1
|
Fan X, Lu P, Cui XH, Wu P, Lin WR, Zhang D, Yuan SZ, Liu B, Chen FY, You H, Wei HD, He FC, Jia JD, Jiang Y. Repopulating Kupffer cells originate directly from hematopoietic stem cells. Stem Cell Res Ther 2023; 14:351. [PMID: 38072929 PMCID: PMC10712046 DOI: 10.1186/s13287-023-03569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Kupffer cells (KCs) originate from yolk-sac progenitors before birth. Throughout adulthood, they self-maintain independently from the input of circulating monocytes (MOs) at a steady state and are replenished within 2 weeks after having been depleted, but the origin of repopulating KCs in adults remains unclear. The current paradigm dictates that repopulating KCs originate from preexisting KCs or monocytes, but there remains a lack of fate-mapping evidence. METHODS We first traced the fate of preexisting KCs and that of monocytic cells with tissue-resident macrophage-specific and monocytic cell-specific fate-mapping mouse models, respectively. Secondly, we performed genetic lineage tracing to determine the type of progenitor cells involved in response to KC-depletion in mice. Finally, we traced the fate of hematopoietic stem cells (HSCs) in an HSC-specific fate-mapping mouse model, in the context of chronic liver inflammation induced by repeated carbon tetrachloride treatment. RESULTS By using fate-mapping mouse models, we found no evidence that repopulating KCs originate from preexisting KCs or MOs and found that in response to KC-depletion, HSCs proliferated in the bone marrow, mobilized into the blood, adoptively transferred into the liver and differentiated into KCs. Then, in the chronic liver inflammation context, we confirmed that repopulating KCs originated directly from HSCs. CONCLUSION Taken together, these findings provided in vivo fate-mapping evidence that repopulating KCs originate directly from HSCs, which presents a completely novel understanding of the cellular origin of repopulating KCs and shedding light on the divergent roles of KCs in liver homeostasis and diseases.
Collapse
Affiliation(s)
- Xu Fan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Pei Lu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Xiang-Hua Cui
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Peng Wu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Wei-Ran Lin
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Dong Zhang
- Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 10050, China
| | - Shong-Zong Yuan
- Department of Lymphoma, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Fang-Yan Chen
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Han-Dong Wei
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Fu-Chu He
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
- Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206, China.
| | - Ji-Dong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Diseases, Beijing, 100050, China.
| | - Ying Jiang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
- Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Kupffer Cells and Blood Monocytes Orchestrate the Clearance of Iron-Carbohydrate Nanoparticles from Serum. Int J Mol Sci 2022; 23:ijms23052666. [PMID: 35269805 PMCID: PMC8910242 DOI: 10.3390/ijms23052666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/05/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
Intravenous (IV) iron nanoparticle preparations are widely used to treat iron deficiency. The mechanism of mononuclear phagocyte system-mediated clearance of IV iron nanoparticles is unknown. The early uptake and homeostasis of iron after injection of ferric carboxymaltose (FCM) in mice was studied. An increase in serum iron was observed at 2.5 h followed by a return to baseline by 24 h. An increase in circulating monocytes was observed, particularly Ly6Chi and Ly6Clow. FCM was also associated with a time-dependent decrease in liver Kupffer cells (KCs) and increase in liver monocytes. The increase in liver monocytes suggests an influx of iron-rich blood monocytes, while some KCs underwent apoptosis. Adoptive transfer experiments demonstrated that following liver infiltration, blood monocytes differentiated to KCs. KCs were also critical for IV iron uptake and biodegradation. Indeed, anti-Colony Stimulating Factor 1 Receptor (CSF1R)-mediated depletion of KCs resulted in elevated serum iron levels and impaired iron uptake by the liver. Gene expression profiling indicated that C-C chemokine receptor type 5 (CCR5) might be involved in monocyte recruitment to the liver, confirmed by pharmaceutical inhibition of CCR5. Liver KCs play a pivotal role in the clearance and storage of IV iron and KCs appear to be supported by the expanded blood monocyte population.
Collapse
|
3
|
Yang A, Yan X, Xu H, Fan X, Zhang M, Huang T, Li W, Chen W, Jia J, You H. Selective depletion of hepatic stellate cells-specific LOXL1 alleviates liver fibrosis. FASEB J 2021; 35:e21918. [PMID: 34569648 DOI: 10.1096/fj.202100374r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022]
Abstract
The role of LOXL1 in fibrosis via mediating ECM crosslinking and stabilization is well established; however, the role of hepatic stellate cells (HSCs)-specific LOXL1 in the development of fibrosis remains unknown. We generated HSCs-specific Loxl1-depleted mice (Loxl1Gfap-cre mice) to investigate the HSCs-specific contribution of LOXL1 in the pathogenesis of fibrosis. Loxl1fl/fl mice were used as the control. Furthermore, we used RNA sequencing to explore the underlying changes in the transcriptome. Results of the sirius red staining, type I collagen immunolabeling, and hydroxyproline content analysis, coupled with the reduced expression of profibrogenic genes revealed that Loxl1Gfap-cre mice with CCl4 -induced fibrosis exhibited decreased hepatic fibrosis. In addition, Loxl1Gfap-cre mice exhibited reduced macrophage tissue infiltration by CD68-positive cells and decreased expression of inflammatory genes compared with the controls. RNA sequencing identified integrin α8 (ITGA8) as a key modulator of LOXL1-mediated liver fibrosis. Functional analyses showed that siRNA silencing of Itga8 in cultured fibroblasts led to a decline in the LOXL1 expression and inhibition of fibroblast activation. Mechanistic analyses indicated that LOXL1 activated the FAK/PI3K/AKT/HIF1a signaling pathway, and the addition of inhibitors of FAK or PI3K reversed these results via downregulation of LOXL1. Furthermore, HIF1a directly interacted with LOXL1 and upregulated its expression, indicating that LOXL1 can positively self-regulate by forming a positive feedback loop with the FAK/PI3K/AKT/HIF1a pathway. We demonstrated that HSCs-specific Loxl1 deficiency prevented fibrosis, inflammation and that ITGA8/FAK/PI3K/AKT/HIF1a was essential for the function and expression of LOXL1. Knowledge of this approach can provide novel mechanisms and targets to treat fibrosis in the future.
Collapse
Affiliation(s)
- Aiting Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Clinical Medicine Institute, Beijing, P.R. China.,National Clinical Research Center of Digestive Diseases, Beijing, P.R. China
| | - Xuzhen Yan
- National Clinical Research Center of Digestive Diseases, Beijing, P.R. China.,Liver Research Center, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Hufeng Xu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Clinical Medicine Institute, Beijing, P.R. China.,National Clinical Research Center of Digestive Diseases, Beijing, P.R. China
| | - Xu Fan
- National Clinical Research Center of Digestive Diseases, Beijing, P.R. China.,Liver Research Center, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Mengyang Zhang
- National Clinical Research Center of Digestive Diseases, Beijing, P.R. China.,Liver Research Center, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Tao Huang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Clinical Medicine Institute, Beijing, P.R. China.,National Clinical Research Center of Digestive Diseases, Beijing, P.R. China
| | - Weiyu Li
- National Clinical Research Center of Digestive Diseases, Beijing, P.R. China.,Liver Research Center, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Clinical Medicine Institute, Beijing, P.R. China.,National Clinical Research Center of Digestive Diseases, Beijing, P.R. China
| | - Jidong Jia
- Beijing Clinical Medicine Institute, Beijing, P.R. China.,National Clinical Research Center of Digestive Diseases, Beijing, P.R. China.,Liver Research Center, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Hong You
- Beijing Clinical Medicine Institute, Beijing, P.R. China.,National Clinical Research Center of Digestive Diseases, Beijing, P.R. China.,Liver Research Center, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
4
|
Fan X, Shan S, Wu P, Lin W, Jia J, He F. Irradiated and CCl 4 -treated bone marrow-derived liver macrophages exhibit different gene expression patterns and phenotypes. Scand J Immunol 2020; 92:e12916. [PMID: 32533712 DOI: 10.1111/sji.12916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/30/2020] [Accepted: 06/07/2020] [Indexed: 11/29/2022]
Abstract
Myeloid cells infiltrate into the liver and differentiate into macrophages in different liver injury mouse models. However, the heterogeneity of bone marrow (BM)-derived LMs populations remains to be understood. To investigate this and understand the impact of the macrophage niche on the properties of recruited BM-derived macrophages, we used a non-myeloablation BM transplantation model to label and trace BM-derived LMs. Subsequently, we quantified the number of embryonic-derived liver-resident macrophages, BM-derived LMs and total LMs in CCl4 and irradiated acute liver injury mouse models, respectively. Finally, we compared the cell fate, gene expression patterns, chemokine signals, and surface markers of irradiated and CCl4 -treated BM-derived LMs. We observed that, as compared to CCl4, radiation generated a macrophage niche by depleting embryonic-derived liver-resident macrophages and induced the recruitment of BM-derived LMs that further settled in the liver. Irradiated and CCl4 -treated BM-derived LMs are different with respect to their cell fates, gene expression patterns, and chemokine expression and recruitment. They also have different surface markers shortly after differentiating from their progenitors. Our findings suggest that irradiated and CCl4 -treated LM populations derived from the bone marrow display different patterns of gene expression and phenotypes; these differences may be due to the availability of macrophage niche.
Collapse
Affiliation(s)
- Xu Fan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shan Shan
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Weiran Lin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Jidong Jia
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
5
|
Shi W, Wang Y, Zhang C, Jin H, Zeng Z, Wei L, Tian Y, Zhang D, Sun G. Isolation and purification of immune cells from the liver. Int Immunopharmacol 2020; 85:106632. [PMID: 32470880 DOI: 10.1016/j.intimp.2020.106632] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 01/27/2023]
Abstract
Isolating and purifying liver immune cells are crucial for observing the changes in intrahepatic immune responses during the development of liver diseases and exploring the potential immunological mechanisms. Therefore, the aim of this study was to provide an optimal protocol for isolating immune cells with a high yield and less damage. We compared mechanical dissection and collagenase digestion, and the results were represented by the proportion of lymphocytes, Kupffer cells and neutrophils. The apoptosis rates of liver immune cells resulted by different isolation protocols were compared by Annexin V-staining using flow cytometric analysis. Our data indicated that the enzymatic digestion in vitro was more efficient than the mechanical dissection in vitro with a suitable collagenase IV concentration of 0.01%, and the purification of liver immune cells by a one-step density gradient centrifugation in 33% Percoll had the definite advantage of a higher proportion of the target cells. We also provided evidence that enzymatic digestion in vitro method was superior to collagenase digestion in situ for liver T lymphocytes, NK cells and NKT cells isolation and purification. This protocol was also validated in human liver samples. In conclusion, we developed an optimal protocol for isolating and purifying immune cells from mouse and human liver samples in vitro by 0.01% collagenase IV and 33% Percoll density gradient centrifugation with the advantages of higher cell yields and viability. This method provides a basis for further studying liver immune cells and liver immunity with a wide range of applications.
Collapse
Affiliation(s)
- Wen Shi
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Yaning Wang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Chunpan Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Hua Jin
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Zhigui Zeng
- Department of Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lin Wei
- Department of Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yue Tian
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China.
| | - Guangyong Sun
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China; National Clinical Research Center for Digestive Diseases, Beijing 100050, China.
| |
Collapse
|
6
|
Zhao TV, Li Y, Liu X, Xia S, Shi P, Li L, Chen Z, Yin C, Eriguchi M, Chen Y, Bernstein EA, Giani JF, Bernstein KE, Shen XZ. ATP release drives heightened immune responses associated with hypertension. Sci Immunol 2020; 4:4/36/eaau6426. [PMID: 31253642 DOI: 10.1126/sciimmunol.aau6426] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 05/30/2019] [Indexed: 12/12/2022]
Abstract
The cause of most hypertensive disease is unclear, but inflammation appears critical in disease progression. However, how elevated blood pressure initiates inflammation is unknown, as are the effects of high blood pressure on innate and adaptive immune responses. We now report that hypertensive mice have increased T cell responses to antigenic challenge and develop more severe T cell-mediated immunopathology. A root cause for this is hypertension-induced erythrocyte adenosine 5'-triphosphate (ATP) release, leading to an increase in plasma ATP levels, which begins soon after the onset of hypertension and stimulates P2X7 receptors on antigen-presenting cells (APCs), increasing APC expression of CD86. Hydrolyzing ATP or blocking the P2X7 receptor eliminated hypertension-induced T cell hyperactivation. In addition, pharmacologic or genetic blockade of P2X7 receptor activity suppressed the progression of hypertension. Consistent with the results in mice, we also found that untreated human hypertensive patients have significantly elevated plasma ATP levels compared with treated hypertensive patients or normotensive controls. Thus, a hypertension-induced increase in extracellular ATP triggers augmented APC and T cell function and contributes to the immune-mediated pathologic changes associated with hypertensive disease.
Collapse
Affiliation(s)
- Tuantuan V Zhao
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Li
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoli Liu
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Shudong Xia
- Department of Cardiology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Peng Shi
- Department of Cardiology of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li Li
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Zexin Chen
- Center of Clinical Epidemiology & Biostatistics, Department of Science and Education, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chunyou Yin
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Masahiro Eriguchi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Nephrology, Nara Medical University, Kashihara, Nara, Japan
| | - Yayu Chen
- Department of Cardiology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiao Z Shen
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Millings EJ, De Rosa MC, Fleet S, Watanabe K, Rausch R, Egli D, Li G, Leduc CA, Zhang Y, Fischer SG, Leibel RL. ILDR2 has a negligible role in hepatic steatosis. PLoS One 2018; 13:e0197548. [PMID: 29847571 PMCID: PMC5976177 DOI: 10.1371/journal.pone.0197548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/03/2018] [Indexed: 11/18/2022] Open
Abstract
We have previously reported that Ildr2 knockdown via adenovirally-delivered shRNA causes hepatic steatosis in mice. In the present study we investigated hepatic biochemical and anatomic phenotypes of Cre-mediated Ildr2 knock-out mice. Liver-specific Ildr2 knock-out mice were generated in C57BL/6J mice segregating for a floxed (exon 1) allele of Ildr2, using congenital and acute (10-13-week-old male mice) Cre expression. In addition, Ildr2 shRNA was administered to Ildr2 knock-out mice to test the effects of Ildr2 shRNA, per se, in the absence of Ildr2 expression. RNA sequencing was performed on livers of these knockdown and knockout mice. Congenital and acute liver-specific and hepatocyte-specific knockout mice did not develop hepatic steatosis. However, administration of Ildr2 shRNA to Ildr2 knock-out mice did cause hepatic steatosis, indicating that the Ildr2 shRNA had apparent "off-target" effects on gene(s) other than Ildr2. RNA sequencing and BLAST sequence alignment revealed Dgka as a candidate gene mediating these "off-target" effects. Ildr2 shRNA is 63% homologous to the Dgka gene, and Dgka expression decreased only in mice displaying hepatic steatosis. Dgka encodes diacylglycerol kinase (DGK) alpha, one of a family of DGKs which convert diacylglycerides to phosphatidic acid for second messenger signaling. Dgka knockdown mice would be expected to accumulate diacylglyceride, contributing to the observed hepatic steatosis. We conclude that ILDR2 plays a negligible role in hepatic steatosis. Rather, hepatic steatosis observed previously in Ildr2 knockdown mice was likely due to shRNA targeting of Dgka and/or other "off-target" genes. We propose that the gene candidates identified in this follow-up study may lead to identification of novel regulators of hepatic lipid metabolism.
Collapse
Affiliation(s)
- Elizabeth J Millings
- Naomi Berrie Diabetes Center and Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Maria Caterina De Rosa
- Naomi Berrie Diabetes Center and Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Sarah Fleet
- Naomi Berrie Diabetes Center and Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Kazuhisa Watanabe
- Naomi Berrie Diabetes Center and Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Richard Rausch
- Naomi Berrie Diabetes Center and Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Dieter Egli
- Naomi Berrie Diabetes Center and Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Gen Li
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Charles A Leduc
- Naomi Berrie Diabetes Center and Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Yiying Zhang
- Naomi Berrie Diabetes Center and Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Stuart G Fischer
- Naomi Berrie Diabetes Center and Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center and Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, New York, United States of America
| |
Collapse
|
8
|
Hsieh CS, Chuang JH, Chou MH, Kao YH. Dexamethasone restores transforming growth factor-β activated kinase 1 expression and phagocytosis activity of Kupffer cells in cholestatic liver injury. Int Immunopharmacol 2018; 56:310-319. [PMID: 29414666 DOI: 10.1016/j.intimp.2018.01.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/10/2018] [Accepted: 01/30/2018] [Indexed: 12/13/2022]
Abstract
The role of transforming growth factor-β activated kinase 1 (TAK1) in modulating the function of Kupffer cells (KCs) within cholestatic livers remains unclear. This study examined the immunopharmacological action of dexamethasone (DEX) in modulating hepatic TAK1 expression and related signaling activity in a rat model of bile duct ligation-mimicked obstructive jaundice. The in vitro effects of DEX on porcine biliary extract (PBE)-modulated gene expression and phagocytosis of KCs were examined using a rat alveolar macrophage cell line (NR8383 cells). Although DEX therapy did not restore the downregulated TAK1 expression and phosphorylation, it significantly attenuated the upregulation of high-mobility group box 1 expression and caspase-3 activation in whole liver extracts of cholestatic rats, possibly via enhancing extracellular signal-regulated kinase-mediated signaling. Dual immunofluorescence staining of cholestatic livers and western detection on primary KCs isolated from cholestatic livers identified that DEX treatment indeed increased both the expression and phosphorylation levels of TAK1 in the KCs of cholestatic livers. In vitro studies using alveolar NR8383 macrophages with KC-characteristic gene expression further demonstrated that DEX not only repressed the pro-inflammatory cytokine production including with respect to interleukin (IL)-1β and IL-6, but also enhanced gene expression of TAK1 and a phagocytic marker, natural-resistance-associated macrophage protein 1, under PBE-mimicked cholestatic conditions. However, WST-1 assay showed that DEX did not protect NR8383 macrophages against the PBE-induced cytotoxicity. Immunofluorescence visualization of cellular F-actin by phalloidin suggested that DEX sustained the PBE-induced phagocytosis morphology of NR8383 macrophages. In conclusion, DEX treatment may pharmacologically restore the expression and activity of TAK1 in KCs, and sustain the phagocytic phenotype of KCs in cholestatic livers.
Collapse
Affiliation(s)
- Chih-Sung Hsieh
- Department of Pediatric Surgery and Department of Teaching & Research, Pu-Li Christian Hospital, Nantou, Taiwan; Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Jiin-Haur Chuang
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ming-Huei Chou
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for General Education, Cheng-Shiu University, Kaohsiung, Taiwan.
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Cui X, Fan X, Zhang D, Jia J. Enhanced Performance of Proliferation Assay of Bone Marrow Cells by Optimizing in vivo Incorporation of 5-Ethynyl-2′-Deoxyuridine and Cell Preparation for Flow Cytometry. ANAL LETT 2016. [DOI: 10.1080/00032719.2015.1135931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Down-Regulation of Donor Kupffer Cell B7 Expression Reduced Recipient Lymphocyte Activation and Secretion of Interleukin-2 In Vitro. Transplant Proc 2016; 47:2985-90. [PMID: 26707326 DOI: 10.1016/j.transproceed.2015.10.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/01/2015] [Accepted: 10/20/2015] [Indexed: 01/29/2023]
Abstract
BACKGROUND Kupffer cell (KC), a kind of important antigen-presenting cell in liver, play an important role in the process of acute rejection after liver transplantation. The aim of this study was to investigate effect of suppression of donor KC B7 expression on recipient lymphocyte activation and secretion of interleukin-2 (IL-2) in vitro. METHODS Liver ex vivo perfusion with collagenase IV and density-gradient centrifugation were used to isolate donor Lewis rat KCs. The interference fragments of the B7 molecule were designed to construct RNA interference vector pSilencer 3.1H1-Neo-B7 that was transfected into KCs of donor rat. Reverse-transcription polymerase chain reaction was used to detect the changes in the expression of B7 molecules in KCs. The transfected KCs were divided into 3 groups: A, control group; B, empty vector group; and C, RNA interference group. The lymphocytes of recipient Brown Norway (BN) rats were isolated and cocultured with the cells in the 3 groups. Enzyme-linked immunosorbent assay was used to detect the content of IL-2 in the culture supernate. Methylthiazolyl tetrazolium assay was used to detect the proliferation of lymphocytes. RESULTS The yield rate of KCs was 5 × 10(7), and the cell viability was >98%. RNA interference vector had been successfully constructed and identified by means of enzyme digestion and sequencing. The expression of B7 in KCs decreased by 22% after RNA interference (P < .01). After coculturing with lymphocytes of BN rats, compared with the control group, the decreased expression of B7 significantly inhibited the activation and proliferation of lymphocytes as well as the secretion of IL-2 by lymphocytes. The proliferation of lymphocytes in recipient BN rats decreased by 49% (P < .01), and the secretion of IL-2 in the culture supernate decreased by 67% (P < .01). CONCLUSIONS This study successfully constructed a B7 RNA interference vector, and applied it to assessing reduction of B7 expression in donor KCs. RNA interference significantly suppressed the activation of recipient T lymphocytes and secretion of IL-2 via the CD28/B7 costimulatory pathway and may induce immune tolerance in liver transplants.
Collapse
|
11
|
Yahuafai J, Asai T, Nakamura G, Fukuta T, Siripong P, Hyodo K, Ishihara H, Kikuchi H, Oku N. Suppression in mice of immunosurveillance against PEGylated liposomes by encapsulated doxorubicin. J Control Release 2014; 192:167-73. [PMID: 25041998 DOI: 10.1016/j.jconrel.2014.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/18/2014] [Accepted: 07/10/2014] [Indexed: 11/18/2022]
Abstract
PEGylated liposomes (PEG-lip) can escape from recognition by immune system and show a longer half-life in the blood than non-PEGylated liposomes. In this study, we investigated the influence of injected PEG-lip encapsulating doxorubicin (PEG-lip-DOX) on the biodistribution of subsequently injected PEG-lip in mice. PEG-lip-DOX, free doxorubicin or empty PEG-lip were initially injected into BALB/c mice via a tail vein, and 3days later [(3)H]-labeled PEG-lip ([(3)H] PEG-lip) were injected into these same mice. At 24h after the injection, the distribution of [(3)H] PEG-lip in the liver and spleen was significantly reduced in the PEG-lip-DOX group compared with that in the free doxorubicin or PEG-lip group. Consequently, the plasma concentration of [(3)H] PEG-lip was significantly elevated by the pretreatment with PEG-lip-DOX. Altered pharmacokinetics was observed at least until 72h after the injection of [(3)H] PEG-lip. The influence of the injected PEG-lip-DOX on the pharmacokinetics of the subsequently injected [(3)H] PEG-lip was clearly observed from 1 to 14days, and slightly observed on days 21 and 28, after the injection of the PEG-lip-DOX. Flow cytometric analysis showed that the number of liver Kupffer cells was significantly reduced after the treatment with PEG-lip-DOX. On the other hand, a similar alteration in the distribution of the subsequently injected [(3)H] PEG-lip was observed in immunodeficient mice such as BALB/c nu/nu and severe combined immunodeficiency (SCID) mice. These findings suggest that immune cells including liver Kupffer cells responsible for recognizing PEG-lip were selectively damaged by the encapsulated doxorubicin in PEG-lip injected initially, which damage led to prolongation of the half-life of subsequently injected [(3)H] PEG-lip in the blood.
Collapse
Affiliation(s)
- Jantana Yahuafai
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; Natural Products Research Section, Research Division, National Cancer Institute Thailand, 268/1 Rama 6, Rajthavee, Bangkok 10400, Thailand
| | - Tomohiro Asai
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Genki Nakamura
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tatsuya Fukuta
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Pongpun Siripong
- Natural Products Research Section, Research Division, National Cancer Institute Thailand, 268/1 Rama 6, Rajthavee, Bangkok 10400, Thailand
| | - Kenji Hyodo
- Global Formulation Research, Pharmaceutical Science & Technology Core Function Unit, Eisai Product Creation Systems, Eisai Co. Ltd., 5-1-3 Tokodai, Tsukuba 300-2635, Japan
| | - Hiroshi Ishihara
- Global Formulation Research, Pharmaceutical Science & Technology Core Function Unit, Eisai Product Creation Systems, Eisai Co. Ltd., 5-1-3 Tokodai, Tsukuba 300-2635, Japan
| | - Hiroshi Kikuchi
- Global Formulation Research, Pharmaceutical Science & Technology Core Function Unit, Eisai Product Creation Systems, Eisai Co. Ltd., 5-1-3 Tokodai, Tsukuba 300-2635, Japan
| | - Naoto Oku
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|