1
|
Maeda Y, Mitsuhara T, Takeda M, Okamoto M, Otsuka T, Hara T, Kuwabara M, Horie N. Repeated human cranial bone-derived mesenchymal stem cell transplantation improved electrophysiological recovery in a spinal cord injury rat model. Neurosci Lett 2025; 844:138031. [PMID: 39521116 DOI: 10.1016/j.neulet.2024.138031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Mesenchymal stem cell (MSC)-based therapy has been applied in several clinical trials of spinal cord injury (SCI). We have successfully established MSCs from human cranial bone and developed a longitudinal neuromonitoring technique for rodents. In addition to single transplantation, the potential of multiple transplantations has been suggested as a new therapeutic strategy. However, there are no reports on the electrophysiological effects of multiple MSC transplantations in SCI using transcranial electrical stimulation motor-evoked potentials (tcMEPs). Here, we aimed to elucidate the efficacy and mechanism of action of multiple MSC transplantations using tcMEPs. After establishing a weight-drop-induced SCI rat model, we performed repeated intravenous transplantation of human cranial bone-derived MSCs (hcMSCs) on days 1 and 3 post-SCI. Motor function and tcMEP recovery were evaluated 6 weeks post-transplantation. Tissue repair post-SCI was assessed using immunostaining for myelin and neurons in the injured posterior cord. Repeated hcMSC transplantation significantly improved motor function and electrophysiological recovery compared to single transplantation and control treatment. Repeated hcMSC transplantation promoted electrophysiological functional recovery by exerting a protective effect on the functional structure of pyramidal tract axons. Thus, acute-phase repeated transplantation could be a novel and effective therapeutic strategy for the clinical application of MSCs in SCI.
Collapse
Affiliation(s)
- Yuyo Maeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Takafumi Mitsuhara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masaaki Takeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Misaki Okamoto
- Division of Rehabilitation, Rehabilitation Reiwa Clinic Hiroshima, Hiroshima, Japan
| | - Takashi Otsuka
- Division of Rehabilitation, Rehabilitation Reiwa Clinic Hiroshima, Hiroshima, Japan
| | - Takeshi Hara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masashi Kuwabara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Shahani P, Mahadevan A, Mondal K, Waghmare G, Datta I. Repeat intramuscular transplantation of human dental pulp stromal cells is more effective in sustaining Schwann cell survival and myelination for functional recovery after onset of diabetic neuropathy. Cytotherapy 2023; 25:1200-1211. [PMID: 37642606 DOI: 10.1016/j.jcyt.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/30/2023] [Accepted: 07/30/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cell (MSC) therapy for diabetic neuropathy (DN) has been extensively researched in vitro and in pre-clinical studies; however, the clinical scenario thus far has been disappointing. Temporary recovery, a common feature of these studies, indicates that either the retention of transplanted cells deteriorates with time or recovery of supportive endogenous cells, such as bone marrow-derived MSCs (BM-MSCs), does not occur, requiring further replenishment. In DN, BM-MSCs are recognized mediators of Schwann cell regeneration, and we have earlier shown that they suffer impairment in the pre-neuropathy stage. In this study, we attempted to further elucidate the mechanisms of functional recovery by focusing on changes occurring at the cellular level in the sciatic nerve, in conjunction with the biodistribution and movement patterns of the transplanted cells, to define the interval between doses. METHOD & RESULTS We found that two doses of 1 × 106 dental pulp stromal cells (DPSCs) transplanted intramuscularly at an interval of 4 weeks effectively improved nerve conduction velocity (NCV) and restored motor coordination through improving sciatic nerve architecture, Schwann cell survival and myelination. Despite very minimal recovery of endogenous BM-MSCs, a temporary restoration of NCV and motor function was achieved with the first dose of DPSC transplantation. However, this did not persist, and a repeat dose was needed to consolidate functional improvement and rehabilitate the sciatic nerve architecture. CONCLUSION Thus, repeat intramuscular transplantation of DPSCs is more effective for maintenance of Schwann cell survival and myelination for functional recovery after onset of DN.
Collapse
Affiliation(s)
- Pradnya Shahani
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Kallolika Mondal
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Girish Waghmare
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| |
Collapse
|
3
|
Chen L, Zhang N, Huang Y, Zhang Q, Fang Y, Fu J, Yuan Y, Chen L, Chen X, Xu Z, Li Y, Izawa H, Xiang C. Multiple Dimensions of using Mesenchymal Stem Cells for Treating Liver Diseases: From Bench to Beside. Stem Cell Rev Rep 2023; 19:2192-2224. [PMID: 37498509 DOI: 10.1007/s12015-023-10583-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
Liver diseases impose a huge burden worldwide. Although hepatocyte transplantation has long been considered as a potential strategy for treating liver diseases, its clinical implementation has created some obvious limitations. As an alternative strategy, cell therapy, particularly mesenchymal stem cell (MSC) transplantation, is widely used in treating different liver diseases, including acute liver disease, acute-on-chronic liver failure, hepatitis B/C virus, autoimmune hepatitis, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, alcoholic liver disease, liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. Here, we summarize the status of MSC transplantation in treating liver diseases, focusing on the therapeutic mechanisms, including differentiation into hepatocyte-like cells, immunomodulating function with a variety of immune cells, paracrine effects via the secretion of various cytokines and extracellular vesicles, and facilitation of homing and engraftment. Some improved perspectives and current challenges are also addressed. In summary, MSCs have great potential in the treatment of liver diseases based on their multi-faceted characteristics, and more accurate mechanisms and novel therapeutic strategies stemming from MSCs will facilitate clinical practice.
Collapse
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yuqi Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Jiamin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Lu Chen
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Xin Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, People's Republic of China
| | - Zhenyu Xu
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Hiromi Izawa
- Jingugaien Woman Life Clinic, Jingu-Gaien 3-39-5 2F, Shibuya-Ku, Tokyo, Japan
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
4
|
Yu S, Zhu Z, Shen Q, Zhang R, Zhang J, Wu X, Zhao W, Wu X, Yu T, Zhang S, Li N, Hua J. Comparative analysis of porcine iPSCs derived from Sertoli cells and fibroblasts. J Cell Physiol 2022; 237:4531-4543. [DOI: 10.1002/jcp.30903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 09/20/2022] [Accepted: 10/03/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shuai Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology Northwest A&F University Yangling China
- College of Veterinary Medicine Yangzhou University Yangzhou China
| | - Zhenshuo Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology Northwest A&F University Yangling China
| | - Qiaoyan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology Northwest A&F University Yangling China
| | - Rui Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology Northwest A&F University Yangling China
| | - Juqing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology Northwest A&F University Yangling China
| | - Xiaolong Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology Northwest A&F University Yangling China
| | - Wenxu Zhao
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology Northwest A&F University Yangling China
| | - Xiaojie Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology Northwest A&F University Yangling China
| | - Taiyong Yu
- College of Animal Science and Technology Northwest A&F University Yangling China
| | - Shiqiang Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology Northwest A&F University Yangling China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology Northwest A&F University Yangling China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology Northwest A&F University Yangling China
| |
Collapse
|
5
|
Ma C, Han L, Wu J, Tang F, Deng Q, He T, Wu Z, Ma C, Huang W, Huang R, Pan G. MSCs cell fates in murine acute liver injury and chronic liver fibrosis induced by carbon tetrachloride. Drug Metab Dispos 2022; 50:DMD-AR-2022-000958. [PMID: 35882404 DOI: 10.1124/dmd.122.000958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) therapy has shown potential benefits in multiple diseases. However, their clinic performance is not as satisfactory as expected. This study aimed to provide an alternative explanation by comparing MSCs' fates in different liver diseases. The distribution and therapeutic effects of hMSCs were investigated in acute liver injury (ALI) and chronic liver fibrosis (CLF) mice models, respectively. The two models were induced by single or repeated injection of carbon tetrachloride (CCl4) separately. The increase of hMSCs exposure in the liver (AUCliver 0-72 h) were more significant in ALI than in CLF (177.1% vs. 96.2%). In the ALI model, the hMSCs exposures in the lung (AUClung 0-72 h) increased by nearly 50% while decreased by 60.7% in CLF. The efficacy satellite study indicated that hMSCs could significantly ameliorate liver injury in ALI, but its effects in CLF were limited. In the ALI, suppressed Natural Killer (NK) cell activities were observed, while NK cell activities were increased in CLF. The depletion of NK cells could increase hMSCs exposure in mice. For mice MSC (mMSCs), their cell fates in ALI were very similar to hMSCs in ALI: mMSCs' exposure in the liver and lung increased in ALI. In conclusion, our study revealed the distinct cell pharmacokinetic patterns of MSCs in ALI and CLF mice, which might be at least partially attributed to the different NK cell activities in the two liver diseases. This finding provided a novel insight into the varied MSCs' therapeutic efficacy in the clinic. Significance Statement Currently, there is little knowledge about the PK behavior of cell products like MSCs. This study was the first time investigating the influence of liver diseases on cell fates and efficacies of MSCs and the underneath rationale. The exposure was distinct between two representative liver disease models, which directly linked with the therapeutic performance that MSCs achieved. The difference could be attributed to the NK cells-mediated MSCs clearance.
Collapse
Affiliation(s)
- Chenhui Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences,University of Chinese Academy of Sciences, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Jiajun Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Feng Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences,University of Chinese Academy of Sciences, China
| | - Qiangqiang Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Ting He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences,School of Pharmaceutical Sciences, Nanjing Tech University, China
| | - Zhitao Wu
- Shanghai Institute of Materia Medica; Nanjing University of Chinese Medicine, China
| | - Chen Ma
- Shanghai Institute of Materia Medica, China
| | - Wei Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences,University of Chinese Academy of Sciences, China
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences,University of Chinese Academy of Sciences, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences,University of Chinese Academy of Sciences, China
| |
Collapse
|
6
|
Abo-Aziza FAM, Zaki AKA, Adel RM, Fotouh A. Amelioration of aflatoxin acute hepatitis rat model by bone marrow mesenchymal stem cells and their hepatogenic differentiation. Vet World 2022; 15:1347-1364. [PMID: 35765490 PMCID: PMC9210847 DOI: 10.14202/vetworld.2022.1347-1364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Bone marrow-derived mesenchymal stem cells (BM-MSCs) transplantation and their hepatogenic differentiated cells (HDCs) can be applied for liver injury repair by tissue grafting. Regenerative potentiality in liver cirrhosis models was widely investigated; however, immunomodulation and anti-inflammation in acute hepatitis remain unexplored. This study aimed to explore the immunomodulatory and evaluate twice intravenous (IV) or intrahepatic (IH) administration of either BM-MSCs or middle-stage HDCs on aflatoxin (AF) acute hepatitis rat model. Materials and Methods: BM-MSCs viability, phenotypes, and proliferation were evaluated. Hepatogenic differentiation, albumin, and mmmmmmmm-fetoprotein gene expression were assessed. AF acute hepatitis was induced in rats using AFB1 supplementation. The transplantation of BM-MSCs or their HDCs was done either by IV or IH route. Hepatic ultrasound was performed after 3-weeks of therapy. Cytokines profile (tumor necrosis factor-α [TNF-α], interleukin [IL]-4, and IL-10) was assessed. Hepatic bio-indices, serum, and hepatic antioxidant activity were evaluated, besides examining liver histological sections. Results: Acute AFB1 showed a significant increase in TNF-α (p<0.01), liver enzyme activities (p<0.05), as well as decrease in IL-4, IL-10, and antioxidant enzyme activities (p<0.05). Cytokines profile was ameliorated in groups treated with IV and IH BM-MCs, showed a negative correlation between IL-4 and TNF-α (p<0.05), and a positive correlation between IL-10 upregulation and TNF-α (p<0.01). In IV HDCs treated group, positive correlations between IL-4 and IL-10 downregulation and TNF-α were observed. However, in IH HDCs group, a significant positive correlation between IL-4 and IL-10 upregulation and TNF-α, were recorded (p<0.05). In addition, IV BM-MSCs and IH HDCs treatments significantly increased antioxidant enzymes activity (p<0.05). IV and IH BM-MSCs significantly ameliorated liver transaminase levels, whereas IH HDCs significantly ameliorated alanine aminotransferase activity and nitric oxide concentration (p<0.05). Conclusion: The administration routes of BM-MSCs did not demonstrate any significant difference; however, the IH route of HDCs showed significant amelioration from the IV route. On the other hand, it showed noticeable anti-inflammatory and immunomodulatory improvements in aflatoxicosis rats. Therefore, it can be concluded that acute hepatitis can be treated by a noninvasive IV route without the expense of hepatogenic differentiation. Further research using clinical trials that address several problems regarding engraftment and potentiation are needed to determine the optimal manipulation strategy as well as to achieve better long term effects.
Collapse
Affiliation(s)
- Faten A. M. Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Abdel Kader A. Zaki
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rana M. Adel
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed Fotouh
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| |
Collapse
|
7
|
New Perspectives to Improve Mesenchymal Stem Cell Therapies for Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms23052669. [PMID: 35269830 PMCID: PMC8910533 DOI: 10.3390/ijms23052669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. Many factors may contribute to the susceptibility of patients to this condition, making DILI a global medical problem that has an impact on public health and the pharmaceutical industry. The use of mesenchymal stem cells (MSCs) has been at the forefront of regenerative medicine therapies for many years, including MSCs for the treatment of liver diseases. However, there is currently a huge gap between these experimental approaches and their application in clinical practice. In this concise review, we focus on the pathophysiology of DILI and highlight new experimental approaches conceived to improve cell-based therapy by the in vitro preconditioning of MSCs and/or the use of cell-free products as treatment for this liver condition. Finally, we discuss the advantages of new approaches, but also the current challenges that must be addressed in order to develop safer and more effective procedures that will allow cell-based therapies to reach clinical practice, enhancing the quality of life and prolonging the survival time of patients with DILI.
Collapse
|
8
|
Huang YZ, Gou M, Da LC, Zhang WQ, Xie HQ. Mesenchymal Stem Cells for Chronic Wound Healing: Current Status of Preclinical and Clinical Studies. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:555-570. [PMID: 32242479 DOI: 10.1089/ten.teb.2019.0351] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Healing skin wounds with anatomic and functional integrity, especially under chronic pathological conditions, remain an enormous challenge. Due to their outstanding regenerative potential, mesenchymal stem cells (MSCs) have been explored in many studies to determine the healing ability for difficult-to-treat diseases. In this article, we review current animal studies and clinical trials of MSC-based therapy for chronic wounds, and discuss major challenges that confront future clinical applications. We found that a wealth of animal studies have revealed the versatile roles and the benefits of MSCs for chronic wound healing. MSC treatment results in enhanced angiogenesis, facilitated reepithelialization, improved granulation, and accelerated wound closure. There are some evidences of the transdifferentiation of MSCs into skin cells. However, the healing effect of MSCs depends primarily on their paracrine actions, which alleviate the harsh microenvironment of chronic wounds and regulate local cellular responses. Consistent with the findings of preclinical studies, some clinical trials have shown improved wound healing after transplantation of MSCs in chronic wounds, mainly lower extremity ulcers, pressure sores, and radiation burns. However, there are some limitations in these clinical trials, especially a small number of patients and imperfect methodology. Therefore, to better define the safety and efficiency of MSC-based wound therapy, large-scale controlled multicenter trials are needed in the future. In addition, to build a robust pool of clinical evidence, standardized protocols, especially the cultivation and quality control of MSCs, are recommended. Altogether, based on current data, MSC-based therapy represents a promising treatment option for chronic wounds. Impact statement Chronic wounds persist as a significant health care problem, particularly with increasing number of patients and the lack of efficient treatments. The main goal of this article is to provide an overview of current status of mesenchymal stem cell (MSC)-based therapy for chronic wounds. The roles of MSCs in skin wound healing, as revealed in a large number of animal studies, are detailed. A critical view is made on the clinical application of MSCs for lower extremity ulcers, pressure sores, and radiation burns. Main challenges that confront future clinical applications are discussed, which hopefully contribute to innovations in MSC-based wound treatment.
Collapse
Affiliation(s)
- Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopaedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Min Gou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin-Cui Da
- Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wen-Qian Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopaedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopaedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Attenuation of frailty in older adults with mesenchymal stem cells. Mech Ageing Dev 2019; 181:47-58. [DOI: 10.1016/j.mad.2019.111120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 01/13/2023]
|
10
|
Hu C, Zhao L, Duan J, Li L. Strategies to improve the efficiency of mesenchymal stem cell transplantation for reversal of liver fibrosis. J Cell Mol Med 2019; 23:1657-1670. [PMID: 30635966 PMCID: PMC6378173 DOI: 10.1111/jcmm.14115] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
End‐stage liver fibrosis frequently progresses to portal vein thrombosis, formation of oesophageal varices, hepatic encephalopathy, ascites, hepatocellular carcinoma and liver failure. Mesenchymal stem cells (MSCs), when transplanted in vivo, migrate into fibrogenic livers and then differentiate into hepatocyte‐like cells or fuse with hepatocytes to protect liver function. Moreover, they can produce various growth factors and cytokines with anti‐inflammatory effects to reverse the fibrotic state of the liver. In addition, only a small number of MSCs migrate to the injured tissue after cell transplantation; consequently, multiple studies have investigated effective strategies to improve the survival rate and activity of MSCs for the treatment of liver fibrosis. In this review, we intend to arrange and analyse the current evidence related to MSC transplantation in liver fibrosis, to summarize the detailed mechanisms of MSC transplantation for the reversal of liver fibrosis and to discuss new strategies for this treatment. Finally, and most importantly, we will identify the current problems with MSC‐based therapies to repair liver fibrosis that must be addressed in order to develop safer and more effective routes for MSC transplantation. In this way, it will soon be possible to significantly improve the therapeutic effects of MSC transplantation for liver regeneration, as well as enhance the quality of life and prolong the survival time of patients with liver fibrosis.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Lingfei Zhao
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, PR China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Jinfeng Duan
- The Key Laboratory of Mental Disorder Management of Zhejiang Province, Department of Psychiatry, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
11
|
Yang C, Wang G, Ma F, Yu B, Chen F, Yang J, Feng J, Wang Q. Repeated injections of human umbilical cord blood-derived mesenchymal stem cells significantly promotes functional recovery in rabbits with spinal cord injury of two noncontinuous segments. Stem Cell Res Ther 2018; 9:136. [PMID: 29751769 PMCID: PMC5948759 DOI: 10.1186/s13287-018-0879-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/08/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
Background Spinal cord injuries (SCIs) are sustained by an increasing number of patients each year worldwide. The treatment of SCIs has long been a hard nut to crack for doctors around the world. Mesenchymal stem cells (MSCs) have shown benefits for the repair of SCI and recovery of function. Our present study aims to investigate the effects of intravenously infused human umbilical cord blood-derived MSCs (hUCB-MSCs) on functional recovery after subacute spinal cord compression injury of two noncontinuous segments. In addition, we compared the effects of single infusion and repeated intravenous (i.v.) injections on the recovery of spinal cord function. Methods A total of 43 adult rabbits were randomly divided into four groups: control, single injection (SI), repeated injection at a 3-day (3RI) or repeated injection at a 7-day interval (7RI) groups. Non-immunosuppressed rabbits in the transplantation groups were infused with either a single complete dose or three divided doses of 2 × 106 hUCB-MSCs (3-day or 7-day intervals) on the first day post decompression. Behavioural scores and somatosensory evoked potentials (SEPs) were used to evaluate hindlimb functional recovery. The survival and differentiation of the transplanted human cells and the activation of the host glial and inflammatory reaction in the injured spinal cord were studied by immunohistochemical staining. Results Our results showed that hUCB-MSCs survived, proliferated, and primarily differentiated into oligodendrocytes in the injured area. Treatment with hUCB-MSCs reduced the extent of astrocytic activation, increased axonal preservation, potentially promoted axonal regeneration, decreased the number of Iba-1+ and TUNEL+ cells, increased the amplitude and decreased the onset latency of SEPs and significantly promoted functional improvement. However, these effects were more pronounced in the 3RI group compared with the SI and 7RI groups. Conclusions Our results suggest that treatment with i.v. injected hUCB-MSCs after subacute spinal cord compression injury of two noncontinuous segments can promote functional recovery through the differentiation of hUCB-MSCs into specific cell types and the enhancement of anti-inflammatory, anti-astrogliosis, anti-apoptotic and axonal preservation effects. Furthermore, the recovery was more pronounced in the rabbits repeatedly injected with cells at 3-day intervals. The results of this study may provide a novel and useful treatment strategy for the transplantation treatment of SCI. Electronic supplementary material The online version of this article (10.1186/s13287-018-0879-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chaohua Yang
- Department of Spine Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang Area, Luzhou, 646000, Sichuan, China
| | - Gaoju Wang
- Department of Spine Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang Area, Luzhou, 646000, Sichuan, China
| | - Fenfen Ma
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Baoqing Yu
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China
| | - Fancheng Chen
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China
| | - Jin Yang
- Department of Spine Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang Area, Luzhou, 646000, Sichuan, China
| | - Jianjun Feng
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China.
| | - Qing Wang
- Department of Spine Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang Area, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
12
|
Haldar D, Henderson NC, Hirschfield G, Newsome PN. Mesenchymal stromal cells and liver fibrosis: a complicated relationship. FASEB J 2016; 30:3905-3928. [DOI: 10.1096/fj.201600433r] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Debashis Haldar
- National Institute for Health ResearchBirmingham Liver Biomedical Research Unit and Centre for Liver Research University of Birmingham Birmingham United Kingdom
- Liver UnitUniversity Hospital Birmingham National Health Service (NHS) Foundation Trust Birmingham United Kingdom
| | - Neil C. Henderson
- Medical Research Council (MRC) Centre for Inflammation ResearchQueens Medical Research Institute University of Edinburgh Edinburgh United Kingdom
| | - Gideon Hirschfield
- National Institute for Health ResearchBirmingham Liver Biomedical Research Unit and Centre for Liver Research University of Birmingham Birmingham United Kingdom
- Liver UnitUniversity Hospital Birmingham National Health Service (NHS) Foundation Trust Birmingham United Kingdom
| | - Philip N. Newsome
- National Institute for Health ResearchBirmingham Liver Biomedical Research Unit and Centre for Liver Research University of Birmingham Birmingham United Kingdom
- Liver UnitUniversity Hospital Birmingham National Health Service (NHS) Foundation Trust Birmingham United Kingdom
| |
Collapse
|
13
|
Hirata M, Ishigami M, Matsushita Y, Ito T, Hattori H, Hibi H, Goto H, Ueda M, Yamamoto A. Multifaceted Therapeutic Benefits of Factors Derived From Dental Pulp Stem Cells for Mouse Liver Fibrosis. Stem Cells Transl Med 2016; 5:1416-1424. [PMID: 27280796 DOI: 10.5966/sctm.2015-0353] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/10/2016] [Indexed: 02/07/2023] Open
Abstract
: Chronic liver injury from various causes often results in liver fibrosis (LF). Although the liver possesses endogenous tissue-repairing activities, these can be overcome by sustained inflammation and excessive fibrotic scar formation. Advanced LF leads to irreversible cirrhosis and subsequent liver failure and/or hepatic cancer. Here, using the mouse carbon tetrachloride (CCl4)-induced LF model, we showed that a single intravenous administration of stem cells derived from human exfoliated deciduous teeth (SHEDs) or of SHED-derived serum-free conditioned medium (SHED-CM) resulted in fibrotic scar resolution. SHED-CM suppressed the gene expression of proinflammatory mediators, such as TNF-α, IL-1β, and iNOS, and eliminated activated hepatic stellate cells by inducing their apoptosis, but protected parenchymal hepatocytes from undergoing apoptosis. In addition, SHED-CM induced tissue-repairing macrophages that expressed high levels of the profibrinolytic factor, matrix metalloproteinase 13. Furthermore, SHED-CM suppressed the CCl4-induced apoptosis of primary cultured hepatocytes. SHED-CM contained a high level of hepatocyte growth factor (HGF). Notably, HGF-depleted SHED-CM (dHGF-CM) did not suppress the proinflammatory response or resolve fibrotic scarring. Furthermore, SHED-CM, but not dHGF-CM, inhibited CCl4-induced hepatocyte apoptosis. These results suggest that HGF plays a central role in the SHED-CM-mediated resolution of LF. Taken together, our findings suggest that SHED-CM provides multifaceted therapeutic benefits for the treatment of LF. SIGNIFICANCE This study demonstrated that a single intravenous administration of stem cells from human exfoliated deciduous teeth (SHEDs) or of the serum-free conditioned medium (CM) derived from SHEDs markedly improved mouse liver fibrosis (LF). SHED-CM suppressed chronic inflammation, eliminated activated hepatic stellate cells by inducing their apoptosis, protected hepatocytes from undergoing apoptosis, and induced differentiation of tissue-repairing macrophages expressing high levels of the profibrinolytic factor matrix metalloproteinase 13. Furthermore, hepatocyte growth factor played a central role in the SHED-CM-mediated resolution of LF. This is the first report demonstrating the multifaceted therapeutic benefits of secreted factors derived from SHEDs for LF.
Collapse
Affiliation(s)
- Marina Hirata
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Matsushita
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hisashi Hattori
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidemi Goto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Minoru Ueda
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihito Yamamoto
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Vandenberghe A, Broeckx SY, Beerts C, Seys B, Zimmerman M, Verweire I, Suls M, Spaas JH. Tenogenically Induced Allogeneic Mesenchymal Stem Cells for the Treatment of Proximal Suspensory Ligament Desmitis in a Horse. Front Vet Sci 2015; 2:49. [PMID: 26664976 PMCID: PMC4672201 DOI: 10.3389/fvets.2015.00049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/09/2015] [Indexed: 12/13/2022] Open
Abstract
Suspensory ligament injuries are a common injury in sport horses, especially in competing dressage horses. Because of the poor healing of chronic recalcitrant tendon injuries, this represents a major problem in the rehabilitation of sport horses and often compromises the return to the initial performance level. Stem cells are considered as a novel treatment for different pathologies in horses and humans. Autologous mesenchymal stem cells (MSCs) are well known for their use in the treatment of tendinopathies; however, recent studies report a safe use of allogeneic MSCs for different orthopedic applications in horses. Moreover, it has been reported that pre-differentiation of MSCs prior to injection might result in improved clinical outcomes. For all these reasons, the present case report describes the use of allogeneic tenogenically induced peripheral blood-derived MSCs for the treatment of a proximal suspensory ligament injury. During conservative management for 4 months, the horse demonstrated no improvement of a right front lameness with a Grade 2/5 on the American Association of Equine Practitioners (AAEP) scale and a clear hypo-echoic area detectable in 30% of the cross sectional area. From 4 weeks after treatment, the lameness reduced to an AAEP Grade 1/5 and a clear filling of the lesion could be noticed on ultrasound. At 12 weeks (T4) after the first injection, a second intralesional injection with allogeneic tenogenically induced MSCs and platelet-rich plasma was given and at 4 weeks after the second injection (T5), the horse trotted sound under all circumstances with a close to total fiber alignment. The horse went back to previous performance level at 32 weeks after the first regenerative therapy and is currently still doing so (i.e., 20 weeks later or 1 year after the first stem cell treatment). In conclusion, the present case report demonstrated a positive evolution of proximal suspensory ligament desmitis after treatment with allogeneic tenogenically induced MSCs.
Collapse
Affiliation(s)
- Aurélie Vandenberghe
- Global Stem Cell Technology, ANACURA Group , Evergem , Belgium ; Equine Veterinary Pratice Dr. Suls , Nederweert , Netherlands
| | - Sarah Y Broeckx
- Global Stem Cell Technology, ANACURA Group , Evergem , Belgium
| | | | - Bert Seys
- Equine Veterinary Pratice Dr. Suls , Nederweert , Netherlands
| | | | - Ineke Verweire
- Global Stem Cell Technology, ANACURA Group , Evergem , Belgium
| | - Marc Suls
- Equine Veterinary Pratice Dr. Suls , Nederweert , Netherlands
| | - Jan H Spaas
- Global Stem Cell Technology, ANACURA Group , Evergem , Belgium
| |
Collapse
|
15
|
Li J, Peng X, Zeng X, Liu B, Hao Q, Yu X, Zhu L, Hu Q. Estrogen Secreted by Mesenchymal Stem Cells Necessarily Determines Their Feasibility of Therapeutical Application. Sci Rep 2015; 5:15286. [PMID: 26478095 PMCID: PMC5389885 DOI: 10.1038/srep15286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells are therapeutically applicable and involved in the development of some types of diseases including estrogen (E2)-related ones. Little is known about E2 secretion by mesenchymal stem cells and its potential influence on their therapeutical applications. Our in vitro experiments showed that BMSCs cultured from C57BL/6J mice secreted E2 in a time-dependent manner. In vivo study identified a significantly increased E2 level in serum after a single administration of BMSCs, and a sustained elevation of E2 level upon a repetitive administration. Morris water maze test in the ovariectomised (OVX) mouse model revealed BMSCs transplantation ameliorated OVX-induced memory deficits by secreted E2. On the contrary, in endometriosis model, BMSCs transplantation aggravated endometriotic lesions because of E2 secretion. Mechanistically, the aromatase cytochrome P450 appeared to be critical for the biosynthesis and exerted effects of estrogen secretion by BMSCs. Our findings suggested that BMSCs transplantation is on the one hand an attractive option for the therapeutic treatment of diseases associated with E2 deficits in part through E2 secretion, on the other hand a detrimental factor for the E2-exasperated diseases largely via E2 production. It is important and necessary to monitor serum E2 level before and after the initiation of BMSCs therapy.
Collapse
Affiliation(s)
- Jiansha Li
- Key Laboratory of Pulmonary Diseases of Ministry of Health and Department of Pathophysiology, School of Basic Medicine
- Department of Pathology, Tongji Hospital; Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, People’s Republic of China
| | - Xiaochun Peng
- Key Laboratory of Pulmonary Diseases of Ministry of Health and Department of Pathophysiology, School of Basic Medicine
| | - Xianqin Zeng
- Key Laboratory of Pulmonary Diseases of Ministry of Health and Department of Pathophysiology, School of Basic Medicine
| | - Bingxun Liu
- Key Laboratory of Pulmonary Diseases of Ministry of Health and Department of Pathophysiology, School of Basic Medicine
| | - Qiang Hao
- Key Laboratory of Pulmonary Diseases of Ministry of Health and Department of Pathophysiology, School of Basic Medicine
| | - Xiangyuan Yu
- Key Laboratory of Pulmonary Diseases of Ministry of Health and Department of Pathophysiology, School of Basic Medicine
| | - Liping Zhu
- Key Laboratory of Pulmonary Diseases of Ministry of Health and Department of Pathophysiology, School of Basic Medicine
| | - Qinghua Hu
- Key Laboratory of Pulmonary Diseases of Ministry of Health and Department of Pathophysiology, School of Basic Medicine
| |
Collapse
|
16
|
Tissue Engineering and Regenerative Medicine in Iran: Current State of Research and Future Outlook. Mol Biotechnol 2015; 57:589-605. [DOI: 10.1007/s12033-015-9865-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Zhou Y, Chen JY. Progress in research of hepatic stem cells. Shijie Huaren Xiaohua Zazhi 2015; 23:64-70. [DOI: 10.11569/wcjd.v23.i1.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver disease is a rising cause of mortality and morbidity, and treatment options remain limited. Liver transplantation is curative but limited by donor organ availability, operative risk and long-term complications. There is currently a clear need for new therapies for liver disease, and it is possible that hepatic stem cell (HSC) therapy represents an exciting new therapeutic option. HSCs are undifferentiated cells with the unique ability to self-renew and potentially provide a source of human hepatocytes for regeneration of the injured liver. Evidence from pre-clinical studies is encouraging, but conclusive evidence that this translates into humans remains lacking. Further studies of the mechanisms responsible for the beneficial effects of HSC therapy are needed.
Collapse
|
18
|
Fiore EJ, Bayo JM, Garcia MG, Malvicini M, Lloyd R, Piccioni F, Rizzo M, Peixoto E, Sola MB, Atorrasagasti C, Alaniz L, Camilletti MA, Enguita M, Prieto J, Aquino JB, Mazzolini G. Mesenchymal stromal cells engineered to produce IGF-I by recombinant adenovirus ameliorate liver fibrosis in mice. Stem Cells Dev 2014; 24:791-801. [PMID: 25315017 DOI: 10.1089/scd.2014.0174] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Liver cirrhosis involves chronic wound healing and fibrotic processes. Mesenchymal stromal cells (MSCs) are multipotent adult progenitor cells that are used as vehicles of therapeutic genes. Insulin growth factor like-I (IGF-I) was shown to counteract liver fibrosis. We aimed at analyzing the effect of applying IGF-I overexpressing mouse bone marrow-derived MSCs on hepatic fibrosis. Fibrosis was induced by chronic thioacetamide application or bile duct ligation. MSCs engineered to produce green fluorescent protein (GFP) (AdGFP-MSCs) or IGF-I (AdIGF-I-MSCs) were applied systemically, and changes in collagen deposition and in the expression of key pro-fibrogenic and pro-regenerative genes/proteins were assessed. In addition, immunogenicity of transduced cells was analyzed. Liver fibrosis was further ameliorated after a single-dose application of AdIGF-I-MSCs when compared with AdGFP-MSCs and/or recombinant IGF-I treatments. Interestingly, an early and transitory upregulation in IGF-I and hepatocyte growth factor (HGF) mRNA expression was found in the liver of MSC-treated animals, which was more pronounced in AdIGF-I-MSCs condition. A reduction in hepatic stellate cell activation status was found after incubation with MSCs conditioned media. In addition, the AdIGF-I-MSCs cell-free supernatant induced the expression of IGF-I and HGF in primary cultured hepatocytes. From day 1 after transplantation, the proliferation marker proliferating cell nuclear antigen was upregulated in the liver of AdIGF-I-MSCs group, mainly in hepatocytes. MSCs were in vivo traced till day 14 after injection. In addition, multiple doses of Ad-IGF-I-MSCs likely suppressed antiviral immune response and it further reduced collagen deposition. Our results uncover early events that are likely involved in the anti-fibrogenic effect of genetically modified MSCs and overall would support the use of AdIGF-I-MSCs in treatment of liver fibrosis.
Collapse
Affiliation(s)
- Esteban J Fiore
- 1 Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral , Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Aali E, Mirzamohammadi S, Ghaznavi H, Madjd Z, Larijani B, Rayegan S, Sharifi AM. A comparative study of mesenchymal stem cell transplantation with its paracrine effect on control of hyperglycemia in type 1 diabetic rats. J Diabetes Metab Disord 2014; 13:76. [PMID: 25688339 PMCID: PMC4329572 DOI: 10.1186/2251-6581-13-76] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/22/2014] [Indexed: 12/13/2022]
Abstract
Background Many studies suggested mesenchymal stem cells (MSCs) transplantation as a new approach to control hyperglycemia in type 1 diabetes mellitus through differentiation mechanism. In contrary others believed that therapeutic properties of MSCs is depends on paracrine mechanisms even if they were not engrafted. This study aimed to compare these two approaches in control of hyperglycemia in STZ-induced diabetic rats. Methods Animals were divided into five groups: normal; diabetic control; diabetic received MSCs; diabetic received supernatant of MSCs; diabetic received co-administration of MSCs with supernatant. Blood glucose, insulin levels and body weight of animals were monitored during experiment. Immunohistochemical and immunofluorescence analysis were performed to monitor functionality and migration of labeled-MSCs to pancreas. Results First administration of MSCs within the first 3 weeks could not reduce blood glucose, but second administration significantly reduced blood glucose after week four compared to diabetic controls. Daily injection of supernatant could not reduce blood glucose as efficient as MSCs. Interestingly; Co-administration of MSCs with supernatant significantly reduced blood glucose more than other treated groups. Insulin levels and body weight were significantly increased in MSCs + supernatant-treated animals compared to other groups. Immunohistological analysis showed an increase in number and size of islets per section respectively in supernatant, MSCs and MSCs + supernatant-treated groups. Conclusion Present study exhibited that repeated-injection of MSCs reduced blood glucose and increased serum insulin levels in recipient rats. Injection of supernatant could not reverse hyperglycemia as efficient as MSCs. Interestingly; co-administration of MSCs with supernatant could reverse hyperglycemia more than either group alone.
Collapse
Affiliation(s)
- Ehsan Aali
- Razi Drug Research Center and Department of Pharmacology, Iran University of Medical Sciences, Tehran, Iran
| | - Solmaz Mirzamohammadi
- Razi Drug Research Center and Department of Pharmacology, Iran University of Medical Sciences, Tehran, Iran
| | - Habib Ghaznavi
- Razi Drug Research Center and Department of Pharmacology, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center and Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrine and Metabolism Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Rayegan
- Razi Drug Research Center and Department of Pharmacology, Iran University of Medical Sciences, Tehran, Iran
| | - Ali M Sharifi
- Razi Drug Research Center and Department of Pharmacology, Iran University of Medical Sciences, Tehran, Iran ; Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran ; Endocrine and Metabolism Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Abstract
Liver disease is a rising cause of mortality and morbidity, and treatment options remain limited. Liver transplantation is curative but limited by donor organ availability, operative risk and long-term complications. The contribution of bone marrow (BM)-derived stem cells to tissue regeneration has been recognised and there is considerable interest in the potential benefits of BM stem cells in patients with liver disease. In chronic liver disease, deposition of fibrous scar tissue inhibits hepatocyte proliferation and leads to portal hypertension. Although initial reports had suggested transdifferentiation of stem cells into hepatocytes, the beneficial effects of BM stem cells are more likely derived from the ability to breakdown scar tissue and stimulate hepatocyte proliferation. Studies in animal models have yielded promising results, although the exact mechanisms and cell type responsible have yet to be determined. Small-scale clinical studies have quickly followed and, although primarily designed to examine safety and feasibility of this approach, have reported improvements in liver function in treated patients. Well-designed, controlled studies are required to fully determine the benefits of BM stem cell therapy.
Collapse
Affiliation(s)
- Andrew King
- NIHR Liver Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, UK
| | | |
Collapse
|