1
|
Rahman MM, Wang L, Chen Y, Rahman MM, Islam MOA, Lee LP, Wan Y. Rapid in situ mutation detection in extracellular vesicle DNA. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2025; 6:72-86. [PMID: 40206799 PMCID: PMC11977346 DOI: 10.20517/evcna.2024.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/04/2025] [Accepted: 01/25/2025] [Indexed: 04/11/2025]
Abstract
Aim: A PCR- and sequencing-free mutation detection assay facilitates cancer diagnosis and reduces over-reliance on specialized equipment. This benefit was highlighted during the pandemic when high demand for viral nucleic acid testing often sidelined mutation analysis. This shift led to substantial challenges for patients on targeted therapy in tracking mutations. Here, we report a 30-min DNA mutation detection technique using Cas12a-loaded liposomes in a microplate reader, a fundamental laboratory tool. Methods: CRISPR-Cas12a complex and fluorescence-quenching (FQ) probes are introduced into tumor-derived extracellular vesicles (EV) through membrane fusion. When CRISPR-RNA hybridizes with the DNA target, activated Cas12a can trans-cleave FQ probes, resulting in fluorescence signals for the quantification of DNA mutation. Results: This method enables the detection of EGFR L858R mutation in EV DNA within 30 min. Laborious extraction, purification, and other preparation steps for EV DNA are eliminated. The need for advanced data processing is also dispensed with. In a cohort study involving 10 healthy donors and 30 patients with advanced non-small cell lung cancer (NSCLC), the assay achieved a sensitivity of 86.7%, a specificity of 90%, and an accuracy of 87.5%. Conclusion: The limit of detection of our Cas12 assay was ~ 8 × 105 EVs, corresponding to a mutation allele frequency (MAF) of ~ 10%. The MAF in late-stage cancers varies widely but often falls within 5%-50%. Therefore, without amplification of targets, this Cas12 assay can detect mutations in patients with advanced lung cancer. Future advancements in multiplex and high-throughput mutation detection using this assay will streamline self-diagnosis and treatment monitoring at home.
Collapse
Affiliation(s)
- Md Mofizur Rahman
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA
- Authors contributed equally
| | - Lixue Wang
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA
- Department of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu, China
- Authors contributed equally
| | - Yundi Chen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA
| | - Md Motiar Rahman
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | | | - Luke P. Lee
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 03063, South Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, South Korea
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA
| |
Collapse
|
2
|
Samanta A, Baranda Pellejero L, Masukawa M, Walther A. DNA-empowered synthetic cells as minimalistic life forms. Nat Rev Chem 2024; 8:454-470. [PMID: 38750171 DOI: 10.1038/s41570-024-00606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 06/13/2024]
Abstract
Cells, the fundamental units of life, orchestrate intricate functions - motility, adaptation, replication, communication, and self-organization within tissues. Originating from spatiotemporally organized structures and machinery, coupled with information processing in signalling networks, cells embody the 'sensor-processor-actuator' paradigm. Can we glean insights from these processes to construct primitive artificial systems with life-like properties? Using de novo design approaches, what can we uncover about the evolutionary path of life? This Review discusses the strides made in crafting synthetic cells, utilizing the powerful toolbox of structural and dynamic DNA nanoscience. We describe how DNA can serve as a versatile tool for engineering entire synthetic cells or subcellular entities, and how DNA enables complex behaviour, including motility and information processing for adaptive and interactive processes. We chart future directions for DNA-empowered synthetic cells, envisioning interactive systems wherein synthetic cells communicate within communities and with living cells.
Collapse
Affiliation(s)
- Avik Samanta
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India.
| | | | - Marcos Masukawa
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
| |
Collapse
|
3
|
Jumeaux C, Spicer CD, Charchar P, Howes PD, Holme MN, Ma L, Rose NC, Nabarro J, Fascione MA, Rashid MH, Yarovsky I, Stevens MM. Strain-Promoted Cycloadditions in Lipid Bilayers Triggered by Liposome Fusion. Angew Chem Int Ed Engl 2024; 63:e202314786. [PMID: 38438780 DOI: 10.1002/anie.202314786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 03/06/2024]
Abstract
Due to the variety of roles served by the cell membrane, its composition and structure are complex, making it difficult to study. Bioorthogonal reactions, such as the strain promoted azide-alkyne cycloaddition (SPAAC), are powerful tools for exploring the function of biomolecules in their native environment but have been largely unexplored within the context of lipid bilayers. Here, we developed a new approach to study the SPAAC reaction in liposomal membranes using azide- and strained alkyne-functionalized Förster resonance energy transfer (FRET) dye pairs. This study represents the first characterization of the SPAAC reaction between diffusing molecules inside liposomal membranes. Potential applications of this work include in situ bioorthogonal labeling of membrane proteins, improved understanding of membrane dynamics and fluidity, and the generation of new probes for biosensing assays.
Collapse
Affiliation(s)
- Coline Jumeaux
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Christopher D Spicer
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, YO10 5DD, United Kingdom
| | - Patrick Charchar
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Philip D Howes
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
- Present Addresses: Department of Engineering and Design, School of Engineering and Informatics, University of Sussex, BN1 9RH, Brighton, United Kingdom
| | - Margaret N Holme
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Li Ma
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Nicholas C Rose
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, YO10 5DD, United Kingdom
| | - Joe Nabarro
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, YO10 5DD, United Kingdom
| | - Martin A Fascione
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, YO10 5DD, United Kingdom
| | - M Harunur Rashid
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
- Present Addresses: Department of Mathematics and Physics, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| |
Collapse
|
4
|
Rahman MM, Wang L, Rahman MM, Chen Y, Zhang W, Wang J, Lee LP, Wan Y. Rapid in situ mutation detection in extracellular vesicle-DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582068. [PMID: 38464277 PMCID: PMC10925088 DOI: 10.1101/2024.02.26.582068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
A PCR- and sequencing-free mutation detection assay facilitates cancer diagnosis and reduces over-reliance on specialized equipment. This benefit was highlighted during the pandemic when high demand for viral nucleic acid testing often sidelined mutation analysis. This shift led to substantial challenges for patients on targeted therapy in tracking mutations. Here, we report a 30-minute DNA mutation detection technique using Cas12a-loaded liposomes in a microplate reader, a fundamental laboratory tool. CRISPR-Cas12a complex and fluorescence-quenching (FQ) probes are introduced into tumor-derived extracellular vesicles (EV) through membrane fusion. When CRISPR-RNA hybridizes with the DNA target, activated Cas12a can trans-cleave FQ probes, resulting in fluorescence signals for the quantification of DNA mutation. Future advancements in multiplex and high-throughput mutation detection using this assay will streamline self-diagnosis and treatment monitoring at home.
Collapse
Affiliation(s)
- Md Mofizur Rahman
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - Lixue Wang
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Department of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Md Motiar Rahman
- Department of Chemistry, Binghamton University, Binghamton, NY, USA
| | - Yundi Chen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Wenlong Zhang
- Twist Bioscience Corporation, San Francisco, CA, USA
| | - Jing Wang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Department of Oncology and Hematology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, Jiangsu, China
| | - Luke P Lee
- Harvard Medical School, Harvard University; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
5
|
Zhou X, Tang W, Zhang Y, Deng A, Guo Y, Qian L. Liposome-exosome hybrids for in situ detection of exosomal miR-1246 in breast cancer. Analyst 2024; 149:403-409. [PMID: 38058177 DOI: 10.1039/d3an01600e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Several lines of evidence suggest that exosomal miRNAs are potential biomarkers for cancer monitoring. An urgent need remains for the in situ detection of exosomal miRNAs at low concentrations without destroying the exosome structure. In the present study, a novel sensitive exosomal miR-1246 in situ detection strategy has been developed by integrating the CRISPR/Cas13a system with the formation of hybrids between exosomes and cationic liposomes. The liposomes were loaded with CRISPR/Cas13a, CRISPR RNA (crRNA), and RNA reporter probes. In the presence of exosomes, the liposome-exosome hybrids were formed through electrostatic interactions, and CRISPR/Cas13a was activated to cleave the reporter probes by exosomal miR-1246. The acquired fluorescence signal showed a linear response to the logarithm of MCF-7 exosome concentrations, indicating a quantitative response to exosomal miR-1246. The regression equation is y = 5021 log C - 9976 (R2 = 0.9985) with a limit of detection of 3 × 102 particles per mL. This strategy could not only be used to detect serum exosomal miR-1246 in breast cancer patients but also to distinguish early form advanced disease. This strategy can be exploited in future exosomal miRNA analyses.
Collapse
Affiliation(s)
- Xuting Zhou
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226000, China.
- Department of Oncology, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, China
| | - Wenting Tang
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226000, China.
| | - Yan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Aidong Deng
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226000, China.
| | - Yuehua Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226000, China.
| | - Li Qian
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226000, China.
| |
Collapse
|
6
|
Zhang Y, Zhao L, Li Y, Wan S, Yuan Z, Zu G, Peng F, Ding X. Advanced extracellular vesicle bioinformatic nanomaterials: from enrichment, decoding to clinical diagnostics. J Nanobiotechnology 2023; 21:366. [PMID: 37798669 PMCID: PMC10557264 DOI: 10.1186/s12951-023-02127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane nanoarchitectures generated by cells that carry a variety of biomolecules, including DNA, RNA, proteins and metabolites. These characteristics make them attractive as circulating bioinformatic nanocabinets for liquid biopsy. Recent advances on EV biology and biogenesis demonstrate that EVs serve as highly important cellular surrogates involved in a wide range of diseases, opening up new frontiers for modern diagnostics. However, inefficient methods for EV enrichment, as well as low sensitivity of EV bioinformatic decoding technologies, hinder the use of EV nanocabinet for clinical diagnosis. To overcome these challenges, new EV nanotechnology is being actively developed to promote the clinical translation of EV diagnostics. This article aims to present the emerging enrichment strategies and bioinformatic decoding platforms for EV analysis, and their applications as bioinformatic nanomaterials in clinical settings.
Collapse
Affiliation(s)
- Yawei Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Liang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yaocheng Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Shuangshuang Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhiyao Yuan
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Guangyue Zu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Fei Peng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02114, USA
| | - Xianguang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
7
|
Gubu A, Zhang X, Lu A, Zhang B, Ma Y, Zhang G. Nucleic acid amphiphiles: Synthesis, properties, and applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:144-163. [PMID: 37456777 PMCID: PMC10345231 DOI: 10.1016/j.omtn.2023.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Nucleic acid amphiphiles, referring to nucleic acids modified with large hydrophobic groups, have been widely used in programmable bioengineering. Since nucleic acids are intrinsically hydrophilic, the hydrophobic groups endow nucleic acid amphiphiles with unique properties, such as self-assembling, interactions with artificial or biological membranes, and transmembrane transport. Importantly, the hybridization or target binding capability of oligonucleotide itself supplies nucleic acid amphiphiles with excellent programmability. As a result, this type of molecule has attracted considerable attention in academic studies and has enormous potential for further applications. For a comprehensive understanding of nucleic acid amphiphiles, we review the reported research on nucleic acid amphiphiles from their molecular design to final applications, in which we summarize the synthetic strategies for nucleic acid amphiphiles and draw much attention to their unique properties in different contexts. Finally, a summary of the applications of nucleic acid amphiphiles in drug development, bioengineering, and bioanalysis are critically discussed.
Collapse
Affiliation(s)
- Amu Gubu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Aptacure Therapeutics Limited, Kowloon, Hong Kong SAR, China
| | - Xueli Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| |
Collapse
|
8
|
Huang F, Xue H, Fu Y, Ouyang Y, Chen D, Xia F, Willner I. Three Compartment Liposome Fusion: Functional Protocells for Biocatalytic Cascades and Operation of Dynamic DNA Machineries. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202302814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Indexed: 01/06/2025]
Abstract
AbstractNucleic acid‐functionalized liposomes modified at their boundaries with o‐nitrobenzyl phosphate‐caged hairpin units and pH‐responsive C‐G·C+ triplex forming strands are used for the concomitant light and pH‐triggered fusion of three types of loaded liposomes. The fusion processes are followed by light‐scattering size enlargement measurements, optical methods, and biocatalytic cascades activated upon the mixing of the liposomes loaded with enzymes and their substrates and their fusion into the cell‐like containments. The fused liposomes act as functional protocells for the integration of biocatalytic machineries. This is exemplified by the operation of an autonomous polymerization/nickase machinery synthesizing a Mg2+‐ion‐dependent DNAzyme and of a transcription machinery yielding the Malachite Green‐RNA aptamer product.
Collapse
Affiliation(s)
- Fujian Huang
- State Key Laboratory of Biogeology and Environmental Geology Engineering Research Center of Nano‐Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 China
- Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Huiying Xue
- State Key Laboratory of Biogeology and Environmental Geology Engineering Research Center of Nano‐Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 China
| | - Yuzhe Fu
- State Key Laboratory of Biogeology and Environmental Geology Engineering Research Center of Nano‐Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 China
| | - Yu Ouyang
- Institute of Chemistry and Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Danlong Chen
- State Key Laboratory of Biogeology and Environmental Geology Engineering Research Center of Nano‐Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology Engineering Research Center of Nano‐Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 China
| | - Itamar Willner
- Institute of Chemistry and Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
9
|
Li Z, Wang J, O’Hagan MP, Huang F, Xia F, Willner I. Dynamic Fusion of Nucleic Acid Functionalized Nano-/Micro-Cell-Like Containments: From Basic Concepts to Applications. ACS NANO 2023; 17:15308-15327. [PMID: 37549398 PMCID: PMC10448756 DOI: 10.1021/acsnano.3c04415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Membrane fusion processes play key roles in biological transformations, such as endocytosis/exocytosis, signal transduction, neurotransmission, or viral infections, and substantial research efforts have been directed to emulate these functions by artificial means. The recognition and dynamic reconfiguration properties of nucleic acids provide a versatile means to induce membrane fusion. Here we address recent advances in the functionalization of liposomes or membranes with structurally engineered lipidated nucleic acids guiding the fusion of cell-like containments, and the biophysical and chemical parameters controlling the fusion of the liposomes will be discussed. Intermembrane bridging by duplex or triplex nucleic acids and light-induced activation of membrane-associated nucleic acid constituents provide the means for spatiotemporal fusion of liposomes or nucleic acid modified liposome fusion with native cell membranes. The membrane fusion processes lead to exchange of loads in the fused containments and are a means to integrate functional assemblies. This is exemplified with the operation of biocatalytic cascades and dynamic DNA polymerization/nicking or transcription machineries in fused protocell systems. Membrane fusion processes of protocell assemblies are found to have important drug-delivery, therapeutic, sensing, and biocatalytic applications. The future challenges and perspectives of DNA-guided fused containments and membranes are addressed.
Collapse
Affiliation(s)
- Zhenzhen Li
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jianbang Wang
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael P. O’Hagan
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Itamar Willner
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
10
|
Zhang Q, Gao L, Li F, Bi Y. Sensing and manipulating single lipid vesicles using dynamic DNA nanotechnology. NANOSCALE 2023; 15:5158-5166. [PMID: 36825547 DOI: 10.1039/d2nr07192d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Natural and artificial lipid vesicles have been widely involved in nano-delivery, bio-analysis and diagnosis. For sensing and manipulating single lipid vesicles, dynamic DNA reactions were constructed inside or on the surface of lipid vesicles. In this review, we interpreted various ways of integrating lipid vesicles and dynamic DNA nanotechnology by summarizing the latest reports in bio-analysis and biomimetic cell research.
Collapse
Affiliation(s)
- Qi Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University, Tai'An, Shandong, 271016, P. R. China.
- Key laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Sichuan, 610064, P. R. China.
| | - Lu Gao
- Key laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Sichuan, 610064, P. R. China.
| | - Feng Li
- Key laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Sichuan, 610064, P. R. China.
| | - Yanping Bi
- School of Pharmaceutical Sciences, Shandong First Medical University, Tai'An, Shandong, 271016, P. R. China.
| |
Collapse
|
11
|
Karmacharya M, Kumar S, Cho YK. Tuning the Extracellular Vesicles Membrane through Fusion for Biomedical Applications. J Funct Biomater 2023; 14:jfb14020117. [PMID: 36826916 PMCID: PMC9960107 DOI: 10.3390/jfb14020117] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Membrane fusion is one of the key phenomena in the living cell for maintaining the basic function of life. Extracellular vesicles (EVs) have the ability to transfer information between cells through plasma membrane fusion, making them a promising tool in diagnostics and therapeutics. This study explores the potential applications of natural membrane vesicles, EVs, and their fusion with liposomes, EVs, and cells and introduces methodologies for enhancing the fusion process. EVs have a high loading capacity, bio-compatibility, and stability, making them ideal for producing effective drugs and diagnostics. The unique properties of fused EVs and the crucial design and development procedures that are necessary to realize their potential as drug carriers and diagnostic tools are also examined. The promise of EVs in various stages of disease management highlights their potential role in future healthcare.
Collapse
Affiliation(s)
- Mamata Karmacharya
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Correspondence: (S.K.); (Y.-K.C.)
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Correspondence: (S.K.); (Y.-K.C.)
| |
Collapse
|
12
|
Guo M, Nei R, Wang J, Ai J, Dong Y, Zhao H, Gao Q. Sensitive detection of folate receptor-positive circulating tumor cells based on intracellular uptake of the PbS nanoparticle cluster-loaded phospholipid micelles decorated with folic acid in combination with E-DNA sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Rahman MM, Abosheasha MA, Ito Y, Ueda M. DNA-induced fusion between lipid domains of peptide-lipid hybrid vesicles. Chem Commun (Camb) 2022; 58:11799-11802. [PMID: 36172842 DOI: 10.1039/d2cc03997d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptide-lipid hybrid vesicles were prepared with complementary DNA strands in their lipid domains. Hybridization of the complementary DNA strands induced the controlled fusion of the vesicles during repeated heating and cooling cycles. Vesicle fusion was indicated by a decrease in the efficiency of Förster resonance energy transfer between lipid-localized probes (from 72 to 42%) and transmission electron microscopy analysis. We suggest that this approach is a general strategy for the creation of polymersomes with membrane-fusion functionality.
Collapse
Affiliation(s)
- Md Mofizur Rahman
- RIKEN Cluster for Pioneering Research (CPR), Wako, Saitama 351-0198, Japan. .,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Ashulia, Dhaka 1341, Bangladesh.,Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Mohammed A Abosheasha
- RIKEN Cluster for Pioneering Research (CPR), Wako, Saitama 351-0198, Japan. .,Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Yoshihiro Ito
- RIKEN Cluster for Pioneering Research (CPR), Wako, Saitama 351-0198, Japan. .,Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.,RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Motoki Ueda
- RIKEN Cluster for Pioneering Research (CPR), Wako, Saitama 351-0198, Japan. .,RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| |
Collapse
|
14
|
Geng H, Vilms Pedersen S, Ma Y, Haghighi T, Dai H, Howes PD, Stevens MM. Noble Metal Nanoparticle Biosensors: From Fundamental Studies toward Point-of-Care Diagnostics. Acc Chem Res 2022; 55:593-604. [PMID: 35138817 PMCID: PMC7615491 DOI: 10.1021/acs.accounts.1c00598] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Noble metal nanoparticles (NMNPs) have become firmly established as effective agents to detect various biomolecules with extremely high sensitivity. This ability stems from the collective oscillation of free electrons and extremely large electric field enhancement under exposure to light, leading to various light-matter interactions such as localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering. A remarkable feature of NMNPs is their customizability by mechanisms such as particle etching, growth, and aggregation/dispersion, yielding distinct color changes and excellent opportunities for colorimetric biosensing in user-friendly assays and devices. They are readily functionalized with a large variety of capping agents and biomolecules, with resultant bioconjugates often possessing excellent biocompatibility, which can be used to quantitatively detect analytes from physiological fluids. Furthermore, they can possess excellent catalytic properties that can achieve significant signal amplification through mechanisms such as the catalytic transformation of colorless substrates to colored reporters. The various excellent attributes of NMNP biosensors have put them in the spotlight for developing high-performance in vitro diagnostic (IVD) devices that are particularly well-suited to mitigate the societal threat that infectious diseases pose. This threat continues to dominate the global health care landscape, claiming millions of lives annually. NMNP IVDs possess the potential to sensitively detect infections even at very early stages with affordable and field-deployable devices, which will be key to strengthening infectious disease management. This has been the major focal point of current research, with a view to new avenues for early multiplexed detection of infectious diseases with portable devices such as smartphones, especially in resource-limited settings.In this Account, we provide an overview of our original inspiration and efforts in NMNP-based assay development, together with some more sophisticated IVD assays by ourselves and many others. Our work in the area has led to our recent efforts in developing IVDs for high-profile infectious diseases, including Ebola and HIV. We emphasize that integration with digital platforms represents an opportunity to establish and efficiently manage widespread testing, tracking, epidemiological intelligence, and data sharing backed by community participation. We highlight how digital technologies can address the limitations of conventional diagnostic technologies at the point of care (POC) and how they may be used to abate and contain the spread of infectious diseases. Finally, we focus on more recent integrations of noble metal nanoparticles with Raman spectroscopy for accurate, noninvasive POC diagnostics with improved sensitivity and specificity.
Collapse
Affiliation(s)
- Hongya Geng
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 171 77, Sweden
| | - Simon Vilms Pedersen
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Yun Ma
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Tabasom Haghighi
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Philip D Howes
- Division of Mechanical Engineering and Design, School of Engineering, London South Bank University, London SE1 0AA, U.K
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 171 77, Sweden
| |
Collapse
|
15
|
|
16
|
Ning B, Huang Z, Youngquist BM, Scott JW, Niu A, Bojanowski CM, Zwezdaryk KJ, Saba NS, Fan J, Yin XM, Cao J, Lyon CJ, Li CZ, Roy CJ, Hu TY. Liposome-mediated detection of SARS-CoV-2 RNA-positive extracellular vesicles in plasma. NATURE NANOTECHNOLOGY 2021; 16:1039-1044. [PMID: 34294909 PMCID: PMC8440422 DOI: 10.1038/s41565-021-00939-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/09/2021] [Indexed: 05/03/2023]
Abstract
Plasma SARS-CoV-2 RNA may represent a viable diagnostic alternative to respiratory RNA levels, which rapidly decline after infection. Quantitative PCR with reverse transcription (RT-qPCR) reference assays exhibit poor performance with plasma, probably reflecting the dilution and degradation of viral RNA released into the circulation, but these issues could be addressed by analysing viral RNA packaged into extracellular vesicles. Here we describe an assay approach in which extracellular vesicles directly captured from plasma are fused with reagent-loaded liposomes to sensitively amplify and detect a SARS-CoV-2 gene target. This approach accurately identified patients with COVID-19, including challenging cases missed by RT-qPCR. SARS-CoV-2-positive extracellular vesicles were detected at day 1 post-infection, and plateaued from day 6 to the day 28 endpoint in a non-human primate model, while signal durations for 20-60 days were observed in young children. This nanotechnology approach uses a non-infectious sample and extends virus detection windows, offering a tool to support COVID-19 diagnosis in patients without SARS-CoV-2 RNA detectable in the respiratory tract.
Collapse
Affiliation(s)
- Bo Ning
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Zhen Huang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Brady M Youngquist
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - John W Scott
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alex Niu
- Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Christine M Bojanowski
- Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kevin J Zwezdaryk
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nakhle S Saba
- Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jing Cao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher J Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chen-Zhong Li
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chad J Roy
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
17
|
Song J, Jung H, You G, Mok H. Cancer-Cell-Derived Hybrid Vesicles from MCF-7 and HeLa Cells for Dual-Homotypic Targeting of Anticancer Drugs. Macromol Biosci 2021; 21:e2100067. [PMID: 33963822 DOI: 10.1002/mabi.202100067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Indexed: 11/06/2022]
Abstract
Here, as a proof of concept, hybrid vesicles (VEs) are developed from two types of cancer cells, MCF-7 and HeLa, for the dual targeting of the anticancer drug doxorubicin (Dox) to cancer cells via homotypic interactions. Hybrid VEs with a size of 181.8 ± 28.2 nm and surface charge of -27.8 ± 1.9 mV are successfully prepared by the fusion of MCF-7 and HeLa VEs, as demonstrated by the fluorescence resonance energy transfer assay. The hybrid VEs exhibit enhanced intracellular uptake both in MCF-7 and HeLa cells. Dox-encapsulated hybrid VEs (Dox-hybrid VEs) also exhibit promising anticancer and antiproliferative activities against MCF-7/multidrug-resistant cells and HeLa cells. In addition, compared to free Dox, the Dox-hybrid VEs exhibit low intracellular uptake and reduced cytotoxicity for RAW264.7 cells. Thus, hybrid VEs with dual-targeting activity toward two types of cancer cells may be useful for the specific targeting of anticancer drugs for improved anticancer effects with reduced nonspecific toxicity.
Collapse
Affiliation(s)
- Jihyeon Song
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Heesun Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Gayeon You
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701, Republic of Korea
| |
Collapse
|
18
|
Li X, Feng K, Li L, Yang L, Pan X, Yazd HS, Cui C, Li J, Moroz L, Sun Y, Wang B, Li X, Huang T, Tan W. Lipid-oligonucleotide conjugates for bioapplications. Natl Sci Rev 2020; 7:1933-1953. [PMID: 34691533 PMCID: PMC8290939 DOI: 10.1093/nsr/nwaa161] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/28/2019] [Accepted: 07/08/2020] [Indexed: 11/12/2022] Open
Abstract
Lipid-oligonucleotide conjugates (LONs) are powerful molecular-engineering materials for various applications ranging from biosensors to biomedicine. Their unique amphiphilic structures enable the self-assembly and the conveyance of information with high fidelity. In particular, LONs present remarkable potential in measuring cellular mechanical forces and monitoring cell behaviors. LONs are also essential sensing tools for intracellular imaging and have been employed in developing cell-surface-anchored DNA nanostructures for biomimetic-engineering studies. When incorporating therapeutic oligonucleotides or small-molecule drugs, LONs hold promise for targeted therapy. Moreover, LONs mediate the controllable assembly and fusion of vesicles based on DNA-strand displacements, contributing to nanoreactor construction and macromolecule delivery. In this review, we will summarize the general synthesis strategies of LONs, provide some characterization analysis and emphasize recent advances in bioanalytical and biomedical applications. We will also consider the relevant challenges and suggest future directions for building better functional LONs in nanotechnology and materials-science applications.
Collapse
Affiliation(s)
- Xiaowei Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Kejun Feng
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Long Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Lu Yang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Xiaoshu Pan
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Hoda Safari Yazd
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Cheng Cui
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Juan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Leonid Moroz
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Yujia Sun
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Bang Wang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Xiang Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Tong Huang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Weihong Tan
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
19
|
Kim HI, Yim D, Jeon SJ, Kang TW, Hwang IJ, Lee S, Yang JK, Ju JM, So Y, Kim JH. Modulation of oligonucleotide-binding dynamics on WS 2 nanosheet interfaces for detection of Alzheimer's disease biomarkers. Biosens Bioelectron 2020; 165:112401. [PMID: 32729521 DOI: 10.1016/j.bios.2020.112401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022]
Abstract
Non-covalent adsorption and desorption of oligonucleotides on two-dimensional nanosheets are widely employed to design nanobiosensors for the rapid optical detection of targets. A precise control over the weak interactions between nanosheet interfaces and oligonucleotides is crucial for a high-sensing performance. Herein, the interface of ultrathin WS2 nanosheets used as a fluorescence quencher was engineered by four different dextran polymers in an aqueous solution to control the adsorption kinetics and thermodynamics of the DNA probe. The WS2 nanosheets, functionalized by the carboxyl group-bearing dextran (CM-dex-WS2) or the trimethylammonium-modified dextran (TMA-dex-WS2), exhibited 3.6-fold faster adsorption rates of the fluorescein-labeled DNA probe (FAM-DNA), which led to the effective fluorescence quenching of FAM, compared to the nanosheets functionalized with pristine dextran (dex-WS2) or the hydrophobic phenoxy groups-bearing dextran (PhO-dex-WS2). Isothermal titration calorimetry measurements showed that the adsorption strength of FAM-DNA for CM-dex-WS2 was one order of magnitude greater than its hybridization energy for a target microRNA (miR-29a) that is well-known as an Alzheimer's disease (AD) biomarker, leading to the unfavorable desorption of the DNA probe from the surface. In contrast, TMA-dex-WS2 exhibited the proper adsorption strength of FAM-DNA, which was lower than its hybridization energy for miR-29a, leading to its favorable desorption from the nanosheet surface along with the noticeable restoration of the quenched fluorescence after its hybridization with miR-29a. Finally, the interface modulation of WS2 nanosheets allowed the selective and sensitive recognition of miR-29a against non-complementary RNA and single base-mismatched RNA in human serum via increases in target-specific fluorescence.
Collapse
Affiliation(s)
- Hye-In Kim
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea
| | - DaBin Yim
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Su-Ji Jeon
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Tae Woog Kang
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea
| | - In-Jun Hwang
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Sin Lee
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Jin-Kyoung Yang
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Jong-Min Ju
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Yoonhee So
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Jong-Ho Kim
- Department of Chemical Engineering, Hanyang University, Ansan, 426-791, Republic of Korea.
| |
Collapse
|
20
|
Huang F, Duan R, Zhou Z, Vázquez-González M, Xia F, Willner I. Near-infrared light-activated membrane fusion for cancer cell therapeutic applications. Chem Sci 2020; 11:5592-5600. [PMID: 32874503 PMCID: PMC7441577 DOI: 10.1039/d0sc00863j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
The spatiotemporal stimulation of liposome-liposome or liposome-membrane fusion processes attracts growing interest as a means to mimic cell-cell interactions in nature and for using these processes for biomedical applications. We report the use of o-nitrobenzyl phosphate functionalized-cholesterol tethered nucleic acid-modified liposomes as functional photoresponsive units for inducing, by NIR-irradiation, spatiotemporal liposome-liposome or liposome-membrane fusion processes. The liposomes are loaded with upconversion nanoparticles (UCNPs) and their NIR irradiation (λ = 980 nm) yields luminescence at λ = 365 nm, providing a localized light-source to deprotect the o-nitrobenzyl phosphate groups and resulting in the fragmentation of the nucleic acid structures. In one system, the NIR-triggered fusion of two liposomes, L1 and L2, is exemplified. Liposome L1 is loaded with UCNPs and Tb3+ ions, and the liposome boundary is functionalized with a cholesterol-tethered, o-nitrobenzyl phosphate caged hairpin nucleic acid structure. Liposome L2 is loaded with 2,6-pyridinedicarboxylic acid, DPA, and its boundary is modified with a cholesterol-tethered nucleic acid, complementary to a part of the caged hairpin, associated with L1. NIR-irradiation of the L1/L2 mixture resulted in the photocleavage of the hairpin structure, associated with L1, and the resulting fragmented nucleic acid associated with L1 hybridized with the nucleic acid linked to L2, leading to the fusion of the two liposomes. The fusion process was followed by dynamic light scattering, and by monitoring the fluorescence of the Tb3+-DPA complex generated upon the fusion of the liposomes and their exchange of contents (fusion efficiency 30%). In a second system, the fusion of the liposomes L1, loaded with UCNPs and doxorubicin (DOX), with HeLa cancer cells functionalized with nucleic acid tethers, complementary to the hairpin units associated with the boundary of L1, and linked to the MUC-1 receptor sites associated with the HeLa cells, through a MUC-1 aptamer unit is exemplified. The effect of DOX-loaded L1/HeLa cell fusion on the cytotoxicity towards HeLa cells is addressed. The NIR UCNP-stimulated cleavage of the o-nitrobenzyl phosphate caged hairpin units associated with L1 leads to the fragmentation of the hairpin units and the resulting nucleic acid tethers hybridize with the nucleic acid-modified HeLa cells, resulting in the liposome-HeLa cell fusion and the release of DOX into the HeLa cells. Selective spatiotemporal cytotoxicity towards HeLa cells is demonstrated (ca. 40% cell killing within two days). The study presents a comprehensive stepwise set of experiments directed towards the development of NIR-driven liposome-liposome or liposome-membrane fusion processes.
Collapse
Affiliation(s)
- Fujian Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education , Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China . ;
| | - Ruilin Duan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education , Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China . ;
| | - Zhixin Zhou
- Institute of Chemistry , Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel .
| | - Margarita Vázquez-González
- Institute of Chemistry , Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel .
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education , Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China . ;
| | - Itamar Willner
- Institute of Chemistry , Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel .
| |
Collapse
|
21
|
Controlled Peptide-Mediated Vesicle Fusion Assessed by Simultaneous Dual-Colour Time-Lapsed Fluorescence Microscopy. Sci Rep 2020; 10:3087. [PMID: 32080270 PMCID: PMC7033240 DOI: 10.1038/s41598-020-59926-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/31/2020] [Indexed: 12/03/2022] Open
Abstract
We have employed a model system, inspired by SNARE proteins, to facilitate membrane fusion between Giant Unilamellar Vesicles (GUVs) and Large Unilamellar Vesicles (LUVs) under physiological conditions. In this system, two synthetic lipopeptide constructs comprising the coiled-coil heterodimer-forming peptides K4, (KIAALKE)4, or E4, (EIAALEK)4, a PEG spacer of variable length, and a cholesterol moiety to anchor the peptides into the liposome membrane replace the natural SNARE proteins. GUVs are functionalized with one of the lipopeptide constructs and the fusion process is triggered by adding LUVs bearing the complementary lipopeptide. Dual-colour time lapse fluorescence microscopy was used to visualize lipid- and content-mixing. Using conventional confocal microscopy, lipid mixing was observed on the lipid bilayer of individual GUVs. In addition to lipid-mixing, content-mixing assays showed a low efficiency due to clustering of K4-functionalized LUVs on the GUVs target membranes. We showed that, through the use of the non-ionic surfactant Tween 20, content-mixing between GUVs and LUVs could be improved, meaning this system has the potential to be employed for drug delivery in biological systems.
Collapse
|
22
|
Akkilic N, Geschwindner S, Höök F. Single-molecule biosensors: Recent advances and applications. Biosens Bioelectron 2019; 151:111944. [PMID: 31999573 DOI: 10.1016/j.bios.2019.111944] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023]
Abstract
Single-molecule biosensors serve the unmet need for real time detection of individual biological molecules in the molecular crowd with high specificity and accuracy, uncovering unique properties of individual molecules which are hidden when measured using ensemble averaging methods. Measuring a signal generated by an individual molecule or its interaction with biological partners is not only crucial for early diagnosis of various diseases such as cancer and to follow medical treatments but also offers a great potential for future point-of-care devices and personalized medicine. This review summarizes and discusses recent advances in nanosensors for both in vitro and in vivo detection of biological molecules offering single-molecule sensitivity. In the first part, we focus on label-free platforms, including electrochemical, plasmonic, SERS-based and spectroelectrochemical biosensors. We review fluorescent single-molecule biosensors in the second part, highlighting nanoparticle-amplified assays, digital platforms and the utilization of CRISPR technology. We finally discuss recent advances in the emerging nanosensor technology of important biological species as well as future perspectives of these sensors.
Collapse
Affiliation(s)
- Namik Akkilic
- Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Stefan Geschwindner
- Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Fredrik Höök
- Department of Applied Physics, Division of Biological Physics, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
23
|
Darley E, Singh JKD, Surace NA, Wickham SFJ, Baker MAB. The Fusion of Lipid and DNA Nanotechnology. Genes (Basel) 2019; 10:E1001. [PMID: 31816934 PMCID: PMC6947036 DOI: 10.3390/genes10121001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 01/06/2023] Open
Abstract
Lipid membranes form the boundary of many biological compartments, including organelles and cells. Consisting of two leaflets of amphipathic molecules, the bilayer membrane forms an impermeable barrier to ions and small molecules. Controlled transport of molecules across lipid membranes is a fundamental biological process that is facilitated by a diverse range of membrane proteins, including ion-channels and pores. However, biological membranes and their associated proteins are challenging to experimentally characterize. These challenges have motivated recent advances in nanotechnology towards building and manipulating synthetic lipid systems. Liposomes-aqueous droplets enclosed by a bilayer membrane-can be synthesised in vitro and used as a synthetic model for the cell membrane. In DNA nanotechnology, DNA is used as programmable building material for self-assembling biocompatible nanostructures. DNA nanostructures can be functionalised with hydrophobic chemical modifications, which bind to or bridge lipid membranes. Here, we review approaches that combine techniques from lipid and DNA nanotechnology to engineer the topography, permeability, and surface interactions of membranes, and to direct the fusion and formation of liposomes. These approaches have been used to study the properties of membrane proteins, to build biosensors, and as a pathway towards assembling synthetic multicellular systems.
Collapse
Affiliation(s)
- Es Darley
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington 2052, Australia;
| | - Jasleen Kaur Daljit Singh
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
- School of Chemical and Biomolecular Engineering, University of Sydney, Camperdown 2006, Australia
- Sydney Nanoscience Institute, University of Sydney, Camperdown 2006, Australia
| | - Natalie A. Surace
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
| | - Shelley F. J. Wickham
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
- Sydney Nanoscience Institute, University of Sydney, Camperdown 2006, Australia
- School of Physics, University of Sydney, Camperdown 2006, Australia
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington 2052, Australia;
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
| |
Collapse
|
24
|
Affiliation(s)
- Carola Hofmann
- Universität Regensburg Institut für Analytische Chemie, Chemo- und Biosensorik Universitätsstraße 31 93053 Regensburg Deutschland
| | - Axel Duerkop
- Universität Regensburg Institut für Analytische Chemie, Chemo- und Biosensorik Universitätsstraße 31 93053 Regensburg Deutschland
| | - Antje J. Baeumner
- Universität Regensburg Institut für Analytische Chemie, Chemo- und Biosensorik Universitätsstraße 31 93053 Regensburg Deutschland
| |
Collapse
|
25
|
Hofmann C, Duerkop A, Baeumner AJ. Nanocontainers for Analytical Applications. Angew Chem Int Ed Engl 2019; 58:12840-12860. [DOI: 10.1002/anie.201811821] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/14/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Carola Hofmann
- University of Regensburg Institute of Analytical Chemistry, Chemo- and Biosensors Universitätsstrasse 31 93053 Regensburg Germany
| | - Axel Duerkop
- University of Regensburg Institute of Analytical Chemistry, Chemo- and Biosensors Universitätsstrasse 31 93053 Regensburg Germany
| | - Antje J. Baeumner
- University of Regensburg Institute of Analytical Chemistry, Chemo- and Biosensors Universitätsstrasse 31 93053 Regensburg Germany
| |
Collapse
|
26
|
Gao X, Li S, Ding F, Fan H, Shi L, Zhu L, Li J, Feng J, Zhu X, Zhang C. Rapid Detection of Exosomal MicroRNAs Using Virus‐Mimicking Fusogenic Vesicles. Angew Chem Int Ed Engl 2019; 58:8719-8723. [PMID: 31095853 DOI: 10.1002/anie.201901997] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/15/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Xihui Gao
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
| | - Sha Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
- Medical CollegeAnhui University of Science and Technology 168th Taifeng Road Huainan 232001 China
| | - Fei Ding
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Hongjia Fan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
| | - Leilei Shi
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Lijuan Zhu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jing Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
| | - Jing Feng
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
| | - Xinyuan Zhu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chuan Zhang
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
27
|
Gao X, Li S, Ding F, Fan H, Shi L, Zhu L, Li J, Feng J, Zhu X, Zhang C. Rapid Detection of Exosomal MicroRNAs Using Virus‐Mimicking Fusogenic Vesicles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xihui Gao
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
| | - Sha Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
- Medical CollegeAnhui University of Science and Technology 168th Taifeng Road Huainan 232001 China
| | - Fei Ding
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Hongjia Fan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
| | - Leilei Shi
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Lijuan Zhu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jing Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
| | - Jing Feng
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South CampusSouthern Medical University Affiliated Fengxian Hospital 6600th Nanfeng Road, Fenxian District Shanghai 201499 China
| | - Xinyuan Zhu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chuan Zhang
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
28
|
Mazur F, Chandrawati R. Peptide-Mediated Liposome Fusion as a Tool for the Detection of Matrix Metalloproteinases. ACTA ACUST UNITED AC 2019; 3:e1800330. [PMID: 32627412 DOI: 10.1002/adbi.201800330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/11/2019] [Indexed: 11/08/2022]
Abstract
Biological cells continue to inspire the development of technologies toward rapid, sensitive, and selective detection of analytes. Membrane fusion is a key biological event in living cells that involves a highly selective recognition mechanism controlled by different functional proteins. Herein, liposome-liposome fusion mediated by coiled-coil forming peptides JR2EC and JR2KC to mimic biological membrane fusion is reported. The liposome fusion event is monitored through fluorescence generation and this mechanism forms the basis of a detection assay for matrix metalloproteinases (MMPs), which are key homeostatic proteases. Using this approach, a limit of detection of 0.35 µg mL-1 MMP-7 in biological samples is obtained, and this assay does not require washing, separation, or amplification steps. The developed tool could be extended for the detection of other proteolytic enzymes of the MMP family (diagnostic or prognostic markers) and has the potential for screening of peptide libraries against a target of interest.
Collapse
Affiliation(s)
- Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| |
Collapse
|
29
|
Guk K, Hwang SG, Lim J, Son HY, Choi Y, Huh YM, Kang T, Jung J, Lim EK. Fluorescence amplified sensing platforms enabling miRNA detection by self-circulation of a molecular beacon circuit. Chem Commun (Camb) 2019; 55:3457-3460. [PMID: 30735212 DOI: 10.1039/c9cc00351g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have proposed a novel strategy for miRNA detection through enzyme-free signal amplification by self-circulation of the hybridization between the miRNAs and molecular beacon (MB) circuits. Unlike general MB-based miRNA detection based on the one-to-one (1 : 1) hybridization between MBs and miRNA, our system consists of four species of MBs (MBs A, B, C and D) (MB circuits) and is activated by a hybridization chain reaction. MBs stably coexist as hairpin structures that hardly show fluorescence signals in the absence of target miRNA. After miRNA detection, this MB circuit is able to generate fluorescence signals and amplify the fluorescence signal, contributing to improvement in detection sensitivity under iso-thermal conditions without an enzyme. Furthermore, in vitro and in vivo studies have proven that MB circuits can detect low levels of miRNA with high sensitivity, compared to when only one MB alone is used. Therefore, the MB circuits can provide a useful platform for target miRNA detection.
Collapse
Affiliation(s)
- Kyeonghye Guk
- BioNano Technology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lopez A, Liu J. DNA Oligonucleotide-Functionalized Liposomes: Bioconjugate Chemistry, Biointerfaces, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15000-15013. [PMID: 29936848 DOI: 10.1021/acs.langmuir.8b01368] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Interfacing DNA with liposomes has produced a diverse range of programmable soft materials, devices, and drug delivery vehicles. By simply controlling liposomal composition, bilayer fluidity, lipid domain formation, and surface charge can be systematically varied. Recent development in DNA research has produced not only sophisticated nanostructures but also new functions including ligand binding and catalysis. For noncationic liposomes, a DNA is typically covalently linked to a hydrophobic or lipid moiety that can be inserted into lipid membranes. In this article, we discuss fundamental biointerfaces formed between DNA and noncationic liposomes. The methods to prepare such conjugates and the interactions at the membrane interfaces are also discussed. The effect of DNA lateral diffusion on fluid bilayer membranes and the effect of membrane on DNA assembly are emphasized. DNA hybridization can be programmed to promote fusion of lipid membranes. Representative applications of this conjugate for drug delivery, biosensor development, and directed assembly of materials are briefly described toward the end. Some future research directions are also proposed to further understand this biointerface.
Collapse
Affiliation(s)
- Anand Lopez
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
31
|
Yang J, Meng Z, Liu Q, Shimada Y, Olsthoorn RCL, Spaink HP, Herrmann A, Kros A. Performing DNA nanotechnology operations on a zebrafish. Chem Sci 2018; 9:7271-7276. [PMID: 30288248 PMCID: PMC6148687 DOI: 10.1039/c8sc01771a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/16/2018] [Indexed: 12/18/2022] Open
Abstract
Nanoscale engineering of surfaces is becoming an indispensable technique to modify membranes and, thus cellular behaviour. Here, such membrane engineering related was explored on the surface of a living animal using DNA nanotechnology. We demonstrate the immobilization of oligonucleotides functionalized with a membrane anchor on 2 day old zebrafish. The protruding single-stranded DNA on the skin of zebrafish served as a handle for complementary DNAs, which allowed the attachment of small molecule cargo, liposomes and dynamic relabeling by DNA hybridization protocols. Robust anchoring of the oligonucleotides was proven as DNA-based amplification processes were successfully performed on the outer membrane of the zebrafish enabling the multiplication of surface functionalities from a single DNA-anchoring unit and the dramatic improvement of fluorescent labeling of these animals. As zebrafish are becoming an alternative to animal models in drug development, toxicology and nanoparticles characterization, we believe the platform presented here allows amalgamation of DNA nanotechnology tools with live animals and this opens up yet unexplored avenues like efficient bio-barcoding as well as in vivo tracking.
Collapse
Affiliation(s)
- Jian Yang
- Supramolecular & Biomaterials Chemistry , Leiden Institute of Chemistry , Leiden University , P.O. Box 9502 , 2300 RA Leiden , The Netherlands .
| | - Zhuojun Meng
- Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
| | - Qing Liu
- Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
| | - Yasuhito Shimada
- Institute of Biology , Leiden University , Leiden , The Netherlands
- Department of Integrative Pharmacology , Mie University Graduate School of Medicine , Mie , Japan .
| | - René C L Olsthoorn
- Supramolecular & Biomaterials Chemistry , Leiden Institute of Chemistry , Leiden University , P.O. Box 9502 , 2300 RA Leiden , The Netherlands .
| | - Herman P Spaink
- Institute of Biology , Leiden University , Leiden , The Netherlands
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands .
- DWI-Leibniz Institute for Interactive Materials , Forckenbeckstr. 50 , 52056 Aachen , Germany
- Institute of Technical and Macromolecular Chemistry , RWTH Aachen University , Worringerweg 2 , 52074 , Aachen , Germany
| | - Alexander Kros
- Supramolecular & Biomaterials Chemistry , Leiden Institute of Chemistry , Leiden University , P.O. Box 9502 , 2300 RA Leiden , The Netherlands .
| |
Collapse
|