1
|
Icking LS, Riedlberger AM, Krause F, Widder J, Frederiksen A, Stockert F, Spädt M, Edel N, Armbruster D, Forlani G, Franchini S, Kaas P, Kırpat Konak BM, Krier F, Lefebvre M, Mazraeh D, Ranniger J, Gerstenecker J, Gescher P, Voigt K, Salavei P, Gensch N, Di Ventura B, Öztürk MA. iNClusive: a database collecting useful information on non-canonical amino acids and their incorporation into proteins for easier genetic code expansion implementation. Nucleic Acids Res 2024; 52:D476-D482. [PMID: 37986218 PMCID: PMC10767842 DOI: 10.1093/nar/gkad1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
The incorporation of non-canonical amino acids (ncAAs) into proteins is a powerful technique used in various research fields. Genetic code expansion (GCE) is the most common way to achieve this: a specific codon is selected to be decoded by a dedicated tRNA orthogonal to the endogenous ones. In the past 30 years, great progress has been made to obtain novel tRNA synthetases (aaRSs) accepting a variety of ncAAs with distinct physicochemical properties, to develop robust in vitro assays or approaches for codon reassignment. This sparked the use of the technique, leading to the accumulation of publications, from which gathering all relevant information can appear daunting. Here we present iNClusive (https://non-canonical-aas.biologie.uni-freiburg.de/), a manually curated, extensive repository using standardized nomenclature that provides organized information on ncAAs successfully incorporated into target proteins as verified by mass spectrometry. Since we focused on tRNA synthetase-based tRNA loading, we provide the sequence of the tRNA and aaRS used for the incorporation. Derived from more than 687 peer-reviewed publications, it currently contains 2432 entries about 466 ncAAs, 569 protein targets, 500 aaRSs and 144 tRNAs. We foresee iNClusive will encourage more researchers to experiment with ncAA incorporation thus contributing to the further development of this exciting technique.
Collapse
Affiliation(s)
- Leon-Samuel Icking
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Andreas Martin Riedlberger
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Fabian Krause
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Jonas Widder
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Anne Smedegaard Frederiksen
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Fabian Stockert
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Michael Spädt
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Nikita Edel
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Daniel Armbruster
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Giada Forlani
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstr. 19A, 79104, Freiburg, Germany
| | - Selene Franchini
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Paulina Kaas
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Büşra Merve Kırpat Konak
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Fabrice Krier
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Maïwenn Lefebvre
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Daniel Mazraeh
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Jeremy Ranniger
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Johanna Gerstenecker
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Pia Gescher
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Karsten Voigt
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Pavel Salavei
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Nicole Gensch
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Barbara Di Ventura
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Mehmet Ali Öztürk
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| |
Collapse
|
2
|
Avila‐Cobian LF, Hoshino H, Horsman ME, Nguyen VT, Qian Y, Feltzer R, Kim C, Hu DD, Champion MM, Fisher JF, Mobashery S. Amber-codon suppression for spatial localization and in vivo photoaffinity capture of the interactome of the Pseudomonas aeruginosa rare lipoprotein A lytic transglycosylase. Protein Sci 2023; 32:e4781. [PMID: 37703013 PMCID: PMC10536563 DOI: 10.1002/pro.4781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
The 11 lytic transglycosylases of Pseudomonas aeruginosa have overlapping activities in the turnover of the cell-wall peptidoglycan. Rare lipoprotein A (RlpA) is distinct among the 11 by its use of only peptidoglycan lacking peptide stems. The spatial localization of RlpA and its interactome within P. aeruginosa are unknown. We employed suppression of introduced amber codons at sites in the rlpA gene for the introduction of the unnatural-amino-acids Νζ -[(2-azidoethoxy)carbonyl]-l-lysine (compound 1) and Nζ -[[[3-(3-methyl-3H-diazirin-3-yl)propyl]amino]carbonyl]-l-lysine (compound 2). In live P. aeruginosa, full-length RlpA incorporating compound 1 into its sequence was fluorescently tagged using strained-promoted alkyne-azide cycloaddition and examined by fluorescence microscopy. RlpA is present at low levels along the sidewall length of the bacterium, and at higher levels at the nascent septa of replicating bacteria. In intact P. aeruginosa, UV photolysis of full-length RlpA having compound 2 within its sequence generated a transient reactive carbene, which engaged in photoaffinity capture of neighboring proteins. Thirteen proteins were identified. Three of these proteins-PBP1a, PBP5, and MreB-are members of the bacterial divisome. The use of the complementary methodologies of non-canonical amino-acid incorporation, photoaffinity proximity analysis, and fluorescent microscopy confirm a dominant septal location for the RlpA enzyme of P. aeruginosa, as a divisome-associated activity. This accomplishment adds to the emerging recognition of the value of these methodologies for identification of the intracellular localization of bacterial proteins.
Collapse
Affiliation(s)
- Luis F. Avila‐Cobian
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Hidekazu Hoshino
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Mark E. Horsman
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Van T. Nguyen
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Yuanyuan Qian
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Rhona Feltzer
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Choon Kim
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Daniel D. Hu
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew M. Champion
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jed F. Fisher
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Shahriar Mobashery
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
3
|
Goettig P, Koch NG, Budisa N. Non-Canonical Amino Acids in Analyses of Protease Structure and Function. Int J Mol Sci 2023; 24:14035. [PMID: 37762340 PMCID: PMC10531186 DOI: 10.3390/ijms241814035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
All known organisms encode 20 canonical amino acids by base triplets in the genetic code. The cellular translational machinery produces proteins consisting mainly of these amino acids. Several hundred natural amino acids serve important functions in metabolism, as scaffold molecules, and in signal transduction. New side chains are generated mainly by post-translational modifications, while others have altered backbones, such as the β- or γ-amino acids, or they undergo stereochemical inversion, e.g., in the case of D-amino acids. In addition, the number of non-canonical amino acids has further increased by chemical syntheses. Since many of these non-canonical amino acids confer resistance to proteolytic degradation, they are potential protease inhibitors and tools for specificity profiling studies in substrate optimization and enzyme inhibition. Other applications include in vitro and in vivo studies of enzyme kinetics, molecular interactions and bioimaging, to name a few. Amino acids with bio-orthogonal labels are particularly attractive, enabling various cross-link and click reactions for structure-functional studies. Here, we cover the latest developments in protease research with non-canonical amino acids, which opens up a great potential, e.g., for novel prodrugs activated by proteases or for other pharmaceutical compounds, some of which have already reached the clinical trial stage.
Collapse
Affiliation(s)
- Peter Goettig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Nikolaj G. Koch
- Biocatalysis Group, Technische Universität Berlin, 10623 Berlin, Germany;
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Nediljko Budisa
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
4
|
McFeely CAL, Shakya B, Makovsky CA, Haney AK, Ashton Cropp T, Hartman MCT. Extensive breaking of genetic code degeneracy with non-canonical amino acids. Nat Commun 2023; 14:5008. [PMID: 37591858 PMCID: PMC10435567 DOI: 10.1038/s41467-023-40529-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
Genetic code expansion (GCE) offers many exciting opportunities for the creation of synthetic organisms and for drug discovery methods that utilize in vitro translation. One type of GCE, sense codon reassignment (SCR), focuses on breaking the degeneracy of the 61 sense codons which encode for only 20 amino acids. SCR has great potential for genetic code expansion, but extensive SCR is limited by the post-transcriptional modifications on tRNAs and wobble reading of these tRNAs by the ribosome. To better understand codon-tRNA pairing, here we develop an assay to evaluate the ability of aminoacyl-tRNAs to compete with each other for a given codon. We then show that hyperaccurate ribosome mutants demonstrate reduced wobble reading, and when paired with unmodified tRNAs lead to extensive and predictable SCR. Together, we encode seven distinct amino acids across nine codons spanning just two codon boxes, thereby demonstrating that the genetic code hosts far more re-assignable space than previously expected, opening the door to extensive genetic code engineering.
Collapse
Affiliation(s)
- Clinton A L McFeely
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
- Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA, 23219, USA
| | - Bipasana Shakya
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
- Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA, 23219, USA
| | - Chelsea A Makovsky
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
- Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA, 23219, USA
| | - Aidan K Haney
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
| | - T Ashton Cropp
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
| | - Matthew C T Hartman
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA.
- Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA, 23219, USA.
| |
Collapse
|
5
|
Yanagisawa T, Seki E, Tanabe H, Fujii Y, Sakamoto K, Yokoyama S. Crystal Structure of Pyrrolysyl-tRNA Synthetase from a Methanogenic Archaeon ISO4-G1 and Its Structure-Based Engineering for Highly-Productive Cell-Free Genetic Code Expansion with Non-Canonical Amino Acids. Int J Mol Sci 2023; 24:ijms24076256. [PMID: 37047230 PMCID: PMC10094482 DOI: 10.3390/ijms24076256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Pairs of pyrrolysyl-tRNA synthetase (PylRS) and tRNAPyl from Methanosarcina mazei and Methanosarcina barkeri are widely used for site-specific incorporations of non-canonical amino acids into proteins (genetic code expansion). Previously, we achieved full productivity of cell-free protein synthesis for bulky non-canonical amino acids, including Nε-((((E)-cyclooct-2-en-1-yl)oxy)carbonyl)-L-lysine (TCO*Lys), by using Methanomethylophilus alvus PylRS with structure-based mutations in and around the amino acid binding pocket (first-layer and second-layer mutations, respectively). Recently, the PylRS·tRNAPyl pair from a methanogenic archaeon ISO4-G1 was used for genetic code expansion. In the present study, we determined the crystal structure of the methanogenic archaeon ISO4-G1 PylRS (ISO4-G1 PylRS) and compared it with those of structure-known PylRSs. Based on the ISO4-G1 PylRS structure, we attempted the site-specific incorporation of Nε-(p-ethynylbenzyloxycarbonyl)-L-lysine (pEtZLys) into proteins, but it was much less efficient than that of TCO*Lys with M. alvus PylRS mutants. Thus, the first-layer mutations (Y125A and M128L) of ISO4-G1 PylRS, with no additional second-layer mutations, increased the protein productivity with pEtZLys up to 57 ± 8% of that with TCO*Lys at high enzyme concentrations in the cell-free protein synthesis.
Collapse
Affiliation(s)
- Tatsuo Yanagisawa
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan;
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan; (E.S.); (H.T.)
- Correspondence: (T.Y.); (S.Y.); Tel.: +81-45-503-9196 (S.Y.)
| | - Eiko Seki
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan; (E.S.); (H.T.)
| | - Hiroaki Tanabe
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan; (E.S.); (H.T.)
| | - Yoshifumi Fujii
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan; (E.S.); (H.T.)
| | - Kensaku Sakamoto
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan;
| | - Shigeyuki Yokoyama
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-Cho, Tsurumi, Yokohama 230-0045, Japan; (E.S.); (H.T.)
- Correspondence: (T.Y.); (S.Y.); Tel.: +81-45-503-9196 (S.Y.)
| |
Collapse
|
6
|
Violo T, Lambert A, Pillot A, Fanuel M, Mac-Béar J, Broussard C, Grandjean C, Camberlein E. Site-Selective Unnatural Amino Acid Incorporation at Single or Multiple Positions to Control Sugar-Protein Connectivity in Glycoconjugate Vaccine Candidates. Chemistry 2023; 29:e202203497. [PMID: 36533568 DOI: 10.1002/chem.202203497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
In cellulo site-specific unnatural amino acid incorporation based on amber stop codon reassignment is a powerful tool to modify proteins at defined positions. This technique is herein applied to the selective functionalization of the Pneumococcal surface adhesin A protein at three distinct positions. Nϵ -propargyloxycarbonyl-l-lysine residues were incorporated and their alkyne groups reacted using click-chemistry with a synthetic azido-functionalized tetrasaccharide representative of one repeat unit of the Streptococcus pneumoniae serotype 14 capsular polysaccharide. Anti-PsaA antibody response induced in mice by the trivalent glycoconjugate was determined in comparison with corresponding monovalent and randomly functionalized conjugates. Our results suggest that controlled was superior to random conjugation for preserving antigenicity. In definitive, the reported strategy offers a unique opportunity to study the impact of carbohydrate antigen-carrier protein connectivity on immunogenicity.
Collapse
Affiliation(s)
- Typhaine Violo
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| | - Annie Lambert
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| | - Aline Pillot
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| | - Mathieu Fanuel
- INRAE, UR1268 BIA, F-44300, Nantes, France.,INRAE, PROBE Research Infrastructure BIBS facility, F-44300, Nantes, France
| | - Jessica Mac-Béar
- INRAE, UR1268 BIA, F-44300, Nantes, France.,INRAE, PROBE Research Infrastructure BIBS facility, F-44300, Nantes, France
| | - Cédric Broussard
- Protéom'IC facility, Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
| | - Cyrille Grandjean
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| | - Emilie Camberlein
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| |
Collapse
|
7
|
Abdelkader EH, Qianzhu H, George J, Frkic RL, Jackson CJ, Nitsche C, Otting G, Huber T. Genetic Encoding of Cyanopyridylalanine for In‐Cell Protein Macrocyclization by the Nitrile–Aminothiol Click Reaction. Angew Chem Int Ed Engl 2022; 61:e202114154. [PMID: 35102680 PMCID: PMC9304162 DOI: 10.1002/anie.202114154] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 12/04/2022]
Abstract
Cyanopyridylalanines are non‐canonical amino acids that react with aminothiol compounds under physiological conditions in a biocompatible manner without requiring added catalyst. Here we present newly developed aminoacyl‐tRNA synthetases for genetic encoding of meta‐ and para‐cyanopyridylalanine to enable the site‐specific attachment of a wide range of different functionalities. The outstanding utility of the cyanopyridine moiety is demonstrated by examples of i) post‐translational functionalization of proteins, ii) in‐cell macrocyclization of peptides and proteins, and iii) protein stapling. The biocompatible nature of the protein ligation chemistry enabled by the cyanopyridylalanine amino acid opens a new path to specific in vivo protein modifications in complex biological environments.
Collapse
Affiliation(s)
- Elwy H. Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Haocheng Qianzhu
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Josemon George
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Rebecca L. Frkic
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Colin J. Jackson
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Christoph Nitsche
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Thomas Huber
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
8
|
Abdelkader EH, Qianzhu H, George J, Frkic RL, Jackson CJ, Nitsche C, Otting G, Huber T. Genetic Encoding of Cyanopyridylalanine for In‐Cell Protein Macrocyclization by the Nitrile–Aminothiol Click Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elwy H. Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Haocheng Qianzhu
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Josemon George
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Rebecca L. Frkic
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Colin J. Jackson
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Christoph Nitsche
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Thomas Huber
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
9
|
Hartman MCT. Non-canonical Amino Acid Substrates of E. coli Aminoacyl-tRNA Synthetases. Chembiochem 2022; 23:e202100299. [PMID: 34416067 PMCID: PMC9651912 DOI: 10.1002/cbic.202100299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/03/2021] [Indexed: 01/07/2023]
Abstract
In this comprehensive review, I focus on the twenty E. coli aminoacyl-tRNA synthetases and their ability to charge non-canonical amino acids (ncAAs) onto tRNAs. The promiscuity of these enzymes has been harnessed for diverse applications including understanding and engineering of protein function, creation of organisms with an expanded genetic code, and the synthesis of diverse peptide libraries for drug discovery. The review catalogues the structures of all known ncAA substrates for each of the 20 E. coli aminoacyl-tRNA synthetases, including ncAA substrates for engineered versions of these enzymes. Drawing from the structures in the list, I highlight trends and novel opportunities for further exploitation of these ncAAs in the engineering of protein function, synthetic biology, and in drug discovery.
Collapse
Affiliation(s)
- Matthew C T Hartman
- Department of Chemistry and Massey Cancer Center, Virginia Commonwealth University, 1001 W Main St., Richmond, VA 23220, USA
| |
Collapse
|
10
|
Spears RJ, McMahon C, Chudasama V. Cysteine protecting groups: applications in peptide and protein science. Chem Soc Rev 2021; 50:11098-11155. [PMID: 34605832 DOI: 10.1039/d1cs00271f] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protecting group chemistry for the cysteine thiol group has enabled a vast array of peptide and protein chemistry over the last several decades. Increasingly sophisticated strategies for the protection, and subsequent deprotection, of cysteine have been developed, facilitating synthesis of complex disulfide-rich peptides, semisynthesis of proteins, and peptide/protein labelling in vitro and in vivo. In this review, we analyse and discuss the 60+ individual protecting groups reported for cysteine, highlighting their applications in peptide synthesis and protein science.
Collapse
Affiliation(s)
| | - Clíona McMahon
- Department of Chemistry, University College London, London, UK.
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK.
| |
Collapse
|
11
|
Abdelkader EH, Qianzhu H, Tan YJ, Adams LA, Huber T, Otting G. Genetic Encoding of N6-(((Trimethylsilyl)methoxy)carbonyl)-l-lysine for NMR Studies of Protein–Protein and Protein–Ligand Interactions. J Am Chem Soc 2021; 143:1133-1143. [DOI: 10.1021/jacs.0c11971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elwy H. Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Haocheng Qianzhu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yi Jiun Tan
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Luke A. Adams
- ARC Training Centre for Fragment Based Design and Monash Fragment Platform, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
12
|
Tseng HW, Baumann T, Sun H, Wang YS, Ignatova Z, Budisa N. Expanding the Scope of Orthogonal Translation with Pyrrolysyl-tRNA Synthetases Dedicated to Aromatic Amino Acids. Molecules 2020; 25:E4418. [PMID: 32992991 PMCID: PMC7582959 DOI: 10.3390/molecules25194418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
In protein engineering and synthetic biology, Methanosarcina mazei pyrrolysyl-tRNA synthetase (MmPylRS), with its cognate tRNAPyl, is one of the most popular tools for site-specific incorporation of non-canonical amino acids (ncAAs). Numerous orthogonal pairs based on engineered MmPylRS variants have been developed during the last decade, enabling a substantial genetic code expansion, mainly with aliphatic pyrrolysine analogs. However, comparatively less progress has been made to expand the substrate range of MmPylRS towards aromatic amino acid residues. Therefore, we set to further expand the substrate scope of orthogonal translation by a semi-rational approach; redesigning the MmPylRS efficiency. Based on the randomization of residues from the binding pocket and tRNA binding domain, we identify three positions (V401, W417 and S193) crucial for ncAA specificity and enzyme activity. Their systematic mutagenesis enabled us to generate MmPylRS variants dedicated to tryptophan (such as β-(1-Azulenyl)-l-alanine or 1-methyl-l-tryptophan) and tyrosine (mainly halogenated) analogs. Moreover, our strategy also significantly improves the orthogonal translation efficiency with the previously activated analog 3-benzothienyl-l-alanine. Our study revealed the engineering of both first shell and distant residues to modify substrate specificity as an important strategy to further expand our ability to discover and recruit new ncAAs for orthogonal translation.
Collapse
Affiliation(s)
- Hsueh-Wei Tseng
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany; (H.-W.T.); (T.B.); (H.S.)
| | - Tobias Baumann
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany; (H.-W.T.); (T.B.); (H.S.)
| | - Huan Sun
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany; (H.-W.T.); (T.B.); (H.S.)
| | - Yane-Shih Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 116, Taiwan;
- Institute of Biochemical Sciences, National Taiwan University, Taipei 116, Taiwan
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany;
| | - Nediljko Budisa
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623 Berlin, Germany; (H.-W.T.); (T.B.); (H.S.)
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
13
|
Seligmann H, Warthi G. Natural pyrrolysine-biased translation of stop codons in mitochondrial peptides entirely coded by expanded codons. Biosystems 2020; 196:104180. [PMID: 32534170 DOI: 10.1016/j.biosystems.2020.104180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022]
Abstract
During the noncanonical deletion transcription, k nucleotides are systematically skipped/deleted after each transcribed trinucleotide producing deletion-RNAs (delRNAs). Peptides matching delRNAs either result from (a) canonical translation of delRNAs; or (b) noncanonical translation of regular transcripts along expanded codons. Only along frame "0" (start site) (a) and (b) produce identical peptides. Here, mitochondrial mass spectrometry data analyses assume expanded codon/del-transcription with 3 + k (k from 0 to 12) nucleotides. Detected peptides map preferentially on previously identified delRNAs. More peptides were detected for k (1-12) when del-transcriptional and expanded codon translations start sites coincide (i.e. the 0th frame) than for frames +1 or +2. Hence, both (a) and (b) produced peptides identified here. Biases for frame 0 decrease for k > 2, reflecting codon/anticodon expansion limits. Further analyses find preferential pyrrolysine insertion at stop codons, suggesting Pyl-specific mitochondrial suppressor tRNAs loaded by Pyl-specific tRNA synthetases with unknown origins. Pyl biases at stops are stronger for regular than expanded codons suggesting that Pyl-tRNAs are less competitive with near-cognate tRNAs in expanded codon contexts. Statistical biases for these findings exclude that detected peptides are experimental and/or bioinformatic artefacts implying both del-transcription and expanded codons translation occur in human mitochondria.
Collapse
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404, Jerusalem, Israel; Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700, La Tronche, France.
| | - Ganesh Warthi
- Aix-Marseille University, IRD, VITROME, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France.
| |
Collapse
|
14
|
Yates ND, Dowsett MR, Bentley P, Dickenson-Fogg JA, Pratt A, Blanford CF, Fascione MA, Parkin A. Aldehyde-Mediated Protein-to-Surface Tethering via Controlled Diazonium Electrode Functionalization Using Protected Hydroxylamines. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5654-5664. [PMID: 31721585 DOI: 10.1021/acs.langmuir.9b01254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a diazonium electro-grafting method for the covalent modification of conducting surfaces with aldehyde-reactive hydroxylamine functionalities that facilitate the wiring of redox-active (bio)molecules to electrode surfaces. Hydroxylamine near-monolayer formation is achieved via a phthalimide-protection and hydrazine-deprotection strategy that overcomes the multilayer formation that typically complicates diazonium surface modification. This surface modification strategy is characterized using electrochemistry (electrochemical impedance spectroscopy and cyclic voltammetry), X-ray photoelectron spectroscopy, and quartz crystal microbalance with dissipation monitoring. Thus-modified glassy carbon, boron-doped diamond, and gold surfaces are all shown to ligate to small molecule aldehydes, yielding surface coverages of 150-170, 40, and 100 pmol cm-2, respectively. Bioconjugation is demonstrated via the coupling of a dilute (50 μM) solution of periodate-oxidized horseradish peroxidase enzyme to a functionalized gold surface under biocompatible conditions (H2O solvent, pH 4.5, 25 °C).
Collapse
Affiliation(s)
- Nicholas D Yates
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Mark R Dowsett
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Phillip Bentley
- Department of Physics, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Jack A Dickenson-Fogg
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Andrew Pratt
- Department of Physics, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Christopher F Blanford
- School of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Martin A Fascione
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Alison Parkin
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
| |
Collapse
|
15
|
Pfab M, Kielkowski P, Krafczyk R, Volkwein W, Sieber SA, Lassak J, Jung K. Synthetic post-translational modifications of elongation factor P using the ligase EpmA. FEBS J 2020; 288:663-677. [PMID: 32337775 DOI: 10.1111/febs.15346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/24/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022]
Abstract
Canonically, tRNA synthetases charge tRNA. However, the lysyl-tRNA synthetase paralog EpmA catalyzes the attachment of (R)-β-lysine to the ε-amino group of lysine 34 of the translation elongation factor P (EF-P) in Escherichia coli. This modification is essential for EF-P-mediated translational rescue of ribosomes stalled at consecutive prolines. In this study, we determined the kinetics of EpmA and its variant EpmA_A298G to catalyze the post-translational modification of K34 in EF-P with eight noncanonical substrates. In addition, acetylated EF-P was generated using an amber suppression system. The impact of these synthetically modified EF-P variants on in vitro translation of a polyproline-containing NanoLuc luciferase reporter was analyzed. Our results show that natural (R)-β-lysylation was more effective in rescuing stalled ribosomes than any other synthetic modification tested. Thus, our work not only provides new biochemical insights into the function of EF-P, but also opens a new route to post-translationally modify proteins using EpmA.
Collapse
Affiliation(s)
- Miriam Pfab
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Pavel Kielkowski
- Organic Chemistry II, Technical University of Munich, Garching, Germany
| | - Ralph Krafczyk
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Wolfram Volkwein
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Stephan A Sieber
- Organic Chemistry II, Technical University of Munich, Garching, Germany
| | - Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Kirsten Jung
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
16
|
Seki E, Yanagisawa T, Kuratani M, Sakamoto K, Yokoyama S. Fully Productive Cell-Free Genetic Code Expansion by Structure-Based Engineering of Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetase. ACS Synth Biol 2020; 9:718-732. [PMID: 32182048 DOI: 10.1021/acssynbio.9b00288] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs from Methanosarcina mazei and Methanosarcina barkeri are widely used for site-specific incorporations of non-canonical amino acids into proteins (genetic code expansion). In this study, we achieved the full productivity of cell-free protein synthesis for difficult, bulky non-canonical amino acids, such as Nε-((((E)-cyclooct-2-en-1-yl)oxy)carbonyl)-l-lysine (TCO*Lys), by using Methanomethylophilus alvus PylRS. First, based on the crystal structure of M. alvus PylRS, the productivities for various non-canonical amino acids were greatly increased by rational engineering of the amino acid-binding pocket. The productivities were further enhanced by using a much higher concentration of PylRS over that of M. mazei PylRS, or by mutating the outer layer of the amino acid-binding pocket. Thus, we achieved full productivity even for TCO*Lys. The quantity and quality of the cell-free-produced antibody fragment containing TCO*Lys were drastically improved. These results demonstrate the importance of full productivity for the expanded genetic code.
Collapse
|
17
|
Segal I, Nachmias D, Konig A, Alon A, Arbely E, Elia N. A straightforward approach for bioorthogonal labeling of proteins and organelles in live mammalian cells, using a short peptide tag. BMC Biol 2020; 18:5. [PMID: 31937312 PMCID: PMC6961407 DOI: 10.1186/s12915-019-0708-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/15/2019] [Indexed: 11/29/2022] Open
Abstract
Background In the high-resolution microscopy era, genetic code expansion (GCE)-based bioorthogonal labeling offers an elegant way for direct labeling of proteins in live cells with fluorescent dyes. This labeling approach is currently not broadly used in live-cell applications, partly because it needs to be adjusted to the specific protein under study. Results We present a generic, 14-residue long, N-terminal tag for GCE-based labeling of proteins in live mammalian cells. Using this tag, we generated a library of GCE-based organelle markers, demonstrating the applicability of the tag for labeling a plethora of proteins and organelles. Finally, we show that the HA epitope, used as a backbone in our tag, may be substituted with other epitopes and, in some cases, can be completely removed, reducing the tag length to 5 residues. Conclusions The GCE-tag presented here offers a powerful, easy-to-implement tool for live-cell labeling of cellular proteins with small and bright probes.
Collapse
Affiliation(s)
- Inbar Segal
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Dikla Nachmias
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Andres Konig
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Ariel Alon
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Eyal Arbely
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.,Department of Chemistry, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Natalie Elia
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel. .,National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
| |
Collapse
|
18
|
Sun L, Yao Z, Guo Z, Zhang L, Wang Y, Mao R, Lin Y, Fu Y, Lin X. Comprehensive analysis of the lysine acetylome in Aeromonas hydrophila reveals cross-talk between lysine acetylation and succinylation in LuxS. Emerg Microbes Infect 2020; 8:1229-1239. [PMID: 31448697 PMCID: PMC6735345 DOI: 10.1080/22221751.2019.1656549] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lysine acetylation and succinylation are both prevalent protein post-translational modifications (PTMs) in bacteria species, whereas the effect of the cross-talk between both PTMs on bacterial biological function remains largely unknown. Our previously study found lysine succinylated sites on proteins play important role on metabolic pathways in fish pathogenic Aeromonas hydrophila. A total of 3189 lysine-acetylation sites were further identified on 1013 proteins of this pathogen using LC-MS/MS in this study. Functional examination of these PTMs peptides showed associations with basal biological processes, especially metabolic pathways. Additionally, when comparing the obtained lysine acetylome to a previously obtained lysine succinylome, 1198 sites in a total of 547 proteins were found to be in common and associated with various metabolic pathways. As the autoinducer-2 (AI-2) synthase involved in quorum sensing of bacteria, the site-directed mutagenesis of LuxS at the K165 site was performed and revealed that the cross-talk between lysine acetylation and succinylation exerts an inverse influence on bacterial quorum sensing and on LuxS enzymatic activity. In summary, this study provides an in-depth A. hydrophila lysine acetylome profile and for the first time reveals the role of cross-talk between lysine acetylation and succinylation, and its potential impact on bacterial physiological functions.
Collapse
Affiliation(s)
- Lina Sun
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University , Fuzhou , People's Republic of China
| | - Zujie Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University , Fuzhou , People's Republic of China.,Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences , Shanghai , People's Republic of China
| | - Zhuang Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University , Fuzhou , People's Republic of China
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University , Fuzhou , People's Republic of China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University , Fuzhou , People's Republic of China
| | - Ranran Mao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University , Fuzhou , People's Republic of China
| | - Yuexu Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University , Fuzhou , People's Republic of China
| | - Yuying Fu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University , Fuzhou , People's Republic of China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University , Fuzhou , People's Republic of China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China
| |
Collapse
|
19
|
Seligmann H, Warthi G. Chimeric Translation for Mitochondrial Peptides: Regular and Expanded Codons. Comput Struct Biotechnol J 2019; 17:1195-1202. [PMID: 31534643 PMCID: PMC6742854 DOI: 10.1016/j.csbj.2019.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Frameshifting protein translation occasionally results from insertion of amino acids at isolated mono- or dinucleotide-expanded codons by tRNAs with expanded anticodons. Previous analyses of two different types of human mitochondrial MS proteomic data (Fisher and Waters technologies) detect peptides entirely corresponding to expanded codon translation. Here, these proteomic data are reanalyzed searching for peptides consisting of at least eight consecutive amino acids translated according to regular tricodons, and at least eight adjacent consecutive amino acids translated according to expanded codons. Both datasets include chimerically translated peptides (mono- and dinucleotide expansions, 42 and 37, respectively). The regular tricodon-encoded part of some chimeric peptides corresponds to standard human mitochondrial proteins (mono- and dinucleotide expansions, six (AT6, CytB, ND1, 2xND2, ND5) and one (ND1), respectively). Chimeric translation probably increases the diversity of mitogenome-encoded proteins, putatively producing functional proteins. These might result from translation by tRNAs with expanded anticodons, or from regular tricodon translation of RNAs where transcription/posttranscriptional edition systematically deleted mono- or dinucleotides after each trinucleotide. The pairwise matched combination of adjacent peptide parts translated from regular and expanded codons strengthens the hypothesis that translation of stretches of consecutive expanded codons occurs. Results indicate statistical translation producing distributions of alternative proteins. Genetic engineering should account for potential unexpected, unwanted secondary products.
Collapse
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404 Jerusalem, Israel
| | - Ganesh Warthi
- Aix-Marseille University, IRD, VITROME, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| |
Collapse
|
20
|
St. Amant AH, Huang F, Lin J, Lemen D, Chakiath C, Mao S, Fazenbaker C, Zhong H, Harper J, Xu W, Patel N, Adams L, Vijayakrishnan B, Howard PW, Marelli M, Wu H, Gao C, Read de Alaniz J, Christie RJ. A Reactive Antibody Platform for One-Step Production of Antibody–Drug Conjugates through a Diels–Alder Reaction with Maleimide. Bioconjug Chem 2019; 30:2340-2348. [DOI: 10.1021/acs.bioconjchem.9b00436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Andre H. St. Amant
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Fengying Huang
- Antibody Discovery and Protein Engineering Department, AstraZeneca R&D, Gaithersburg, Maryland 20878, United States
| | - Jia Lin
- Antibody Discovery and Protein Engineering Department, AstraZeneca R&D, Gaithersburg, Maryland 20878, United States
| | - Daniel Lemen
- Antibody Discovery and Protein Engineering Department, AstraZeneca R&D, Gaithersburg, Maryland 20878, United States
| | - Chacko Chakiath
- Antibody Discovery and Protein Engineering Department, AstraZeneca R&D, Gaithersburg, Maryland 20878, United States
| | - Shenlan Mao
- AstraZeneca Oncology R&D, Gaithersburg, Maryland 20878, United States
| | | | - Haihong Zhong
- AstraZeneca Oncology R&D, Gaithersburg, Maryland 20878, United States
| | - Jay Harper
- AstraZeneca Oncology R&D, Gaithersburg, Maryland 20878, United States
| | - Wenshu Xu
- Spirogen, London E1 2AX, United Kingdom
| | | | | | | | | | - Marcello Marelli
- AstraZeneca Oncology R&D, Gaithersburg, Maryland 20878, United States
| | - Herren Wu
- Antibody Discovery and Protein Engineering Department, AstraZeneca R&D, Gaithersburg, Maryland 20878, United States
| | - Changshou Gao
- Antibody Discovery and Protein Engineering Department, AstraZeneca R&D, Gaithersburg, Maryland 20878, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - R. James Christie
- Antibody Discovery and Protein Engineering Department, AstraZeneca R&D, Gaithersburg, Maryland 20878, United States
| |
Collapse
|
21
|
Demongeot J, Seligmann H. Spontaneous evolution of circular codes in theoretical minimal RNA rings. Gene 2019; 705:95-102. [DOI: 10.1016/j.gene.2019.03.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/08/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023]
|
22
|
Mortensen MR, Skovsgaard MB, Gothelf KV. Considerations on Probe Design for Affinity‐Guided Protein Conjugation. Chembiochem 2019; 20:2711-2728. [DOI: 10.1002/cbic.201900157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Michael R. Mortensen
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Mikkel B. Skovsgaard
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Kurt V. Gothelf
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
23
|
St Amant AH, Huang F, Lin J, Rickert K, Oganesyan V, Lemen D, Mao S, Harper J, Marelli M, Wu H, Gao C, Read de Alaniz J, Christie RJ. A Diene-Containing Noncanonical Amino Acid Enables Dual Functionality in Proteins: Rapid Diels-Alder Reaction with Maleimide or Proximity-Based Dimerization. Angew Chem Int Ed Engl 2019; 58:8489-8493. [PMID: 31018033 DOI: 10.1002/anie.201903494] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 12/19/2022]
Abstract
Here, we describe a diene-containing noncanonical amino acid (ncAA) capable of undergoing fast and selective normal electron-demand Diels-Alder (DA) reactions following its incorporation into antibodies. A cyclopentadiene derivative of lysine (CpHK) served as the reactive handle for DA transformations and the substrate for genetic incorporation. CpHK incorporated into antibodies with high efficiency and was available for maleimide conjugation or self-reaction depending on position in the amino acid sequence. CpHK at position K274 reacted with the maleimide drug-linker AZ1508 at a rate of ≈79 m-1 s-1 to produce functional antibody-drug conjugates (ADCs) in a one-step process. Incorporation of CpHK at position S239 resulted in dimerization, which covalently linked antibody heavy chains together. The diene ncAA described here is capable of producing therapeutic protein conjugates with clinically validated and widely available maleimide compounds, while also enabling proximity-based stapling through a DA dimerization reaction.
Collapse
Affiliation(s)
- Andre H St Amant
- Department of Chemistry and Biochemistry, University of California - Santa Barbara, Santa Barbara, California, 93106, USA
| | - Fengying Huang
- Antibody Discovery and Protein Engineering Department, AstraZeneca Biopharmaceuticals R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Jia Lin
- Antibody Discovery and Protein Engineering Department, AstraZeneca Biopharmaceuticals R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Keith Rickert
- Antibody Discovery and Protein Engineering Department, AstraZeneca Biopharmaceuticals R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Vaheh Oganesyan
- Antibody Discovery and Protein Engineering Department, AstraZeneca Biopharmaceuticals R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Daniel Lemen
- Antibody Discovery and Protein Engineering Department, AstraZeneca Biopharmaceuticals R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Shenlan Mao
- AstraZeneca Oncology R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Jay Harper
- AstraZeneca Oncology R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Marcello Marelli
- Antibody Discovery and Protein Engineering Department, AstraZeneca Biopharmaceuticals R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Herren Wu
- Antibody Discovery and Protein Engineering Department, AstraZeneca Biopharmaceuticals R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Changshou Gao
- Antibody Discovery and Protein Engineering Department, AstraZeneca Biopharmaceuticals R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California - Santa Barbara, Santa Barbara, California, 93106, USA
| | - R James Christie
- Antibody Discovery and Protein Engineering Department, AstraZeneca Biopharmaceuticals R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| |
Collapse
|
24
|
St. Amant AH, Huang F, Lin J, Rickert K, Oganesyan V, Lemen D, Mao S, Harper J, Marelli M, Wu H, Gao C, Read de Alaniz J, Christie RJ. A Diene‐Containing Noncanonical Amino Acid Enables Dual Functionality in Proteins: Rapid Diels–Alder Reaction with Maleimide or Proximity‐Based Dimerization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andre H. St. Amant
- Department of Chemistry and BiochemistryUniversity of California – Santa Barbara Santa Barbara California 93106 USA
| | - Fengying Huang
- Antibody Discovery and Protein Engineering DepartmentAstraZeneca Biopharmaceuticals R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Jia Lin
- Antibody Discovery and Protein Engineering DepartmentAstraZeneca Biopharmaceuticals R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Keith Rickert
- Antibody Discovery and Protein Engineering DepartmentAstraZeneca Biopharmaceuticals R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Vaheh Oganesyan
- Antibody Discovery and Protein Engineering DepartmentAstraZeneca Biopharmaceuticals R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Daniel Lemen
- Antibody Discovery and Protein Engineering DepartmentAstraZeneca Biopharmaceuticals R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Shenlan Mao
- AstraZeneca Oncology R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Jay Harper
- AstraZeneca Oncology R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Marcello Marelli
- Antibody Discovery and Protein Engineering DepartmentAstraZeneca Biopharmaceuticals R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Herren Wu
- Antibody Discovery and Protein Engineering DepartmentAstraZeneca Biopharmaceuticals R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Changshou Gao
- Antibody Discovery and Protein Engineering DepartmentAstraZeneca Biopharmaceuticals R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Javier Read de Alaniz
- Department of Chemistry and BiochemistryUniversity of California – Santa Barbara Santa Barbara California 93106 USA
| | - R. James Christie
- Antibody Discovery and Protein Engineering DepartmentAstraZeneca Biopharmaceuticals R&D One MedImmune Way Gaithersburg MD 20878 USA
| |
Collapse
|
25
|
Structural Basis for Genetic-Code Expansion with Bulky Lysine Derivatives by an Engineered Pyrrolysyl-tRNA Synthetase. Cell Chem Biol 2019; 26:936-949.e13. [PMID: 31031143 DOI: 10.1016/j.chembiol.2019.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/25/2018] [Accepted: 03/15/2019] [Indexed: 11/24/2022]
Abstract
Pyrrolysyl-tRNA synthetase (PylRS) and tRNAPyl have been extensively used for genetic-code expansion. A Methanosarcina mazei PylRS mutant bearing the Y306A and Y384F mutations (PylRS(Y306A/Y384F)) encodes various bulky non-natural lysine derivatives by UAG. In this study, we examined how PylRS(Y306A/Y384F) recognizes many amino acids. Among 17 non-natural lysine derivatives, Nɛ-(benzyloxycarbonyl)lysine (ZLys) and 10 ortho/meta/para-substituted ZLys derivatives were efficiently ligated to tRNAPyl and were incorporated into proteins by PylRS(Y306A/Y384F). We determined crystal structures of 14 non-natural lysine derivatives bound to the PylRS(Y306A/Y384F) catalytic fragment. The meta- and para-substituted ZLys derivatives are snugly accommodated in the productive mode. In contrast, ZLys and the unsubstituted or ortho-substituted ZLys derivatives exhibited an alternative binding mode in addition to the productive mode. PylRS(Y306A/Y384F) displayed a high aminoacylation rate for ZLys, indicating that the double-binding mode minimally affects aminoacylation. These precise substrate recognition mechanisms by PylRS(Y306A/Y384F) may facilitate the structure-based design of novel non-natural amino acids.
Collapse
|
26
|
Pyrrolysine in archaea: a 22nd amino acid encoded through a genetic code expansion. Emerg Top Life Sci 2018; 2:607-618. [PMID: 33525836 DOI: 10.1042/etls20180094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022]
Abstract
The 22nd amino acid discovered to be directly encoded, pyrrolysine, is specified by UAG. Until recently, pyrrolysine was only known to be present in archaea from a methanogenic lineage (Methanosarcinales), where it is important in enzymes catalysing anoxic methylamines metabolism, and a few anaerobic bacteria. Relatively new discoveries have revealed wider presence in archaea, deepened functional understanding, shown remarkable carbon source-dependent expression of expanded decoding and extended exploitation of the pyrrolysine machinery for synthetic code expansion. At the same time, other studies have shown the presence of pyrrolysine-containing archaea in the human gut and this has prompted health considerations. The article reviews our knowledge of this fascinating exception to the 'standard' genetic code.
Collapse
|
27
|
Yates NDJ, Fascione MA, Parkin A. Methodologies for "Wiring" Redox Proteins/Enzymes to Electrode Surfaces. Chemistry 2018; 24:12164-12182. [PMID: 29637638 PMCID: PMC6120495 DOI: 10.1002/chem.201800750] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Indexed: 12/22/2022]
Abstract
The immobilization of redox proteins or enzymes onto conductive surfaces has application in the analysis of biological processes, the fabrication of biosensors, and in the development of green technologies and biochemical synthetic approaches. This review evaluates the methods through which redox proteins can be attached to electrode surfaces in a "wired" configuration, that is, one that facilitates direct electron transfer. The feasibility of simple electroactive adsorption onto a range of electrode surfaces is illustrated, with a highlight on the recent advances that have been achieved in biotechnological device construction using carbon materials and metal oxides. The covalent crosslinking strategies commonly used for the modification and biofunctionalization of electrode surfaces are also evaluated. Recent innovations in harnessing chemical biology methods for electrically wiring redox biology to surfaces are emphasized.
Collapse
Affiliation(s)
| | | | - Alison Parkin
- Department of ChemistryUniversity of YorkHeslington RoadYorkYO10 5DDUK
| |
Collapse
|
28
|
Zou H, Li L, Zhang T, Shi M, Zhang N, Huang J, Xian M. Biosynthesis and biotechnological application of non-canonical amino acids: Complex and unclear. Biotechnol Adv 2018; 36:1917-1927. [PMID: 30063950 DOI: 10.1016/j.biotechadv.2018.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/22/2018] [Accepted: 07/27/2018] [Indexed: 01/05/2023]
Abstract
Compared with the better-studied canonical amino acids, the distribution, metabolism and functions of natural non-canonical amino acids remain relatively obscure. Natural non-canonical amino acids have been mainly discovered in plants as secondary metabolites that perform diversified physiological functions. Due to their specific characteristics, a broader range of natural and artificial non-canonical amino acids have recently been applied in the development of functional materials and pharmaceutical products. With the rapid development of advanced methods in biotechnology, non-canonical amino acids can be incorporated into peptides, proteins and enzymes to improve the function and performance relative to their natural counterparts. Therefore, biotechnological application of non-canonical amino acids in artificial bio-macromolecules follows the central goal of synthetic biology to: create novel life forms and functions. However, many of the non-canonical amino acids are synthesized via chemo- or semi-synthetic methods, and few non-canonical amino acids can be synthesized using natural in vivo pathways. Therefore, further research is needed to clarify the metabolic pathways and key enzymes of the non-canonical amino acids. This will lead to the discovery of more candidate non-canonical amino acids, especially for those that are derived from microorganisms and are naturally bio-compatible with chassis strains for in vivo biosynthesis. In this review, we summarize representative natural and artificial non-canonical amino acids, their known information regarding associated metabolic pathways, their characteristics and their practical applications. Moreover, this review summarizes current barriers in developing in vivo pathways for the synthesis of non-canonical amino acids, as well as other considerations, future trends and potential applications of non-canonical amino acids in advanced biotechnology.
Collapse
Affiliation(s)
- Huibin Zou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Lei Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tongtong Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mengxun Shi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Nan Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingling Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
29
|
Bisseret P, Abdelkafi H, Blanchard N. Aryl transition metal chemical warheads for protein bioconjugation. Chem Sci 2018; 9:5132-5144. [PMID: 29997865 PMCID: PMC6001634 DOI: 10.1039/c8sc00780b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
The past seven years have witnessed the burgeoning of protein bioconjugation reactions highlighting aryl transition metal reagents as coupling partners. This new bioorthogonal organometallic chemistry, which sets the scene for stoichiometric processes in place of the catalytic procedures that developed in parallel, already enabled the forging of C-S and C-C bonds onto protein substrates, respectively in their native state or equipped with pre-installed non-natural terminal alkene or alkyne appendages. Although not yet applied to proteins, related transformations pointing to the creation of C-N bonds have, in addition, just been disclosed by targeting peptide lysine residues. Central to this research was the selection of ligands attached to the transition metal, in order to confer to metal complexes, not only their stability in aqueous medium, but also the desired chemoselectivity. We summarize here this body of work, which has already put in the limelight elaborated palladium and gold complexes equipped with biologically relevant appendages, such as fluorescent and affinity tags, as well as drug molecules. This research holds much promise, not only for the study of proteins themselves, but also for the design of new protein-based biotherapeutics, such as protein-drug conjugates or constrained analogs resulting from macrocyclisation reactions.
Collapse
Affiliation(s)
- Philippe Bisseret
- Université de Haute-Alsace , Université de Strasbourg , CNRS , LIMA , UMR 7042 , 68000 Mulhouse , France . https://bsm.unistra.fr ; ;
| | - Hajer Abdelkafi
- Université de Haute-Alsace , Université de Strasbourg , CNRS , LIMA , UMR 7042 , 68000 Mulhouse , France . https://bsm.unistra.fr ; ;
| | - Nicolas Blanchard
- Université de Haute-Alsace , Université de Strasbourg , CNRS , LIMA , UMR 7042 , 68000 Mulhouse , France . https://bsm.unistra.fr ; ;
| |
Collapse
|
30
|
Fladischer P, Weingartner A, Blamauer J, Darnhofer B, Birner-Gruenberger R, Kardashliev T, Ruff AJ, Schwaneberg U, Wiltschi B. A Semi-Rationally Engineered Bacterial Pyrrolysyl-tRNA Synthetase Genetically Encodes Phenyl Azide Chemistry. Biotechnol J 2018; 14:e1800125. [DOI: 10.1002/biot.201800125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/25/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Patrik Fladischer
- Acib − Austrian Centre of Industrial Biotechnology; Petersgasse 14 A-8010 Graz Austria
- Institute of Molecular Biotechnology; Graz University of Technology; Graz Austria
| | - Alexandra Weingartner
- Acib − Austrian Centre of Industrial Biotechnology; Petersgasse 14 A-8010 Graz Austria
- Institute of Molecular Biotechnology; Graz University of Technology; Graz Austria
| | - Johannes Blamauer
- Acib − Austrian Centre of Industrial Biotechnology; Petersgasse 14 A-8010 Graz Austria
- Institute of Molecular Biotechnology; Graz University of Technology; Graz Austria
| | - Barbara Darnhofer
- Acib − Austrian Centre of Industrial Biotechnology; Petersgasse 14 A-8010 Graz Austria
- Research Unit Functional Proteomics and Metabolomic Pathways; Institute of Pathology; Medical University of Graz; Graz Austria
- Omics Center Graz; BioTechMed-Graz; Graz Austria
| | - Ruth Birner-Gruenberger
- Research Unit Functional Proteomics and Metabolomic Pathways; Institute of Pathology; Medical University of Graz; Graz Austria
- Omics Center Graz; BioTechMed-Graz; Graz Austria
| | | | - Anna Joelle Ruff
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Aachen Germany
| | | | - Birgit Wiltschi
- Acib − Austrian Centre of Industrial Biotechnology; Petersgasse 14 A-8010 Graz Austria
| |
Collapse
|
31
|
Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodies: Chemical Functionalization Strategies and Intracellular Applications. Angew Chem Int Ed Engl 2018; 57:2314-2333. [PMID: 28913971 PMCID: PMC5838514 DOI: 10.1002/anie.201708459] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 01/12/2023]
Abstract
Nanobodies can be seen as next-generation tools for the recognition and modulation of antigens that are inaccessible to conventional antibodies. Due to their compact structure and high stability, nanobodies see frequent usage in basic research, and their chemical functionalization opens the way towards promising diagnostic and therapeutic applications. In this Review, central aspects of nanobody functionalization are presented, together with selected applications. While early conjugation strategies relied on the random modification of natural amino acids, more recent studies have focused on the site-specific attachment of functional moieties. Such techniques include chemoenzymatic approaches, expressed protein ligation, and amber suppression in combination with bioorthogonal modification strategies. Recent applications range from sophisticated imaging and mass spectrometry to the delivery of nanobodies into living cells for the visualization and manipulation of intracellular antigens.
Collapse
Affiliation(s)
- Dominik Schumacher
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare, Pharmakologie and Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | - Jonas Helma
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | - Anselm F. L. Schneider
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare, Pharmakologie and Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
| | - Heinrich Leonhardt
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | | |
Collapse
|
32
|
Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodys: Strategien zur chemischen Funktionalisierung und intrazelluläre Anwendungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201708459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dominik Schumacher
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Jonas Helma
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Anselm F. L. Schneider
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
| | - Heinrich Leonhardt
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Christian P. R. Hackenberger
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
| |
Collapse
|
33
|
Brabham RL, Spears RJ, Walton J, Tyagi S, Lemke EA, Fascione MA. Palladium-unleashed proteins: gentle aldehyde decaging for site-selective protein modification. Chem Commun (Camb) 2018; 54:1501-1504. [DOI: 10.1039/c7cc07740h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A bioorthogonal decaging strategy has been developed to expose protein aldehydes using one equivalent of palladium, allowing site-selective protein labelling.
Collapse
Affiliation(s)
| | | | - Julia Walton
- Department of Chemistry
- University of York
- Heslington Road
- UK
| | - Swati Tyagi
- EMBL
- Meyerhofstrasse 1
- 69117 Heidelberg
- Germany
| | | | | |
Collapse
|