PMCID: PMC6136576 DOI: 10.1155/2018/6062520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/18/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
Abstract
Ubiquitin and ubiquitin like proteins (UBLs) play key roles in eukaryotes. These proteins are attached to their target proteins through an E1-E2-E3 cascade and modify the functions of these proteins. Since the discovery of ubiquitin, several UBLs have been identified, including Nedd8, SUMO, ISG15, and Atg8. Ubiquitin and UBLs share a similar three-dimensional structure: β-grasp fold and an X-X-[R/A/E/K]-X-X-[G/X]-G motif at the C-terminus. We have previously reported that ubiquitin, Nedd8, and SUMO mimicking peptides which all contain the conserved motif X-X-[R/A/E/K]-X-X-[G/X]-G still retained their reactivity toward their corresponding E1, E2, and E3 enzymes. In our current study, we investigated whether such C-terminal peptides could still be transferred onto related pathway enzymes to probe the function of these enzymes when they are fused with a protein. By bioinformatic search of protein databases, we selected eight proteins carrying the X-X-[R/A/E/K]-X-X-[G/X]-G motif at the C-terminus of the β-grasp fold. We synthesized the C-terminal sequences of these candidates as short peptides and found that three of them showed significant reactivity with the ubiquitin E1 enzyme Ube1. We next fused the three reactive short peptides to three different protein frames, including their respective native protein frames, a ubiquitin frame and a peptidyl carrier protein (PCP) frame, and measured the reactivities of these peptide-fused proteins with Ube1. Peptide-fused proteins on ubiquitin and PCP frames showed obvious reactivity with Ube1. However, when we measured E2 UbcH7 transfer, we found that the PCP-peptide fusions lost their reactivity with UbcH7. Taken together, these results suggested that the recognition of E2 enzymes with peptide-fused proteins depended not only on the C-terminal sequences of the ubiquitin-mimicking peptides, but also on the overall structures of the protein frames.
Collapse
|
12
|
Zhou Y, Ji C, Cao M, Guo M, Huang W, Ni W, Meng L, Yang H, Wei JF. Inhibitors targeting the SUMOylation pathway: A patent review 2012‑2015 (Review). Int J Mol Med 2017; 41:3-12. [PMID: 29115401 DOI: 10.3892/ijmm.2017.3231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 10/27/2017] [Indexed: 11/06/2022] Open
Abstract
Small ubiquitin‑related modifier (SUMO) proteins bind to the lysine residue of target proteins to produce functionally mature proteins. The abnormal SUMOylation of certain target proteins is associated with diseases including cancer, heart disease, diabetes, arthritis, degenerative diseases and brain ischemia/stroke. Thus, there has been growing appreciation for the potential importance of the SUMO conjugation pathway as a target for treating these diseases. This review introduces the important steps in the reversible SUMOylation pathway. The SUMO inhibitors disclosed in the patents between 2012 and 2015 are divided into different categories according to their mechanisms of action. Certain compounds disclosed in this review have also been reported in other articles for their inhibition of the SUMOylation pathway following screening in cell lines. Although there are few studies using animal models or clinical trials that have used these compounds, the application of bortezomin, a ubiquitylation inhibitor, for treating cancer indicates that SUMO inhibitors may be clinically successful.
Collapse
Affiliation(s)
- Yanjun Zhou
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Chunmei Ji
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Mengda Cao
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Miao Guo
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Huang
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Weiwei Ni
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Ling Meng
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Haiwei Yang
- Department of Urology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
13
|
Patent highlights: December 2015-January 2016. Pharm Pat Anal 2016; 5:147-53. [PMID: 27088860 DOI: 10.4155/ppa-2016-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
14
|
Eifler K, Vertegaal ACO. SUMOylation-Mediated Regulation of Cell Cycle Progression and Cancer. Trends Biochem Sci 2015; 40:779-793. [PMID: 26601932 DOI: 10.1016/j.tibs.2015.09.006] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 01/08/2023]
Abstract
Protein conjugation with Small ubiquitin-like modifier (SUMOylation) has critical roles during cell cycle progression. Many important cell cycle regulators, including many oncogenes and tumor suppressors, are functionally regulated via SUMOylation. The dynamic SUMOylation pattern observed throughout the cell cycle is ensured via distinct spatial and temporal regulation of the SUMO machinery. Additionally, SUMOylation cooperates with other post-translational modifications to mediate cell cycle progression. Deregulation of these SUMOylation and deSUMOylation enzymes causes severe defects in cell proliferation and genome stability. Different types of cancer were recently shown to be dependent on a functioning SUMOylation system, a finding that could be exploited in anticancer therapies.
Collapse
Affiliation(s)
- Karolin Eifler
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|