1
|
Alhowyan AA, Harisa GI. From Molecular Therapies to Lysosomal Transplantation and Targeted Drug Strategies: Present Applications, Limitations, and Future Prospects of Lysosomal Medications. Biomolecules 2025; 15:327. [PMID: 40149863 PMCID: PMC11940627 DOI: 10.3390/biom15030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/30/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Lysosomes are essential intracellular organelles involved in plentiful cellular processes such as cell signaling, metabolism, growth, apoptosis, autophagy, protein processing, and maintaining cellular homeostasis. Their dysfunction is linked to various diseases, including lysosomal storage disorders, inflammation, cancer, cardiovascular diseases, neurodegenerative conditions, and aging. This review focuses on current and emerging therapies for lysosomal diseases (LDs), including small medicines, enzyme replacement therapy (ERT), gene therapy, transplantation, and lysosomal drug targeting (LDT). This study was conducted through databases like PubMed, Google Scholar, Science Direct, and other research engines. To treat LDs, medicines target the lysosomal membrane, acidification processes, cathepsins, calcium signaling, mTOR, and autophagy. Moreover, small-molecule therapies using chaperones, macro-therapies like ERT, gene therapy, and gene editing technologies are used as therapy for LDs. Additionally, endosymbiotic therapy, artificial lysosomes, and lysosomal transplantation are promising options for LD management. LDT enhances the therapeutic outcomes in LDs. Extracellular vesicles and mannose-6-phosphate-tagged nanocarriers display promising approaches for improving LDT. This study concluded that lysosomes play a crucial role in the pathophysiology of numerous diseases. Thus, restoring lysosomal function is essential for treating a wide range of conditions. Despite endosymbiotic therapy, artificial lysosomes, lysosomal transplantation, and LDT offering significant potential for LD control, there are ample challenges regarding safety and ethical implications.
Collapse
Affiliation(s)
- Adel A. Alhowyan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Gamaleldin I. Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo 11651, Egypt
| |
Collapse
|
2
|
Lin P, Zhang S, Komatsubara F, Konishi H, Nakata E, Morii T. Artificial Compartments Encapsulating Enzymatic Reactions: Towards the Construction of Artificial Organelles. Chempluschem 2024:e202400483. [PMID: 39351818 DOI: 10.1002/cplu.202400483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Cells have used compartmentalization to implement complex biological processes involving thousands of enzyme cascade reactions. Enzymes are spatially organized into the cellular compartments to carry out specific and efficient reactions in a spatiotemporally controlled manner. These compartments are divided into membrane-bound and membraneless organelles. Mimicking such cellular compartment systems has been a challenge for years. A variety of artificial scaffolds, including liposomes, polymersomes, proteins, nucleic acids, or hybrid materials have been used to construct artificial membrane-bound or membraneless compartments. These artificial compartments may have great potential for applications in biosynthesis, drug delivery, diagnosis and therapeutics, among others. This review first summarizes the typical examples of cellular compartments. In particular, the recent studies on cellular membraneless organelles (biomolecular condensates) are reviewed. We then summarize the recent advances in the construction of artificial compartments using engineered platforms. Finally, we provide our insights into the construction of biomimetic systems and the applications of these systems. This review article provides a timely summary of the relevant perspectives for the future development of artificial compartments, the building blocks for the construction of artificial organelles or cells.
Collapse
Affiliation(s)
- Peng Lin
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Shiwei Zhang
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Futa Komatsubara
- Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Konishi
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
- Department of Health and Nutrition, Kyoto Koka Women's University, Ukyo-ku, Kyoto, 615-0882, Japan
| |
Collapse
|
3
|
Brodszkij E, Ryberg C, Lyons JA, Juhl DW, Nielsen NC, Sigalas NI, Lyulin AV, Pedersen JS, Städler B. Poly(Sitosterol)-Based Hydrophobic Blocks in Amphiphilic Block Copolymers for the Assembly of Hybrid Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401934. [PMID: 38860565 DOI: 10.1002/smll.202401934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Indexed: 06/12/2024]
Abstract
Amphiphilic block copolymer and lipids can be assembled into hybrid vesicles (HVs), which are an alternative to liposomes and polymersomes. Block copolymers that have either poly(sitostryl methacrylate) or statistical copolymers of sitosteryl methacrylate and butyl methacrylate as the hydrophobic part and a poly(carboxyethyl acrylate) hydrophilic segment are synthesized and characterized. These block copolymers assemble into small HVs with soybean L-α-phosphatidylcholine (soyPC), confirmed by electron microscopy and small-angle X-ray scattering. The membrane's hybrid nature is illustrated by fluorescence resonance energy transfer between labeled building blocks. The membrane packing, derived from spectra when using Laurdan as an environmentally sensitive fluorescent probe, is comparable between small HVs and the corresponding liposomes with molecular sitosterol, although the former show indications of transmembrane asymmetry. Giant HVs with homogenous distribution of the block copolymers and soyPC in their membranes are assembled using the electroformation method. The lateral diffusion of both building blocks is slowed down in giant HVs with higher block copolymer content, but their permeability toward (6)-carboxy-X-rhodamine is higher compared to giant vesicles made of soyPC and molecular sitosterol. This fundamental effort contributes to the rapidly expanding understanding of the integration of natural membrane constituents with designed synthetic compounds to form hybrid membranes.
Collapse
Affiliation(s)
- Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Cecilie Ryberg
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Joseph A Lyons
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus, 8000, Denmark
| | - Dennis Wilkens Juhl
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Niels Chr Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, 8000, Denmark
| | - Nikolaos I Sigalas
- Soft Matter and Biological Physics Group, Department of Applied Physics, Technische Universiteit Eindhoven, Eindhoven, 5600 MB, The Netherlands
| | - Alexey V Lyulin
- Soft Matter and Biological Physics Group, Department of Applied Physics, Technische Universiteit Eindhoven, Eindhoven, 5600 MB, The Netherlands
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
4
|
Mustafa YL, Balestri A, Huang X, Palivan C. Redefining drug therapy: innovative approaches using catalytic compartments. Expert Opin Drug Deliv 2024; 21:1395-1413. [PMID: 39259136 DOI: 10.1080/17425247.2024.2403476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Rapid excretion of drug derivatives often results in short drug half-lives, necessitating frequent administrations. Catalytic compartments, also known as nano- and microreactors, offer a solution by providing confined environments for in situ production of therapeutic agents. Inspired by natural compartments, polymer-based catalytic compartments have been developed to improve reaction efficiency and enable site-specific therapeutic applications. AREAS COVERED Polymer-based compartments provide stability, permeability control, and responsiveness to stimuli, making them ideal for generating localized compounds/signals. These sophisticated systems, engineered to carry active compounds and enable selective molecular release, represent a significant advancement in pharmaceutical research. They mimic cellular functions, creating controlled catalytic environments for bio-relevant processes. This review explores the latest advancements in synthetic catalytic compartments, focusing on design approaches, building blocks, active molecules, and key bio-applications. EXPERT OPINION Catalytic compartments hold transformative potential in precision medicine by improving therapeutic outcomes through precise, on-site production of therapeutic agents. While promising, challenges like scalable manufacturing, biodegradability, and regulatory hurdles must be addressed to realize their full potential. Addressing these will be crucial for their successful application in healthcare.
Collapse
Affiliation(s)
| | - Arianna Balestri
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Xinan Huang
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Cornelia Palivan
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Centre of Competence in Research-Molecular Systems Engineering, Basel, Switzerland
| |
Collapse
|
5
|
Kwapiszewska K. Physicochemical Perspective of Biological Heterogeneity. ACS PHYSICAL CHEMISTRY AU 2024; 4:314-321. [PMID: 39069985 PMCID: PMC11274282 DOI: 10.1021/acsphyschemau.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 07/30/2024]
Abstract
The vast majority of chemical processes that govern our lives occur within living cells. At the core of every life process, such as gene expression or metabolism, are chemical reactions that follow the fundamental laws of chemical kinetics and thermodynamics. Understanding these reactions and the factors that govern them is particularly important for the life sciences. The physicochemical environment inside cells, which can vary between cells and organisms, significantly impacts various biochemical reactions and increases the extent of population heterogeneity. This paper discusses using physical chemistry approaches for biological studies, including methods for studying reactions inside cells and monitoring their conditions. The potential for development in this field and possible new research areas are highlighted. By applying physical chemistry methodology to biochemistry in vivo, we may gain new insights into biology, potentially leading to new ways of controlling biochemical reactions.
Collapse
Affiliation(s)
- Karina Kwapiszewska
- Institute of Physical Chemistry, Polish
Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|
6
|
Korpidou M, Becker J, Tarvirdipour S, Dinu IA, Becer CR, Palivan CG. Glycooligomer-Functionalized Catalytic Nanocompartments Co-Loaded with Enzymes Support Parallel Reactions and Promote Cell Internalization. Biomacromolecules 2024; 25:4492-4509. [PMID: 38910355 PMCID: PMC11238334 DOI: 10.1021/acs.biomac.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
A major shortcoming associated with the application of enzymes in drug synergism originates from the lack of site-specific, multifunctional nanomedicine. This study introduces catalytic nanocompartments (CNCs) made of a mixture of PDMS-b-PMOXA diblock copolymers, decorated with glycooligomer tethers comprising eight mannose-containing repeating units and coencapsulating two enzymes, providing multifunctionality by their in situ parallel reactions. Beta-glucuronidase (GUS) serves for local reactivation of the drug hymecromone, while glucose oxidase (GOx) induces cell starvation through glucose depletion and generation of the cytotoxic H2O2. The insertion of the pore-forming peptide, melittin, facilitates diffusion of substrates and products through the membranes. Increased cell-specific internalization of the CNCs results in a substantial decrease in HepG2 cell viability after 24 h, attributed to simultaneous production of hymecromone and H2O2. Such parallel enzymatic reactions taking place in nanocompartments pave the way to achieve efficient combinatorial cancer therapy by enabling localized drug production along with reactive oxygen species (ROS) elevation.
Collapse
Affiliation(s)
- Maria Korpidou
- Department
of Chemistry, University of Basel, Mattenstrasse 22, Basel 4002, Switzerland
| | - Jonas Becker
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Shabnam Tarvirdipour
- Department
of Chemistry, University of Basel, Mattenstrasse 22, Basel 4002, Switzerland
| | - Ionel Adrian Dinu
- Department
of Chemistry, University of Basel, Mattenstrasse 22, Basel 4002, Switzerland
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Cornelia G. Palivan
- Department
of Chemistry, University of Basel, Mattenstrasse 22, Basel 4002, Switzerland
- NCCR
Molecular Systems Engineering, Mattenstrasse 22, Basel 4002, Switzerland
| |
Collapse
|
7
|
Wolf KMP, Maffeis V, Schoenenberger CA, Zünd T, Bar-Peled L, Palivan CG, Vogel V. Tweaking the NRF2 signaling cascade in human myelogenous leukemia cells by artificial nano-organelles. Proc Natl Acad Sci U S A 2024; 121:e2219470121. [PMID: 38776365 PMCID: PMC11145192 DOI: 10.1073/pnas.2219470121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
NRF2 (nuclear factor erythroid-2-related factor 2) is a key regulator of genes involved in the cell's protective response to oxidative stress. Upon activation by disturbed redox homeostasis, NRF2 promotes the expression of metabolic enzymes to eliminate reactive oxygen species (ROS). Cell internalization of peroxisome-like artificial organelles that harbor redox-regulating enzymes was previously shown to reduce ROS-induced stress and thus cell death. However, if and to which extent ROS degradation by such nanocompartments interferes with redox signaling pathways is largely unknown. Here, we advance the design of H2O2-degrading artificial nano-organelles (AnOs) that exposed surface-attached cell penetrating peptides (CPP) for enhanced uptake and were equipped with a fluorescent moiety for rapid visualization within cells. To investigate how such AnOs integrate in cellular redox signaling, we engineered leukemic K562 cells that report on NRF2 activation by increased mCherry expression. Once internalized, ROS-metabolizing AnOs dampen intracellular NRF2 signaling upon oxidative injury by degrading H2O2. Moreover, intracellular AnOs conferred protection against ROSinduced cell death in conditions when endogenous ROS-protection mechanisms have been compromised by depletion of glutathione or knockdown of NRF2. We demonstrate CPP-facilitated AnO uptake and AnO-mediated protection against ROS insults also in the T lymphocyte population of primary peripheral blood mononuclear cells from healthy donors. Overall, our data suggest that intracellular AnOs alleviated cellular stress by the on-site reduction of ROS.
Collapse
Affiliation(s)
- Konstantin M. P. Wolf
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, 8006Zurich, Switzerland
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
| | - Viviana Maffeis
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
- Department of Chemistry, University of Basel, 4002Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
- Department of Chemistry, University of Basel, 4002Basel, Switzerland
| | - Tamara Zünd
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, 8006Zurich, Switzerland
| | - Liron Bar-Peled
- Center for Cancer Research, Massachusetts General Hospital/Department of Medicine, Harvard Medical School, Boston, MA02129, USA
| | - Cornelia G. Palivan
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
- Department of Chemistry, University of Basel, 4002Basel, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, 8006Zurich, Switzerland
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
| |
Collapse
|
8
|
Maffeis V, Skowicki M, Wolf KMP, Chami M, Schoenenberger CA, Vogel V, Palivan CG. Advancing the Design of Artificial Nano-organelles for Targeted Cellular Detoxification of Reactive Oxygen Species. NANO LETTERS 2024; 24:2698-2704. [PMID: 38408754 PMCID: PMC10921454 DOI: 10.1021/acs.nanolett.3c03888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/28/2024]
Abstract
Artificial organelles (AnOs) are in the spotlight as systems to supplement biochemical pathways in cells. While polymersome-based artificial organelles containing enzymes to reduce reactive oxygen species (ROS) are known, applications requiring control of their enzymatic activity and cell-targeting to promote intracellular ROS detoxification are underexplored. Here, we introduce advanced AnOs where the chemical composition of the membrane supports the insertion of pore-forming melittin, enabling molecular exchange between the AnO cavity and the environment, while the encapsulated lactoperoxidase (LPO) maintains its catalytic function. We show that H2O2 outside AnOs penetrates through the melittin pores and is rapidly degraded by the encapsulated enzyme. As surface attachment of cell-penetrating peptides facilitates AnOs uptake by cells, electron spin resonance revealed a remarkable enhancement in intracellular ROS detoxification by these cell-targeted AnOs compared to nontargeted AnOs, thereby opening new avenues for a significant reduction of oxidative stress in cells.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department
of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
| | - Michal Skowicki
- Department
of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
| | - Konstantin M. P. Wolf
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
- Laboratory
of Applied Mechanobiology, Institute of Translational Medicine, Department
of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Mohamed Chami
- BioEM
lab, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Viola Vogel
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
- Laboratory
of Applied Mechanobiology, Institute of Translational Medicine, Department
of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Cornelia G. Palivan
- Department
of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
| |
Collapse
|
9
|
Tian F, Zhou Y, Ma Z, Tang R, Wang X. Organismal Function Enhancement through Biomaterial Intervention. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:377. [PMID: 38392750 PMCID: PMC10891834 DOI: 10.3390/nano14040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
Living organisms in nature, such as magnetotactic bacteria and eggs, generate various organic-inorganic hybrid materials, providing unique functionalities. Inspired by such natural hybrid materials, researchers can reasonably integrate biomaterials with living organisms either internally or externally to enhance their inherent capabilities and generate new functionalities. Currently, the approaches to enhancing organismal function through biomaterial intervention have undergone rapid development, progressing from the cellular level to the subcellular or multicellular level. In this review, we will concentrate on three key strategies related to biomaterial-guided bioenhancement, including biointerface engineering, artificial organelles, and 3D multicellular immune niches. For biointerface engineering, excess of amino acid residues on the surfaces of cells or viruses enables the assembly of materials to form versatile artificial shells, facilitating vaccine engineering and biological camouflage. Artificial organelles refer to artificial subcellular reactors made of biomaterials that persist in the cytoplasm, which imparts cells with on-demand regulatory ability. Moreover, macroscale biomaterials with spatiotemporal regulation characters enable the local recruitment and aggregation of cells, denoting multicellular niche to enhance crosstalk between cells and antigens. Collectively, harnessing the programmable chemical and biological attributes of biomaterials for organismal function enhancement shows significant potential in forthcoming biomedical applications.
Collapse
Affiliation(s)
- Fengchao Tian
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China; (F.T.); (Y.Z.)
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Yuemin Zhou
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China; (F.T.); (Y.Z.)
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Zaiqiang Ma
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Ruikang Tang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China; (F.T.); (Y.Z.)
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China; (F.T.); (Y.Z.)
| |
Collapse
|
10
|
Maffeis V, Heuberger L, Nikoletić A, Schoenenberger C, Palivan CG. Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305837. [PMID: 37984885 PMCID: PMC10885666 DOI: 10.1002/advs.202305837] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
The exponential growth of research on artificial cells and organelles underscores their potential as tools to advance the understanding of fundamental biological processes. The bottom-up construction from a variety of building blocks at the micro- and nanoscale, in combination with biomolecules is key to developing artificial cells. In this review, artificial cells are focused upon based on compartments where polymers are the main constituent of the assembly. Polymers are of particular interest due to their incredible chemical variety and the advantage of tuning the properties and functionality of their assemblies. First, the architectures of micro- and nanoscale polymer assemblies are introduced and then their usage as building blocks is elaborated upon. Different membrane-bound and membrane-less compartments and supramolecular structures and how they combine into advanced synthetic cells are presented. Then, the functional aspects are explored, addressing how artificial organelles in giant compartments mimic cellular processes. Finally, how artificial cells communicate with their surrounding and each other such as to adapt to an ever-changing environment and achieve collective behavior as a steppingstone toward artificial tissues, is taken a look at. Engineering artificial cells with highly controllable and programmable features open new avenues for the development of sophisticated multifunctional systems.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
| | - Lukas Heuberger
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
| | - Anamarija Nikoletić
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| | | | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| |
Collapse
|
11
|
Zhou P, Gao C, Song W, Wei W, Wu J, Liu L, Chen X. Engineering status of protein for improving microbial cell factories. Biotechnol Adv 2024; 70:108282. [PMID: 37939975 DOI: 10.1016/j.biotechadv.2023.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
With the development of metabolic engineering and synthetic biology, microbial cell factories (MCFs) have provided an efficient and sustainable method to synthesize a series of chemicals from renewable feedstocks. However, the efficiency of MCFs is usually limited by the inappropriate status of protein. Thus, engineering status of protein is essential to achieve efficient bioproduction with high titer, yield and productivity. In this review, we summarize the engineering strategies for metabolic protein status, including protein engineering for boosting microbial catalytic efficiency, protein modification for regulating microbial metabolic capacity, and protein assembly for enhancing microbial synthetic capacity. Finally, we highlight future challenges and prospects of improving microbial cell factories by engineering status of protein.
Collapse
Affiliation(s)
- Pei Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Powers J, Jang Y. Advancing Biomimetic Functions of Synthetic Cells through Compartmentalized Cell-Free Protein Synthesis. Biomacromolecules 2023; 24:5539-5550. [PMID: 37962115 DOI: 10.1021/acs.biomac.3c00879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synthetic cells are artificial constructs that mimic the structures and functions of living cells. They are attractive for studying diverse biochemical processes and elucidating the origins of life. While creating a living synthetic cell remains a grand challenge, researchers have successfully synthesized hundreds of unique synthetic cell platforms. One promising approach to developing more sophisticated synthetic cells is to integrate cell-free protein synthesis (CFPS) mechanisms into vesicle platforms. This makes it possible to create synthetic cells with complex biomimetic functions such as genetic circuits, autonomous membrane modifications, sensing and communication, and artificial organelles. This Review explores recent advances in the use of CFPS to impart advanced biomimetic structures and functions to bottom-up synthetic cell platforms. We also discuss the potential applications of synthetic cells in biomedicine as well as the future directions of synthetic cell research.
Collapse
Affiliation(s)
- Jackson Powers
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, United States
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, United States
| |
Collapse
|
13
|
Wang X, Qiao X, Chen H, Wang L, Liu X, Huang X. Synthetic-Cell-Based Multi-Compartmentalized Hierarchical Systems. SMALL METHODS 2023; 7:e2201712. [PMID: 37069779 DOI: 10.1002/smtd.202201712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In the extant lifeforms, the self-sustaining behaviors refer to various well-organized biochemical reactions in spatial confinement, which rely on compartmentalization to integrate and coordinate the molecularly crowded intracellular environment and complicated reaction networks in living/synthetic cells. Therefore, the biological phenomenon of compartmentalization has become an essential theme in the field of synthetic cell engineering. Recent progress in the state-of-the-art of synthetic cells has indicated that multi-compartmentalized synthetic cells should be developed to obtain more advanced structures and functions. Herein, two ways of developing multi-compartmentalized hierarchical systems, namely interior compartmentalization of synthetic cells (organelles) and integration of synthetic cell communities (synthetic tissues), are summarized. Examples are provided for different construction strategies employed in the above-mentioned engineering ways, including spontaneous compartmentalization in vesicles, host-guest nesting, phase separation mediated multiphase, adhesion-mediated assembly, programmed arrays, and 3D printing. Apart from exhibiting advanced structures and functions, synthetic cells are also applied as biomimetic materials. Finally, key challenges and future directions regarding the development of multi-compartmentalized hierarchical systems are summarized; these are expected to lay the foundation for the creation of a "living" synthetic cell as well as provide a larger platform for developing new biomimetic materials in the future.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
14
|
Su Y, Liu B, Huang Z, Teng Z, Yang L, Zhu J, Huo S, Liu A. Virus-like particles nanoreactors: from catalysis towards bio-applications. J Mater Chem B 2023; 11:9084-9098. [PMID: 37697810 DOI: 10.1039/d3tb01112g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Virus-like particles (VLPs) are self-assembled supramolecular structures found in nature, often used for compartmentalization. Exploiting their inherent properties, including precise nanoscale structures, monodispersity, and high stability, these architectures have been widely used as nanocarriers to protect or enrich catalysts, facilitating catalytic reactions and avoiding interference from the bulk solutions. In this review, we summarize the current progress of virus-like particles (VLPs)-based nanoreactors. First, we briefly introduce the physicochemical properties of the most commonly used virus particles to understand their roles in catalytic reactions beyond the confined space. Next, we summarize the self-assembly of nanoreactors forming higher-order hierarchical structures, highlighting the emerging field of nanoreactors as artificial organelles and their potential biomedical applications. Finally, we discuss the current findings and future perspectives of VLPs-based nanoreactors.
Collapse
Affiliation(s)
- Yuqing Su
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Beibei Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhenkun Huang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zihao Teng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jie Zhu
- National-Local Joint Engineering Research and High-Quality Utilization, Changzhou University, Changzhou 213164, China
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Aijie Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
15
|
Oerlemans RAF, Shao J, van Stevendaal MHME, Wu H, Patiño Padial T, Abdelmohsen LKEA, van Hest JCM. Biodegradable Grubbs-Loaded Artificial Organelles for Endosomal Ring-Closing Metathesis. Biomacromolecules 2023; 24:4148-4155. [PMID: 37589683 PMCID: PMC10498438 DOI: 10.1021/acs.biomac.3c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/01/2023] [Indexed: 08/18/2023]
Abstract
The application of transition-metal catalysts in living cells presents a promising approach to facilitate reactions that otherwise would not occur in nature. However, the usage of metal complexes is often restricted by their limited biocompatibility, toxicity, and susceptibility to inactivation and loss of activity by the cell's defensive mechanisms. This is especially relevant for ruthenium-mediated reactions, such as ring-closing metathesis. In order to address these issues, we have incorporated the second-generation Hoveyda-Grubbs catalyst (HGII) into polymeric vesicles (polymersomes), which were composed of biodegradable poly(ethylene glycol)-b-poly(caprolactone-g-trimethylene carbonate) [PEG-b-P(CL-g-TMC)] block copolymers. The catalyst was either covalently or non-covalently introduced into the polymersome membrane. These polymersomes were able to act as artificial organelles that promote endosomal ring-closing metathesis for the intracellular generation of a fluorescent dye. This is the first example of the use of a polymersome-based artificial organelle with an active ruthenium catalyst for carbon-carbon bond formation.
Collapse
Affiliation(s)
- Roy A.
J. F. Oerlemans
- Bio-Organic Chemistry, Institute for
Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Jingxin Shao
- Bio-Organic Chemistry, Institute for
Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Marleen H. M. E. van Stevendaal
- Bio-Organic Chemistry, Institute for
Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Hanglong Wu
- Bio-Organic Chemistry, Institute for
Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Tania Patiño Padial
- Bio-Organic Chemistry, Institute for
Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Loai K. E. A. Abdelmohsen
- Bio-Organic Chemistry, Institute for
Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Jan C. M. van Hest
- Bio-Organic Chemistry, Institute for
Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
16
|
Oerlemans RAJF, Shao J, Huisman SGAM, Li Y, Abdelmohsen LKEA, van Hest JCM. Compartmentalized Intracellular Click Chemistry with Biodegradable Polymersomes. Macromol Rapid Commun 2023; 44:e2200904. [PMID: 36607841 DOI: 10.1002/marc.202200904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/17/2022] [Indexed: 01/07/2023]
Abstract
Polymersome nanoreactors that can be employed as artificial organelles have gained much interest over the past decades. Such systems often include biological catalysts (i.e., enzymes) so that they can undertake chemical reactions in cellulo. Examples of nanoreactor artificial organelles that acquire metal catalysts in their structure are limited, and their application in living cells remains fairly restricted. In part, this shortfall is due to difficulties associated with constructing systems that maintain their stability in vitro, let alone the toxicity they impose on cells. This study demonstrates a biodegradable and biocompatible polymersome nanoreactor platform, which can be applied as an artificial organelle in living cells. The ability of the artificial organelles to covalently and non-covalently incorporate tris(triazolylmethyl)amine-Cu(I) complexes in their membrane is shown. Such artificial organelles are capable of effectively catalyzing a copper-catalyzed azide-alkyne cycloaddition intracellularly, without compromising the cells' integrity. The platform represents a step forward in the application of polymersome-based nanoreactors as artificial organelles.
Collapse
Affiliation(s)
- Roy A J F Oerlemans
- Department of Bio-medical engineering and Chemical engineering & Chemistry, Eindhoven University of Technology: Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jingxin Shao
- Department of Bio-medical engineering and Chemical engineering & Chemistry, Eindhoven University of Technology: Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Sander G A M Huisman
- Department of Bio-medical engineering and Chemical engineering & Chemistry, Eindhoven University of Technology: Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yudong Li
- Department of Bio-medical engineering and Chemical engineering & Chemistry, Eindhoven University of Technology: Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Loai K E A Abdelmohsen
- Department of Bio-medical engineering and Chemical engineering & Chemistry, Eindhoven University of Technology: Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Department of Bio-medical engineering and Chemical engineering & Chemistry, Eindhoven University of Technology: Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
17
|
Wang D, Moreno S, Boye S, Voit B, Appelhans D. Crosslinked and Multi-Responsive Polymeric Vesicles as a Platform to Study Enzyme-Mediated Undocking Behavior: Toward Future Artificial Organelle Communication. Macromol Rapid Commun 2023; 44:e2200885. [PMID: 36755359 DOI: 10.1002/marc.202200885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Various cellular functions are successfully mimicked, opening the door to the next generation of therapeutic approaches and systems biology. Herein, the first steps are taken toward the construction of artificial organelles for mimicking cell communication by docking and undocking of cargo in the membrane of swollen artificial organelles. Stimuli-responsive and crosslinked polymeric vesicles are used to allow docking processes at acidic pH at which ferrocene units in the swollen membrane state can undergo desired specific host-guest interaction using β-cyclodextrin as model cargo. The release of the cargo mediated by two different enzymes, glucose oxidase and α-amylase, is investigated, triggered by distinct enzymatic undocking mechanisms. Different release times for a useful transport are shown that can be adapted to different communication pathways. In addition, Förster resonance energy transfer (FRET) experiments further support the hypotheses of host-guest inclusion complexation formation and their time-dependent breakdown. This work paves a way to a platform based on polymeric vesicles for synthetic biology, cell functions mimicking, and the construction of multifunctional cargo delivery system.
Collapse
Affiliation(s)
- Dishi Wang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| |
Collapse
|
18
|
Zhou P, Liu H, Meng X, Zuo H, Qi M, Guo L, Gao C, Song W, Wu J, Chen X, Chen W, Liu L. Engineered Artificial Membraneless Organelles in Saccharomyces cerevisiae To Enhance Chemical Production. Angew Chem Int Ed Engl 2023; 62:e202215778. [PMID: 36762978 DOI: 10.1002/anie.202215778] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/11/2023]
Abstract
Microbial cell factories provide a green and sustainable opportunity to produce value-added products from renewable feedstock. However, the leakage of toxic or volatile intermediates decreases the efficiency of microbial cell factories. In this study, membraneless organelles (MLOs) were reconstructed in Saccharomyces cerevisiae by the disordered protein sequence A-IDPs. A regulation system was designed to spatiotemporally regulate the size and rigidity of MLOs. Manipulating the MLO size of strain ZP03-FM, the amounts of assimilated methanol and malate were increased by 162 % and 61 %, respectively. Furthermore, manipulating the MLO rigidity in strain ZP04-RB made acetyl-coA synthesis from oxidative glycolysis change to non-oxidative glycolysis; consequently, CO2 release decreased by 35 % and the n-butanol yield increased by 20 %. This artificial MLO provides a strategy for the co-localization of enzymes to channel C1 starting materials into value-added chemicals.
Collapse
Affiliation(s)
- Pei Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hui Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xin Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Huiyun Zuo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mengya Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
19
|
Muhren HJ, van der Schoot P. Electrostatic Theory of the Acidity of the Solution in the Lumina of Viruses and Virus-Like Particles. J Phys Chem B 2023; 127:2160-2168. [PMID: 36881522 PMCID: PMC10026070 DOI: 10.1021/acs.jpcb.2c08604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Recently, Maassen et al. measured an appreciable pH difference between the bulk solution and the solution in the lumen of virus-like particles, self-assembled in an aqueous buffer solution containing the coat proteins of a simple plant virus and polyanions (Maassen, S. J.; et al. Small 2018, 14, 1802081). They attribute this to the Donnan effect, caused by an imbalance between the number of negative charges on the encapsulated polyelectrolyte molecules and the number of positive charges on the RNA binding domains of the coat proteins that make up the virus shell or capsid. By applying Poisson-Boltzmann theory, we confirm this conclusion and show that simple Donnan theory is accurate even for the smallest of viruses and virus-like particles. This, in part, is due to the additional screening caused by the presence of a large number of immobile charges in the cavity of the shell. The presence of a net charge on the outer surface of the capsid we find in practice to not have a large effect on the pH shift. Hence, Donnan theory can indeed be applied to connect the local pH and the amount of encapsulated material. The large shifts up to a full pH unit that we predict must have consequences for applications of virus capsids as nanocontainers in bionanotechnology and artificial cell organelles.
Collapse
Affiliation(s)
- H J Muhren
- Soft Matter and Biological Physics, Department of Applied Physics and Science Education, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands
| | - Paul van der Schoot
- Soft Matter and Biological Physics, Department of Applied Physics and Science Education, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
20
|
Sathyan A, Deng L, Loman T, Palmans AR. Bio-orthogonal catalysis in complex media: Consequences of using polymeric scaffold materials on catalyst stability and activity. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
21
|
Ebensperger P, Zmyslia M, Lohner P, Braunreuther J, Deuringer B, Becherer A, Süss R, Fischer A, Jessen-Trefzer C. A Dual-Metal-Catalyzed Sequential Cascade Reaction in an Engineered Protein Cage. Angew Chem Int Ed Engl 2023; 62:e202218413. [PMID: 36799770 DOI: 10.1002/anie.202218413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/18/2023]
Abstract
Herein, we describe the creation of an artificial protein cage housing a dual-metal-tagged guest protein that catalyzes a linear, two-step sequential cascade reaction. The guest protein consists of a fusion protein of HaloTag and monomeric rhizavidin. Inside the protein capsid, we established a ruthenium-catalyzed allylcarbamate deprotection reaction followed by a gold-catalyzed ring-closing hydroamination reaction that led to indoles and phenanthridines with an overall yield of up to 66 % in aqueous solutions. Furthermore, we show that the encapsulation stabilizes the metal catalysts against deactivation by air, proteins and cell lysate.
Collapse
Affiliation(s)
- Paul Ebensperger
- Institute of Organic Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| | - Mariia Zmyslia
- Institute of Organic Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| | - Philipp Lohner
- Institute of Organic Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| | - Judith Braunreuther
- Institute of Organic Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| | - Benedikt Deuringer
- Institute of Pharmaceutical Science, University of Freiburg, Sonnenstrasse 5, 79104, Freiburg i. Br., Germany
| | - Anita Becherer
- Institute of Inorganic and Analytical Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| | - Regine Süss
- Institute of Pharmaceutical Science, University of Freiburg, Sonnenstrasse 5, 79104, Freiburg i. Br., Germany
| | - Anna Fischer
- Institute of Inorganic and Analytical Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| | - Claudia Jessen-Trefzer
- Institute of Organic Chemistry, University of Freiburg, Alberstrasse 21, 79104, Freiburg i. Br., Germany
| |
Collapse
|
22
|
Zhang Y, Wang S, Yan Y, He X, Wang Z, Zhou S, Yang X, Wang K, Liu J. Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
23
|
Cao S, Ivanov T, de Souza Melchiors M, Landfester K, Caire da Silva L. Controlled Membrane Transport in Polymeric Biomimetic Nanoreactors. Chembiochem 2023; 24:e202200718. [PMID: 36715701 DOI: 10.1002/cbic.202200718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Polymersome-based biomimetic nanoreactors (PBNs) have generated great interest in nanomedicine and cell mimicry due to their robustness, tuneable chemistry, and broad applicability in biologically relevant fields. In this concept review, we mainly discuss the state of the art in functional polymersomes as biomimetic nanoreactors with membrane-controlled transport. PBNs that use environmental changes or external stimuli to adjust membrane permeability while maintaining structural integrity are highlighted. By encapsulating catalytic species, PBNs are able to convert inactive substrates into functional products in a controlled manner. In addition, special attention is paid to the use of PBNs as tailored artificial organelles with biomedical applications in vitro and in vivo, facilitating the fabrication of next-generation artificial organelles as therapeutic nanocompartments.
Collapse
Affiliation(s)
- Shoupeng Cao
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tsvetomir Ivanov
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Marina de Souza Melchiors
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Lucas Caire da Silva
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
24
|
Kim H, Yeow J, Najer A, Kit‐Anan W, Wang R, Rifaie‐Graham O, Thanapongpibul C, Stevens MM. Microliter Scale Synthesis of Luciferase-Encapsulated Polymersomes as Artificial Organelles for Optogenetic Modulation of Cardiomyocyte Beating. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200239. [PMID: 35901502 PMCID: PMC9507352 DOI: 10.1002/advs.202200239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Constructing artificial systems that effectively replace or supplement natural biological machinery within cells is one of the fundamental challenges underpinning bioengineering. At the sub-cellular scale, artificial organelles (AOs) have significant potential as long-acting biomedical implants, mimicking native organelles by conducting intracellularly compartmentalized enzymatic actions. The potency of these AOs can be heightened when judiciously combined with genetic engineering, producing highly tailorable biohybrid cellular systems. Here, the authors present a cost-effective, microliter scale (10 µL) polymersome (PSome) synthesis based on polymerization-induced self-assembly for the in situ encapsulation of Gaussia luciferase (GLuc), as a model luminescent enzyme. These GLuc-loaded PSomes present ideal features of AOs including enhanced enzymatic resistance to thermal, proteolytic, and intracellular stresses. To demonstrate their biomodulation potential, the intracellular luminescence of GLuc-loaded PSomes is coupled to optogenetically engineered cardiomyocytes, allowing modulation of cardiac beating frequency through treatment with coelenterazine (CTZ) as the substrate for GLuc. The long-term intracellular stability of the luminescent AOs allows this cardiostimulatory phenomenon to be reinitiated with fresh CTZ even after 7 days in culture. This synergistic combination of organelle-mimicking synthetic materials with genetic engineering is therefore envisioned as a highly universal strategy for the generation of new biohybrid cellular systems displaying unique triggerable properties.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Jonathan Yeow
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Adrian Najer
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Worrapong Kit‐Anan
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Richard Wang
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Omar Rifaie‐Graham
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Chalaisorn Thanapongpibul
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Molly M. Stevens
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
25
|
Nau REP, Bösking J, Pannwitz A. Compartmentalization Accelerates Photosensitized NADH to NAD+ Conversion. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Roland E. P. Nau
- Ulm University: Universitat Ulm Institut fuer Anorganische Chemie I GERMANY
| | - Julian Bösking
- Ulm University: Universitat Ulm Institut fuer Anorganische Chemie I GERMANY
| | - Andrea Pannwitz
- Ulm University: Universitat Ulm Institut fuer Anorganische Chemie I Albert-Einstein-Allee 11 89081 Ulm GERMANY
| |
Collapse
|
26
|
Zhang S, Zhang R, Yan X, Fan K. Nanozyme-Based Artificial Organelles: An Emerging Direction for Artificial Organelles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202294. [PMID: 35869033 DOI: 10.1002/smll.202202294] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Artificial organelles are compartmentalized nanoreactors, in which enzymes or enzyme-mimic catalysts exhibit cascade catalytic activities to mimic the functions of natural organelles. Importantly, research on artificial organelles paves the way for the bottom-up design of synthetic cells. Due to the separation effect of microcompartments, the catalytic reactions of enzymes are performed without the influence of the surrounding medium. The current techniques for synthesizing artificial organelles rely on the strategies of encapsulating enzymes into vesicle-structured materials or reconstituting enzymes onto the microcompartment materials. However, there are still some problems including limited functions, unregulated activities, and difficulty in targeting delivery that hamper the applications of artificial organelles. The emergence of nanozymes (nanomaterials with enzyme-like activities) provides novel ideas for the fabrication of artificial organelles. Compared with natural enzymes, nanozymes are featured with multiple enzymatic activities, higher stability, easier to synthesize, lower cost, and excellent recyclability. Herein, the most recent advances in nanozyme-based artificial organelles are summarized. Moreover, the benefits of compartmental structures for the applications of nanozymes, as well as the functional requirements of microcompartment materials are also introduced. Finally, the potential applications of nanozyme-based artificial organelles in biomedicine and the related challenges are discussed.
Collapse
Affiliation(s)
- Shuai Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
27
|
Najer A, Belessiotis-Richards A, Kim H, Saunders C. Block Length-Dependent Protein Fouling on Poly(2-oxazoline)-Based Polymersomes: Influence on Macrophage Association and Circulation Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201993. [PMID: 35670200 PMCID: PMC7615485 DOI: 10.1002/smll.202201993] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Polymersomes are vesicular structures self-assembled from amphiphilic block copolymers and are considered an alternative to liposomes for applications in drug delivery, immunotherapy, biosensing, and as nanoreactors and artificial organelles. However, the limited availability of systematic stability, protein fouling (protein corona formation), and blood circulation studies hampers their clinical translation. Poly(2-oxazoline)s (POx) are valuable antifouling hydrophilic polymers that can replace the current gold-standard, poly(ethylene glycol) (PEG), yet investigations of POx functionality on nanoparticles are relatively sparse. Herein, a systematic study is reported of the structural, dynamic and antifouling properties of polymersomes made of poly(2-methyl-2-oxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PMOXA-b-PDMS-b-PMOXA). The study relates in vitro antifouling performance of the polymersomes to atomistic molecular dynamics simulations of polymersome membrane hydration behavior. These observations support the experimentally demonstrated benefit of maximizing the length of PMOXA (degree of polymerization (DP) > 6) while keeping PDMS at a minimal length that still provides sufficient membrane stability (DP > 19). In vitro macrophage association and in vivo blood circulation evaluation of polymersomes in zebrafish embryos corroborate these findings. They further suggest that single copolymer presentation on polymersomes is outperformed by blends of varied copolymer lengths. This study helps to rationalize design rules for stable and low-fouling polymersomes for future medical applications.
Collapse
Affiliation(s)
- Adrian Najer
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Alexis Belessiotis-Richards
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Hyemin Kim
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Catherine Saunders
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
28
|
Korpidou M, Maffeis V, Dinu IA, Schoenenberger CA, Meier WP, Palivan CG. Inverting glucuronidation of hymecromone in situ by catalytic nanocompartments. J Mater Chem B 2022; 10:3916-3926. [PMID: 35485215 DOI: 10.1039/d2tb00243d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glucuronidation is a metabolic pathway that inactivates many drugs including hymecromone. Adverse effects of glucuronide metabolites include a reduction of half-life circulation times and rapid elimination from the body. Herein, we developed synthetic catalytic nanocompartments able to cleave the glucuronide moiety from the metabolized form of hymecromone in order to convert it to the active drug. By shielding enzymes from their surroundings, catalytic nanocompartments favor prolonged activity and lower immunogenicity as key aspects to improve the therapeutic solution. The catalytic nanocompartments (CNCs) consist of self-assembled poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) diblock copolymer polymersomes encapsulating β-glucuronidase. Insertion of melittin in the synthetic membrane of these polymersomes provided pores for the diffusion of the hydrophilic hymecromone-glucuronide conjugate to the compartment inside where the encapsulated β-glucuronidase catalyzed its conversion to hymecromone. Our system successfully produced hymecromone from its glucuronide conjugate in both phosphate buffered solution and cell culture medium. CNCs were non-cytotoxic when incubated with HepG2 cells. After being taken up by cells, CNCs produced the drug in situ over 24 hours. Such catalytic platforms, which locally revert a drug metabolite into its active form, open new avenues in the design of therapeutics that aim at prolonging the residence time of a drug.
Collapse
Affiliation(s)
- Maria Korpidou
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland.
| | - Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland. .,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058, Basel, Switzerland
| | - Ionel Adrian Dinu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland. .,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058, Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland. .,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058, Basel, Switzerland
| | - Wolfgang P Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland. .,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058, Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland. .,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058, Basel, Switzerland
| |
Collapse
|
29
|
Shajhutdinova Z, Pashirova T, Masson P. Kinetic Processes in Enzymatic Nanoreactors for In Vivo Detoxification. Biomedicines 2022; 10:biomedicines10040784. [PMID: 35453533 PMCID: PMC9025091 DOI: 10.3390/biomedicines10040784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022] Open
Abstract
Enzymatic nanoreactors are enzyme-encapsulated nanobodies that are capable of performing biosynthetic or catabolic reactions. For this paper, we focused on therapeutic enzyme nanoreactors for the neutralization of toxicants, paying special attention to the inactivation of organophosphorus compounds (OP). Therapeutic enzymes that are capable of detoxifying OPs are known as bioscavengers. The encapsulation of injectable bioscavengers by nanoparticles was first used to prevent fast clearance and the immune response to heterologous enzymes. The aim of enzyme nanoreactors is also to provide a high concentration of the reactive enzyme in stable nanocontainers. Under these conditions, the detoxification reaction takes place inside the compartment, where the enzyme concentration is much higher than in the toxicant diffusing across the nanoreactor membrane. Thus, the determination of the concentration of the encapsulated enzyme is an important issue in nanoreactor biotechnology. The implications of second-order reaction conditions, the nanoreactor’s permeability in terms of substrates, and the reaction products and their possible osmotic, viscosity, and crowding effects are also examined.
Collapse
Affiliation(s)
- Zukhra Shajhutdinova
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlevskaya Str. 18, 420111 Kazan, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia;
| | - Tatiana Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia;
| | - Patrick Masson
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlevskaya Str. 18, 420111 Kazan, Russia;
- Correspondence:
| |
Collapse
|
30
|
Ade C, Qian X, Brodszkij E, De Dios Andres P, Spanjers J, Westensee IN, Städler B. Polymer Micelles vs Polymer-Lipid Hybrid Vesicles: A Comparison Using RAW 264.7 Cells. Biomacromolecules 2022; 23:1052-1064. [PMID: 35020375 PMCID: PMC8924860 DOI: 10.1021/acs.biomac.1c01403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bottom-up synthetic biology aims to integrate artificial moieties with living cells and tissues. Here, two types of structural scaffolds for artificial organelles were compared in terms of their ability to interact with macrophage-like murine RAW 264.7 cells. The amphiphilic block copolymer poly(cholesteryl methacrylate)-block-poly(2-carboxyethyl acrylate) was used to assemble micelles and polymer-lipid hybrid vesicles together with 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipids in the latter case. In addition, the pH-sensitive fusogenic peptide GALA was conjugated to the carriers to improve their lysosomal escape ability. All assemblies had low short-term toxicity toward macrophage-like murine RAW 264.7 cells, and the cells internalized both the micelles and hybrid vesicles within 24 h. Assemblies containing DOPE lipids or GALA in their building blocks could escape the lysosomes. However, the intracellular retention of the building blocks was only a few hours in all the cases. Taken together, the provided comparison between two types of potential scaffolds for artificial organelles lays out the fundamental understanding required to advance soft material-based assemblies as intracellular nanoreactors.
Collapse
Affiliation(s)
- Carina Ade
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Xiaomin Qian
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Paula De Dios Andres
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Järvi Spanjers
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Isabella N Westensee
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| |
Collapse
|
31
|
Vázquez-Arias A, Pérez-Juste J, Pastoriza-Santos I, Bodelon G. Prospects and applications of synergistic noble metal nanoparticle-bacterial hybrid systems. NANOSCALE 2021; 13:18054-18069. [PMID: 34726220 DOI: 10.1039/d1nr04961e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hybrid systems composed of living cells and nanomaterials have been attracting great interest in various fields of research ranging from materials science to biomedicine. In particular, the interfacing of noble metal nanoparticles and bacterial cells in a single architecture aims to generate hybrid systems that combine the unique physicochemical properties of the metals and biological attributes of the microbial cells. While the bacterial cells provide effector and scaffolding functions, the metallic component endows the hybrid system with multifunctional capabilities. This synergistic effort seeks to fabricate living materials with improved functions and new properties that surpass their individual components. Herein, we provide an overview of this research field and the strategies for obtaining hybrid systems, and we summarize recent biological applications, challenges and current prospects in this exciting new arena.
Collapse
Affiliation(s)
- Alba Vázquez-Arias
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Gustavo Bodelon
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| |
Collapse
|
32
|
Ebensperger P, Jessen-Trefzer C. Artificial metalloenzymes in a nutshell: the quartet for efficient catalysis. Biol Chem 2021; 403:403-412. [PMID: 34653321 DOI: 10.1515/hsz-2021-0329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Artificial metalloenzymes combine the inherent reactivity of transition metal catalysis with the sophisticated reaction control of natural enzymes. By providing new opportunities in bioorthogonal chemistry and biocatalysis, artificial metalloenzymes have the potential to overcome certain limitations in both drug discovery and green chemistry or related research fields. Ongoing advances in organometallic catalysis, directed evolution, and bioinformatics are enabling the design of increasingly powerful systems that outperform conventional catalysis in a growing number of cases. Therefore, this review article collects challenges and opportunities in designing artificial metalloenzymes described in recent review articles. This will provide an equitable insight for those new to and interested in the field.
Collapse
Affiliation(s)
- Paul Ebensperger
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, D-79104Freiburg i. Br., Germany
| | - Claudia Jessen-Trefzer
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, D-79104Freiburg i. Br., Germany
| |
Collapse
|
33
|
Synthetic biomolecular condensates to engineer eukaryotic cells. Curr Opin Chem Biol 2021; 64:174-181. [PMID: 34600419 DOI: 10.1016/j.cbpa.2021.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 01/04/2023]
Abstract
The compartmentalization of specific functions into specialized organelles is a key feature of eukaryotic life. In particular, dynamic biomolecular condensates that are not membrane enclosed offer exciting opportunities for synthetic biology. In recent years, multiple approaches to generate and control condensates have been reported. Notably, multiple orthogonally translating organelles were designed that enable precise protein engineering inside living cells. Despite being built from only very few components, orthogonal translation can be engineered with subresolution precision at different places inside the same cell to create mammalian cells with multiple expanded genetic codes. This provides a pathway to engineer multiple proteins with multiple and distinct functionalities inside living eukaryotes and provides a general strategy toward spatially orthogonal enzyme engineering.
Collapse
|
34
|
Oerlemans RAJF, Timmermans SBPE, van Hest JCM. Artificial Organelles: Towards Adding or Restoring Intracellular Activity. Chembiochem 2021; 22:2051-2078. [PMID: 33450141 PMCID: PMC8252369 DOI: 10.1002/cbic.202000850] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Indexed: 12/15/2022]
Abstract
Compartmentalization is one of the main characteristics that define living systems. Creating a physically separated microenvironment allows nature a better control over biological processes, as is clearly specified by the role of organelles in living cells. Inspired by this phenomenon, researchers have developed a range of different approaches to create artificial organelles: compartments with catalytic activity that add new function to living cells. In this review we will discuss three complementary lines of investigation. First, orthogonal chemistry approaches are discussed, which are based on the incorporation of catalytically active transition metal-containing nanoparticles in living cells. The second approach involves the use of premade hybrid nanoreactors, which show transient function when taken up by living cells. The third approach utilizes mostly genetic engineering methods to create bio-based structures that can be ultimately integrated with the cell's genome to make them constitutively active. The current state of the art and the scope and limitations of the field will be highlighted with selected examples from the three approaches.
Collapse
Affiliation(s)
- Roy A. J. F. Oerlemans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Suzanne B. P. E. Timmermans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Jan C. M. van Hest
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| |
Collapse
|