1
|
Loynd C, Singha Roy SJ, Ovalle VJ, Canarelli SE, Mondal A, Jewel D, Ficaretta ED, Weerapana E, Chatterjee A. Electrochemical labelling of hydroxyindoles with chemoselectivity for site-specific protein bioconjugation. Nat Chem 2024; 16:389-397. [PMID: 38082177 PMCID: PMC10932882 DOI: 10.1038/s41557-023-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/18/2023] [Indexed: 02/06/2024]
Abstract
Electrochemistry has recently emerged as a powerful approach in small-molecule synthesis owing to its numerous attractive features, including precise control over the fundamental reaction parameters, mild reaction conditions and innate scalability. Even though these advantages also make it an attractive strategy for chemoselective modification of complex biomolecules such as proteins, such applications remain poorly developed. Here we report an electrochemically promoted coupling reaction between 5-hydroxytryptophan (5HTP) and simple aromatic amines-electrochemical labelling of hydroxyindoles with chemoselectivity (eCLIC)-that enables site-specific labelling of full-length proteins under mild conditions. Using genetic code expansion technology, the 5HTP residue can be incorporated into predefined sites of a recombinant protein expressed in either prokaryotic or eukaryotic hosts for subsequent eCLIC labelling. We used the eCLIC reaction to site-specifically label various recombinant proteins, including a full-length human antibody. Furthermore, we show that eCLIC is compatible with strain-promoted alkyne-azide and alkene-tetrazine click reactions, enabling site-specific modification of proteins at two different sites with distinct labels.
Collapse
Affiliation(s)
- Conor Loynd
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, USA
| | | | - Vincent J Ovalle
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, USA
| | - Sarah E Canarelli
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, USA
| | - Atanu Mondal
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, USA
| | - Delilah Jewel
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, USA
| | - Elise D Ficaretta
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, USA
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, USA.
| |
Collapse
|
2
|
Singha Roy SJ, Loynd C, Jewel D, Canarelli SE, Ficaretta ED, Pham QA, Weerapana E, Chatterjee A. Photoredox-Catalyzed Labeling of Hydroxyindoles with Chemoselectivity (PhotoCLIC) for Site-Specific Protein Bioconjugation. Angew Chem Int Ed Engl 2023; 62:e202300961. [PMID: 37219923 PMCID: PMC10330600 DOI: 10.1002/anie.202300961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 05/24/2023]
Abstract
We have developed a novel visible-light-catalyzed bioconjugation reaction, PhotoCLIC, that enables chemoselective attachment of diverse aromatic amine reagents onto a site-specifically installed 5-hydroxytryptophan residue (5HTP) on full-length proteins of varied complexity. The reaction uses catalytic amounts of methylene blue and blue/red light-emitting diodes (455/650 nm) for rapid site-specific protein bioconjugation. Characterization of the PhotoCLIC product reveals a unique structure formed likely through a singlet oxygen-dependent modification of 5HTP. PhotoCLIC has a wide substrate scope and its compatibility with strain-promoted azide-alkyne click reaction, enables site-specific dual-labeling of a target protein.
Collapse
Affiliation(s)
| | - Conor Loynd
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Delilah Jewel
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Sarah E Canarelli
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Elise D Ficaretta
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Quan A Pham
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
3
|
Osgood AO, Zheng Y, Roy SJS, Biris N, Hussain M, Loynd C, Jewel D, Italia JS, Chatterjee A. An Efficient Opal-Suppressor Tryptophanyl Pair Creates New Routes for Simultaneously Incorporating up to Three Distinct Noncanonical Amino Acids into Proteins in Mammalian Cells. Angew Chem Int Ed Engl 2023; 62:e202219269. [PMID: 36905325 PMCID: PMC10133189 DOI: 10.1002/anie.202219269] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Site-specific incorporation of multiple distinct noncanonical amino acids (ncAAs) into proteins in mammalian cells is a promising technology, where each ncAA must be assigned to a different orthogonal aminoacyl-tRNA synthetase (aaRS)/tRNA pair that reads a distinct nonsense codon. Available pairs suppress TGA or TAA codons at a considerably lower efficiency than TAG, limiting the scope of this technology. Here we show that the E. coli tryptophanyl (EcTrp) pair is an excellent TGA-suppressor in mammalian cells, which can be combined with the three other established pairs to develop three new routes for dual-ncAA incorporation. Using these platforms, we site-specifically incorporated two different bioconjugation handles into an antibody with excellent efficiency, and subsequently labeled it with two distinct cytotoxic payloads. Additionally, we combined the EcTrp pair with other pairs to site-specifically incorporate three distinct ncAAs into a reporter protein in mammalian cells.
Collapse
Affiliation(s)
- Arianna O Osgood
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Yunan Zheng
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | | | | | - Myer Hussain
- BrickBio, Inc., 600 Winter St, Waltham, MA, 02451, USA
| | - Conor Loynd
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Delilah Jewel
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | | | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
4
|
Ficaretta ED, Wrobel CJJ, Roy SJS, Erickson SB, Italia JS, Chatterjee A. A Robust Platform for Unnatural Amino Acid Mutagenesis in E. coli Using the Bacterial Tryptophanyl-tRNA synthetase/tRNA pair. J Mol Biol 2021; 434:167304. [PMID: 34655653 PMCID: PMC9005579 DOI: 10.1016/j.jmb.2021.167304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/13/2023]
Abstract
We report the development of a robust user-friendly Escherichia coli (E. coli) expression system, derived from the BL21(DE3) strain, for site-specifically incorporating unnatural amino acids (UAAs) into proteins using engineered E. coli tryptophanyl-tRNA synthetase (EcTrpRS)-tRNATrp pairs. This was made possible by functionally replacing the endogenous EcTrpRS-tRNATrp pair in BL21(DE3) E. coli with an orthogonal counterpart from Saccharomyces cerevisiae, and reintroducing it into the resulting altered translational machinery tryptophanyl (ATMW-BL21) E. coli strain as an orthogonal nonsense suppressor. The resulting expression system benefits from the favorable characteristics of BL21(DE3) as an expression host, and is compatible with the broadly used T7-driven recombinant expression system. Furthermore, the vector expressing the nonsense-suppressing engineered EcTrpRS-tRNATrp pair was systematically optimized to significantly enhance the incorporation efficiency of various tryptophan analogs. Together, the improved strain and the optimized suppressor plasmids enable efficient UAA incorporation (up to 65% of wild-type levels) into several different proteins. This robust and user-friendly platform will significantly expand the scope of the genetically encoded tryptophan-derived UAAs.
Collapse
Affiliation(s)
- Elise D Ficaretta
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Chester J J Wrobel
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Soumya J S Roy
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Sarah B Erickson
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - James S Italia
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
5
|
Chen Y, Tang J, Wang L, Tian Z, Cardenas A, Fang X, Chatterjee A, Xiao H. Creation of Bacterial cells with 5-Hydroxytryptophan as a 21 st Amino Acid Building Block. Chem 2020; 6:2717-2727. [PMID: 33102928 DOI: 10.1016/j.chempr.2020.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While most organisms utilize 20 canonical amino acid building blocks for protein synthesis, adding additional candidates to the amino acid repertoire can greatly facilitate the investigation and manipulation of protein structures and functions. In this study, we report the generation of completely autonomous organisms with a 21st ncAA, 5-hydroxytryptophan (5HTP). Like 20 canonical amino acids, 5-hydroxytryptophan can be biosynthesized in vivo from simple carbon sources and is subsequently incorporated into proteins in response to the amber stop codon. Using this unnatural organism, we have prepared a single-chain immunoglobulin variable fragment conjugated with a fluorophore and demonstrated the utility of these autonomous cells to monitor oxidative stress. Creation of this and other cells containing the 21st amino acid will provide an opportunity to generate proteins and organisms with novel activities, as well as to determine the evolutionary consequences of using additional amino acid buildings.
Collapse
Affiliation(s)
- Yuda Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005. U.S.A
| | - Juan Tang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005. U.S.A
| | - Lushun Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005. U.S.A
| | - Zeru Tian
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005. U.S.A
| | - Adam Cardenas
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005. U.S.A
| | - Xinlei Fang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005. U.S.A
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, 246B Merkert Chemistry Center, Chestnut Hill, MA, 02467, U.S.A
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005. U.S.A.,Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A.,Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A.,Lead Contact
| |
Collapse
|
6
|
Oldacre AN, Young ER. Electrochemical proton-coupled electron transfer of an anthracene-based azo dye. RSC Adv 2020; 10:14804-14811. [PMID: 35497176 PMCID: PMC9052096 DOI: 10.1039/d0ra01643h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/02/2020] [Indexed: 11/21/2022] Open
Abstract
Herein, we report the thermodynamics, kinetics, and mechanism for electrochemical proton-coupled electron transfer involving the anthracene-based azo dye azo-OMe.
Collapse
Affiliation(s)
- Amanda N. Oldacre
- Department of Chemistry
- St. Lawrence University
- New York
- USA
- Department of Chemistry
| | | |
Collapse
|
7
|
Sengupta S, Chandrasekaran S. Modifications of amino acids using arenediazonium salts. Org Biomol Chem 2019; 17:8308-8329. [DOI: 10.1039/c9ob01471c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aryl transfer reactions from arenediazonium salts have started to make their impact in chemical biology with initial forays in the arena of arylative modifications and bio-conjugations of amino acids, peptides and proteins.
Collapse
Affiliation(s)
- Saumitra Sengupta
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore
- India
| | | |
Collapse
|