1
|
Tian Y, Wang X, Sun Y, Xiong X, Zeng W, Yang K, Zhao H, Deng Y, Song D. NPTX1 Mediates the Facilitating Effects of Hypoxia-Stimulated Human Adipocytes on Adipose-Derived Stem Cell Activation and Autologous Adipose Graft Survival Rate. Aesthetic Plast Surg 2024; 48:4203-4216. [PMID: 38789811 DOI: 10.1007/s00266-024-04118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Autologous adipose tissue is an ideal material for soft tissue filling and transplantation; however, high volumes of fat absorption over time lead to a relatively low overall survival percentage. The survival and differentiation of adipose-derived stem cells (ADSCs) in the transplanted microenvironment might improve adipose graft survival. Adipocytes have been reported to affect ADSC activation. However, its underlying mechanisms remain unclear. METHODS Human ADSCs were incubated in a culture medium supplemented with hypoxic or normoxic conditioned culture medium (CM) derived from human adipocytes. Neuronal Pentraxin 1 (NPTX1) was overexpressed or knocked down in human adipocytes using an overexpression vector (NPTX1 OE) or small interfering RNA (siRNA) transfection, respectively. ADSC differentiation and paracrine secretion were assessed. Nude mice were implanted with human adipocytes and ADSCs. The adipose tissue was subsequently evaluated by histological analysis. RESULTS CM from hypoxic-stimulated human adipocytes significantly facilitated the differentiation ability and paracrine levels of ADSCs. NPTX1 was significantly up-regulated in human adipocytes exposed to hypoxic conditions. In vitro, CM derived from hypoxia-stimulated human adipocytes or NPTX1-overexpressing human adipocytes exposed to normoxia promoted ADSC differentiation and paracrine; after silencing NPTX1, the facilitating effects of hypoxia-treated human adipocytes on ADSC activation were eliminated. Similarly, in vivo, the NPTX1 OE + normoxia-CM group saw improved histological morphology and fat integrity, less fibrosis and inflammation, and increased vessel numbers compared with the OE NC + normoxia-CM group; the adipocyte grafts of the si-NC + hypoxia-CM group yielded the most improved histological morphology, fat integrity, and the most vessel numbers. However, these enhancements of ADSC activation and adipose graft survival were partially abolished by NPTX1 knockdown in human adipocytes. CONCLUSION NPTX1 might mediate the facilitating effects of hypoxia-stimulated human adipocytes on ADSC activation, thereby improving adipose tissue survival rate after autologous fat transplantation and the effectiveness of autologous fat transplantation through promoting ADSC activation. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Yi Tian
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiancheng Wang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Yang Sun
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiang Xiong
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Weiliang Zeng
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Kai Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hongli Zhao
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yiwen Deng
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Dandan Song
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| |
Collapse
|
2
|
Jin D, Dai Z, Zhao L, Ma T, Ma Y, Zhang Z. CYR61 is Involved in Neonatal Hypoxic-ischemic Brain Damage Via Modulating Astrocyte-mediated Neuroinflammation. Neuroscience 2024; 552:54-64. [PMID: 38908506 DOI: 10.1016/j.neuroscience.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/24/2024]
Abstract
The activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in astrocytes has been found in the hypoxic-ischemic brain damage (HIBD) model. Cysteine rich angiogenic inducer 61 (CYR61) is secreted by reactive astrocytes. However, the effects of CYR61 on HIBD and its related mechanisms remain unclear. This study sought to explore the role of CYR61 in the activation of astrocytes and the NLRP3 inflammasome in neonatal HIBD. HIBD models were established in 7-day Sprague-Dawley rat pups. Neurobehavioral evaluation and 2,3,5-triphenyl-tetrazolium chloride staining were performed. In addition, rat primary astrocytes were used to establish the cell model of HIBD in vitro by oxygen-glucose deprivation/reperfusion (OGD/R). Then, CYR61-overexpression and sh-CYR61 viruses mediated by lentivirus were transduced into ODG/R-treated primary astrocytes. The expressions of related genes were evaluated using real-time quantitative PCR, western blot, immunofluorescence staining, and Enzyme-linked immunosorbent assay. The results showed that hypoxia-ischemia induced short-term neurological deficits, neuronal damage, and cerebral infarction in neonatal rats. In vivo, the expressions of CYR61, NLRP3, and glial fibrillary acidic protein (GFAP) were up-regulated in the HIBD model. In vitro, CYR61 exhibited high expression. CYR61 overexpression increased the expressions of GFAP and C3, whereas decreased S100A10 expression. CYR61 overexpression increased the expression of NLRP3, ASC, caspase-1 p20 and IL-1β. CYR61 overexpression activated NF-κB by promoting the phosphorylation of IκBα and p65. Thus, CYR61 is involved in neonatal HIBD progress, which may be related to the activation of astrocytes, the NLRP3 inflammasome, and the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Dongmei Jin
- Department of Neonatology, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.
| | - Zhushan Dai
- Department of Neonatology, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Lili Zhao
- Department of Neonatology, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Tongyao Ma
- Department of Neonatology, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yanru Ma
- Department of Neonatology, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Zhongxu Zhang
- Department of Oncology, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
3
|
Choi JW, Lim S, Jung SE, Jeong S, Moon H, Song BW, Kim IK, Lee S, Hwang KC, Kim SW. Enhanced Osteocyte Differentiation: Cathepsin D and L Secretion by Human Adipose-Derived Mesenchymal Stem Cells. Cells 2023; 12:2852. [PMID: 38132172 PMCID: PMC10742070 DOI: 10.3390/cells12242852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) have the potential to differentiate into bone, cartilage, fat, and neural cells and promote tissue regeneration and healing. It is known that they can have variable responses to hypoxic conditions. In the present study, we aimed to explore diverse changes in the cells and secretome of ASCs under a hypoxic environment over time and to present the possibility of ASCs as therapeutic agents from a different perspective. The expression differences of proteins between normoxic and hypoxic conditions (6, 12, or 24 h) were specifically investigated in human ASCs using 2-DE combined with MALDI-TOF MS analysis, and secreted proteins in ASC-derived conditioned media (ASC-derived CM) were examined by an adipokine array. In addition, genetic and/or proteomic interactions were assessed using a DAVID and miRNet functional annotation bioinformatics analysis. We found that 64 and 5 proteins were differentially expressed in hypoxic ASCs and in hypoxic ASC-derived CM, respectively. Moreover, 7 proteins among the 64 markedly changed spots in hypoxic ASCs were associated with bone-related diseases. We found that two proteins, cathepsin D (CTSD) and cathepsin L (CTSL), identified through an adipokine array independently exhibited significant efficacy in promoting osteocyte differentiation in bone-marrow-derived mesenchymal stem cells (BM-MSCs). This finding introduces a promising avenue for utilizing hypoxia-preconditioned ASC-derived CM as a potential therapeutic approach for bone-related diseases.
Collapse
Affiliation(s)
- Jung-Won Choi
- Medical Science Research Institute, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (J.-W.C.); (S.E.J.)
| | - Soyeon Lim
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Seung Eun Jung
- Medical Science Research Institute, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (J.-W.C.); (S.E.J.)
| | - Seongtae Jeong
- The Interdisciplinary Graduate Program in Integrative Biotechnology, Yonsei University, Seoul 03722, Republic of Korea;
| | - Hanbyeol Moon
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul 03722, Republic of Korea;
| | - Byeong-Wook Song
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Il-Kwon Kim
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Seahyoung Lee
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Ki-Chul Hwang
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Sang Woo Kim
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| |
Collapse
|
4
|
Bouche Djatche WH, Zhu H, Ma W, Li Y, Li Z, Zhao H, Liu Z, Qiao H. Potential of mesenchymal stem cell-derived conditioned medium/secretome as a therapeutic option for ocular diseases. Regen Med 2023; 18:795-807. [PMID: 37702008 DOI: 10.2217/rme-2023-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Research has shown that the therapeutic effect of mesenchymal stem cells (MSCs) is partially due to its secreted factors as opposed to the implantation of the cells into the treated tissue or tissue replacement. MSC secretome, especially in the form of conditioned medium (MSC-CM) is now being explored as an alternative to MSCs transplantation. Despite the observed benefits of MSC-CM, only a few clinical trials have evaluated it and other secretome components in the treatment of eye diseases. This review provides insight into the potential therapeutic use of MSC-CM in eye conditions, such as corneal diseases, dry eye, glaucoma, retinal diseases and uveitis. We discuss the current evidence, some limitations, and the progress that remains to be achieved before clinical translation becomes possible.
Collapse
Affiliation(s)
| | - Huimin Zhu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Wenlei Ma
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Yue Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Ziang Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Hong Zhao
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhizhen Liu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Hua Qiao
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
5
|
Jin Y, Zhao W, Yang M, Fang W, Gao G, Wang Y, Fu Q. Cell-Based Therapy for Urethral Regeneration: A Narrative Review and Future Perspectives. Biomedicines 2023; 11:2366. [PMID: 37760808 PMCID: PMC10525510 DOI: 10.3390/biomedicines11092366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/29/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Urethral stricture is a common urological disease that seriously affects quality of life. Urethroplasty with grafts is the primary treatment, but the autografts used in clinical practice have unavoidable disadvantages, which have contributed to the development of urethral tissue engineering. Using various types of seed cells in combination with biomaterials to construct a tissue-engineered urethra provides a new treatment method to repair long-segment urethral strictures. To date, various cell types have been explored and applied in the field of urethral regeneration. However, no optimal strategy for the source, selection, and application conditions of the cells is available. This review systematically summarizes the use of various cell types in urethral regeneration and their characteristics in recent years and discusses possible future directions of cell-based therapies.
Collapse
Affiliation(s)
- Yangwang Jin
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC 27157, USA
| | - Ming Yang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Wenzhuo Fang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China; (Y.J.)
| |
Collapse
|
6
|
Fuchs B, Birt A, Moellhoff N, Kuhlmann C, Giunta RE, Wiggenhauser PS. Adipose-Derived Stem Cells Improve Angiogenesis and Lymphangiogenesis in a Hypoxic Dermal Regeneration Model In Vitro. Medicina (B Aires) 2023; 59:medicina59040706. [PMID: 37109664 PMCID: PMC10142758 DOI: 10.3390/medicina59040706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Background and Objectives: Impaired wound healing represents an unsolved medical issue with a high impact on patients’ quality of life and global health care. Even though hypoxia is a significant limiting factor for wound healing, it reveals stimulating effects in gene and protein expression at cellular levels. In particular, hypoxically treated human adipose tissue-derived stem cells (ASCs) have previously been used to stimulate tissue regeneration. Therefore, we hypothesized that they could promote lymphangiogenesis or angiogenesis. Materials and Methods: Dermal regeneration matrices were seeded with human umbilical vein endothelial cells (HUVECs) or human dermal lymphatic endothelial cells (LECs) that were merged with ASCs. Cultures were maintained for 24 h and 7 days under normoxic or hypoxic conditions. Finally, gene and protein expression were measured regarding subtypes of VEGF, corresponding receptors, and intracellular signaling pathways, especially hypoxia-inducible factor-mediated pathways using multiplex-RT-qPCR and ELISA assays. Results: All cell types reacted to hypoxia with an alteration of gene expression. In particular, vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor B (VEGFB), vascular endothelial growth factor C (VEGFC), vascular endothelial growth factor receptor 1 (VEGFR1/FLT1), vascular endothelial growth factor receptor 2 (VEGFR2/KDR), vascular endothelial growth factor receptor 3 (VEGFR3/FLT4), and prospero homeobox 1 (PROX1) were overexpressed significantly depending on upregulation of hypoxia-inducible factor 1 alpha (HIF-1a). Moreover, co-cultures with ASCs showed a more intense change in gene and protein expression profiles and gained enhanced angiogenic and lymphangiogenic potential. In particular, long-term hypoxia led to continuous stimulation of HUVECs by ASCs. Conclusions: Our findings demonstrated the benefit of hypoxic conditioned ASCs in dermal regeneration concerning angiogenesis and lymphangiogenesis. Even a short hypoxic treatment of 24 h led to the stimulation of LECs and HUVECs in an ASC-co-culture. Long-term hypoxia showed a continuous influence on gene expressions. Therefore, this work emphasizes the supporting effects of hypoxia-conditioned-ASC-loaded collagen scaffolds on wound healing in dermal regeneration.
Collapse
Affiliation(s)
- Benedikt Fuchs
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital Ludwig-Maximilians-Universität, Ziemssenstraße 5, 80336 Munich, Germany
| | - Alexandra Birt
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital Ludwig-Maximilians-Universität, Ziemssenstraße 5, 80336 Munich, Germany
| | - Nicholas Moellhoff
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital Ludwig-Maximilians-Universität, Ziemssenstraße 5, 80336 Munich, Germany
| | - Constanze Kuhlmann
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital Ludwig-Maximilians-Universität, Ziemssenstraße 5, 80336 Munich, Germany
| | - Riccardo E. Giunta
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital Ludwig-Maximilians-Universität, Ziemssenstraße 5, 80336 Munich, Germany
| | - Paul Severin Wiggenhauser
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital Ludwig-Maximilians-Universität, Ziemssenstraße 5, 80336 Munich, Germany
| |
Collapse
|
7
|
Effects of Hypoxia on RNA Cargo in Extracellular Vesicles from Human Adipose-Derived Stromal/Stem Cells. Int J Mol Sci 2022; 23:ijms23137384. [PMID: 35806391 PMCID: PMC9266528 DOI: 10.3390/ijms23137384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stromal/stem cells and their derivates are the most promising cell source for cell therapies in regenerative medicine. The application of extracellular vesicles (EVs) as cell-free therapeuticals requires particles with a maximum regenerative capability to enhance tissue and organ regeneration. The cargo of mRNA and microRNA (miR) in EVs after hypoxic preconditioning has not been extensively investigated. Therefore, the aim of our study was the characterization of mRNA and the miR loading of EVs. We further investigated the effects of the isolated EVs on renal tubular epithelial cells in vitro. We found 3131 transcripts to be significantly regulated upon hypoxia. Only 15 of these were downregulated, but 3116 were up-regulated. In addition, we found 190 small RNAs, 169 of these were miRs and 21 were piwi-interacting RNAs (piR). However, only 18 of the small RNAs were significantly altered, seven were miRs and 11 were piRs. Interestingly, all seven miRs were down-regulated after hypoxic pretreatment, whereas all 11 piRs were up-regulated. Gene ontology term enrichment and miR-target enrichment analysis of the mRNAs and miR were also performed in order to study the biological background. Finally, the therapeutic effect of EVs on human renal tubular epithelial cells was shown by the increased expression of three anti-inflammatory molecules after incubation with EVs from hypoxic pretreatment. In summary, our study demonstrates the altered mRNA and miR load in EVs after hypoxic preconditioning, and their anti-inflammatory effect on epithelial cells.
Collapse
|
8
|
Li Z, Zhu Z, Liu Y, Liu Y, Zhao H. Function and regulation of GPX4 in the development and progression of fibrotic disease. J Cell Physiol 2022; 237:2808-2824. [PMID: 35605092 DOI: 10.1002/jcp.30780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023]
Abstract
Fibrosis is a common feature of fibrotic diseases that poses a serious threat to global health due to high morbidity and mortality in developing countries. There exist some chemical compounds and biomolecules associated with the development of fibrosis, including cytokines, hormones, and enzymes. Among them, glutathione peroxidase 4 (GPX4), as a selenoprotein antioxidant enzyme, is widely found in the embryo, testis, brain, liver, heart, and photoreceptor cells. Moreover, it is shown that GPX4 elicits diverse biological functions by suppressing phospholipid hydroperoxide at the expense of decreased glutathione (GSH), including loss of neurons, autophagy, cell repair, inflammation, ferroptosis, apoptosis, and oxidative stress. Interestingly, these processes are intimately related to the occurrence of fibrotic disease. Recently, GPX4 has been reported to exhibit a decline in fibrotic disease and inhibit fibrosis, suggesting that alterations of GPX4 can change the course or dictate the outcome of fibrotic disease. In this review, we summarize the role and underlying mechanisms of GPX4 in fibrosis diseases such as lung fibrosis, liver fibrosis, kidney fibrosis, cardiac fibrosis, and myelofibrosis.
Collapse
Affiliation(s)
- Zhaobing Li
- Department of Cardiology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunnan, China
| | - Zigui Zhu
- Department of Intensive Care Units, The Affiliated Nanhua Hospital, Hengyang Medical school, University of South China, Hengyang, Hunnan, China
| | - Yulu Liu
- Department of Intensive Care Units, The Affiliated Nanhua Hospital, Hengyang Medical school, University of South China, Hengyang, Hunnan, China
| | - Yannan Liu
- School of Nursing, Hunan University of Medicine, Huaihua, Hunan, China
| | - Hong Zhao
- School of Nursing, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
9
|
An update of current therapeutic approach for Intervertebral Disc Degeneration: A review article. Ann Med Surg (Lond) 2022; 77:103619. [PMID: 35638079 PMCID: PMC9142636 DOI: 10.1016/j.amsu.2022.103619] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 01/09/2023] Open
Abstract
Intervertebral disc degeneration is a natural process of aging. It can cause physical, psychological, and socioeconomic impact due to the decreasing function of the spine and pain manifestation. Conservative and surgical treatment to correct symptoms and structural anomalies does not fully recover the degenerated disc. Several therapeutic approaches have been developed to improve the clinical result and patient's quality of life. This paper aims to review previous studies that discussed potential novel approach in order to make effective degenerated disc restoration. We tried to briefly describe IVD, IDD, also review several promising current therapeutic approaches for degenerated disc treatment, including its relevance to the degeneration process and limitation to be applied in a clinical setting. There are generally four current therapeutic approaches that we reviewed; growth factors, small molecules, gene therapy, and stem cells. These new approaches aim to not only correct the symptoms but also restore and delay the degeneration process. Intervertebral Disc Degeneration. Current Therapeutic Approach. Stem Cell Therapy.
Collapse
|
10
|
Choudhery MS. Strategies to improve regenerative potential of mesenchymal stem cells. World J Stem Cells 2021; 13:1845-1862. [PMID: 35069986 PMCID: PMC8727227 DOI: 10.4252/wjsc.v13.i12.1845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/31/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
In the last few decades, stem cell-based therapies have gained attention worldwide for various diseases and disorders. Adult stem cells, particularly mesenchymal stem cells (MSCs), are preferred due to their significant regenerative potential in cellular therapies and are currently involved in hundreds of clinical trials. Although MSCs have high self-renewal as well as differentiation potential, such abilities are compromised with "advanced age" and "disease status" of the donor. Similarly, cell-based therapies require high cell number for clinical applications that often require in vitro expansion of cells. It is pertinent to note that aged individuals are the main segment of population for stem cell-based therapies, however; autologous use of stem cells for such patients (aged and diseased) does not seem to give optimal results due to their compromised potential. In vitro expansion to obtain large numbers of cells also negatively affects the regenerative potential of MSCs. It is therefore essential to improve the regenerative potential of stem cells compromised due to "in vitro expansion", "donor age" and "donor disease status" for their successful autologous use. The current review has been organized to address the age and disease depleted function of resident adult stem cells, and the strategies to improve their potential. To combat the problem of decline in the regenerative potential of cells, this review focuses on the strategies that manipulate the cell environment such as hypoxia, heat shock, caloric restriction and preconditioning with different factors.
Collapse
Affiliation(s)
- Mahmood S Choudhery
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Punjab, Pakistan
- Department of Genetics and Molecular Biology, University of Health Sciences, Lahore 54600, Punjab, Pakistan.
| |
Collapse
|
11
|
Sumarwoto T, Suroto H, Mahyudin F, Utomo DN, Romaniyanto R, Prijosedjati A, Utomo P, Prakoeswa CRS, Rantam FA, Tinduh D, Notobroto HB, Rhatomy S. Preconditioning of Hypoxic Culture Increases The Therapeutic Potential of Adipose Derived Mesenchymal Stem Cells. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Various in vitro preconditioning strategies have been implemented to increase the regenerative capacity of MSCs. Among them are modulation of culture atmosphere (hypoxia or anoxia), three-dimensional culture (3D), addition of trophic factors (in the form of growth factors, cytokines or hormones), lipopolysaccharides, and pharmacological agents. Preconditioning mesenchymal stem cells by culturing them in a hypoxic environment, which resembles the natural oxygen environment of the tissues (1% –7%) and not with standard culture conditions (21%), increases the survival of these cells via Hypoxia Inducible Factor-1α (HIF-1a) and via Akt-dependent mechanisms. In addition, the hypoxic precondition stimulates the secretion of pro-angiogenic growth factors, increases the expression of chemokines SDF-1 (stromal cell-derived factor-1) and its receptor CXCR4 (chemokine receptor type 4) - CXCR7 (chemokine receptor type 7) and increases engraftment of stem cell. This review aims to provide an overview of the preconditioned hypoxic treatment to increase the therapeutic potential of adipose-derived mesenchymal stem cells.
Collapse
|
12
|
Jeannerat A, Peneveyre C, Armand F, Chiappe D, Hamelin R, Scaletta C, Hirt-Burri N, de Buys Roessingh A, Raffoul W, Applegate LA, Laurent A. Hypoxic Incubation Conditions for Optimized Manufacture of Tenocyte-Based Active Pharmaceutical Ingredients of Homologous Standardized Transplant Products in Tendon Regenerative Medicine. Cells 2021; 10:cells10112872. [PMID: 34831095 PMCID: PMC8616528 DOI: 10.3390/cells10112872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022] Open
Abstract
Human fetal progenitor tenocytes (hFPT) produced in defined cell bank systems have recently been characterized and qualified as potential therapeutic cell sources in tendon regenerative medicine. In view of further developing the manufacture processes of such cell-based active pharmaceutical ingredients (API), the effects of hypoxic in vitro culture expansion on key cellular characteristics or process parameters were evaluated. To this end, multiple aspects were comparatively assessed in normoxic incubation (i.e., 5% CO2 and 21% O2, standard conditions) or in hypoxic incubation (i.e., 5% CO2 and 2% O2, optimized conditions). Experimentally investigated parameters and endpoints included cellular proliferation, cellular morphology and size distribution, cell surface marker panels, cell susceptibility toward adipogenic and osteogenic induction, while relative protein expression levels were analyzed by quantitative mass spectrometry. The results outlined conserved critical cellular characteristics (i.e., cell surface marker panels, cellular phenotype under chemical induction) and modified key cellular parameters (i.e., cell size distribution, endpoint cell yields, matrix protein contents) potentially procuring tangible benefits for next-generation cell manufacturing workflows. Specific proteomic analyses further shed some light on the cellular effects of hypoxia, potentially orienting further hFPT processing for cell-based, cell-free API manufacture. Overall, this study indicated that hypoxic incubation impacts specific hFPT key properties while preserving critical quality attributes (i.e., as compared to normoxic incubation), enabling efficient manufacture of tenocyte-based APIs for homologous standardized transplant products.
Collapse
Affiliation(s)
- Annick Jeannerat
- Applied Research Department, LAM Biotechnologies SA, CH-1066 Épalinges, Switzerland; (A.J.); (C.P.)
| | - Cédric Peneveyre
- Applied Research Department, LAM Biotechnologies SA, CH-1066 Épalinges, Switzerland; (A.J.); (C.P.)
| | - Florence Armand
- Proteomics Core Facility and Technology Platform, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; (F.A.); (D.C.); (R.H.)
| | - Diego Chiappe
- Proteomics Core Facility and Technology Platform, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; (F.A.); (D.C.); (R.H.)
| | - Romain Hamelin
- Proteomics Core Facility and Technology Platform, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; (F.A.); (D.C.); (R.H.)
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Épalinges, Switzerland; (C.S.); (N.H.-B.); (L.A.A.)
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Épalinges, Switzerland; (C.S.); (N.H.-B.); (L.A.A.)
| | - Anthony de Buys Roessingh
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Wassim Raffoul
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Épalinges, Switzerland; (C.S.); (N.H.-B.); (L.A.A.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Alexis Laurent
- Applied Research Department, LAM Biotechnologies SA, CH-1066 Épalinges, Switzerland; (A.J.); (C.P.)
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Épalinges, Switzerland; (C.S.); (N.H.-B.); (L.A.A.)
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
- Correspondence: ; Tel.: +41-21-546-42-00
| |
Collapse
|
13
|
Storti G, Favi E, Albanesi F, Kim BS, Cervelli V. Adipose-Derived Stem/Stromal Cells in Kidney Transplantation: Status Quo and Future Perspectives. Int J Mol Sci 2021; 22:11188. [PMID: 34681848 PMCID: PMC8538841 DOI: 10.3390/ijms222011188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Kidney transplantation (KT) is the gold standard treatment of end-stage renal disease. Despite progressive advances in organ preservation, surgical technique, intensive care, and immunosuppression, long-term allograft survival has not significantly improved. Among the many peri-operative complications that can jeopardize transplant outcomes, ischemia-reperfusion injury (IRI) deserves special consideration as it is associated with delayed graft function, acute rejection, and premature transplant loss. Over the years, several strategies have been proposed to mitigate the impact of IRI and favor tolerance, with rather disappointing results. There is mounting evidence that adipose stem/stromal cells (ASCs) possess specific characteristics that could help prevent, reduce, or reverse IRI. Immunomodulating and tolerogenic properties have also been suggested, thus leading to the development of ASC-based prophylactic and therapeutic strategies in pre-clinical and clinical models of renal IRI and allograft rejection. ASCs are copious, easy to harvest, and readily expandable in culture. Furthermore, ASCs can secrete extracellular vesicles (EV) which may act as powerful mediators of tissue repair and tolerance. In the present review, we discuss the current knowledge on the mechanisms of action and therapeutic opportunities offered by ASCs and ASC-derived EVs in the KT setting. Most relevant pre-clinical and clinical studies as well as actual limitations and future perspective are highlighted.
Collapse
Affiliation(s)
- Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (G.S.); (V.C.)
| | - Evaldo Favi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy;
| | - Francesca Albanesi
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy;
| | - Bong-Sung Kim
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (G.S.); (V.C.)
| |
Collapse
|
14
|
Jiang W, Cai J, Guan J, Liao Y, Lu F, Ma J, Gao J, Zhang Y. Characterized the Adipogenic Capacity of Adipose-Derived Stem Cell, Extracellular Matrix, and Microenvironment With Fat Components Grafting. Front Cell Dev Biol 2021; 9:723057. [PMID: 34616732 PMCID: PMC8489879 DOI: 10.3389/fcell.2021.723057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Autologous fat grafting has been a widely used technique; however, the role of adipose-derived stem cells (ASCs), extracellular matrix (ECM), and microenvironment in fat regeneration are not fully understood. Methods: Lipoaspirates were obtained and processed by inter-syringe shifting to remove adipocytes, yielding an adipocyte-free fat (Aff). Aff was then exposed to lethal dose of radiation to obtain decellularized fat (Df). To further remove microenvironment, Df was rinsed with phosphate-buffered saline (PBS) yielding rinsed decellularized fat (Rdf). Green fluorescent protein (GFP) lentivirus (LV-GFP)-transfected ASCs were added to Df to generate cell-recombinant decellularized fat (Crdf). Grafts were transplanted subcutaneously into nude mice and harvested over 3 months. Results: Removal of adipocytes (Aff) didn't compromise the retention of fat grafts, while additional removal of stromal vascular fraction (SVF) cells (Df) and microenvironment (Rdf) resulted in poor retention by day 90 (Aff, 82 ± 7.1% vs. Df, 28 ± 6.3%; p < 0.05; vs. Rdf, 5 ± 1.2%; p < 0.05). Addition of ASCs to Df (Crdf) partially restored its regenerative potential. Aff and Crdf exhibited rapid angiogenesis and M2-polarized macrophages infiltration, in contrast to impaired angiogenesis and M1-polarized inflammatory pattern in Df. GFP + ASCs participated in angiogenesis and displayed a phenotype of endothelial cells in Crdf. Conclusion: Adipose ECM and microenvironment have the capacity to stimulate early adipogenesis while ECM alone cannot induce adipogenesis in vivo. By directly differentiating into endothelial cells and regulating macrophage polarization, ASCs coordinate early adipogenesis with angiogenesis and tissue remodeling, leading to better long-term retention and greater tissue integrity.
Collapse
Affiliation(s)
- Wenqing Jiang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyan Guan
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingjing Ma
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuteng Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Geßner A, Koch B, Klann K, Fuhrmann DC, Farmand S, Schubert R, Münch C, Geiger H, Baer PC. Characterization of Extracellular Vesicles from Preconditioned Human Adipose-Derived Stromal/Stem Cells. Int J Mol Sci 2021; 22:ijms22062873. [PMID: 33808970 PMCID: PMC7999156 DOI: 10.3390/ijms22062873] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Cell-free therapy using extracellular vesicles (EVs) from adipose-derived mesenchymal stromal/stem cells (ASCs) seems to be a safe and effective therapeutic option to support tissue and organ regeneration. The application of EVs requires particles with a maximum regenerative capability and hypoxic culture conditions as an in vitro preconditioning regimen has been shown to alter the molecular composition of released EVs. Nevertheless, the EV cargo after hypoxic preconditioning has not yet been comprehensively examined. The aim of the present study was the characterization of EVs from hypoxic preconditioned ASCs. We investigated the EV proteome and their effects on renal tubular epithelial cells in vitro. While no effect of hypoxia was observed on the number of released EVs and their protein content, the cargo of the proteins was altered. Proteomic analysis showed 41 increased or decreased proteins, 11 in a statistically significant manner. Furthermore, the uptake of EVs in epithelial cells and a positive effect on oxidative stress in vitro were observed. In conclusion, culture of ASCs under hypoxic conditions was demonstrated to be a promising in vitro preconditioning regimen, which alters the protein cargo and increases the anti-oxidative potential of EVs. These properties may provide new potential therapeutic options for regenerative medicine.
Collapse
Affiliation(s)
- Alec Geßner
- Division of Nephrology, Department of Internal Medicine III, University Hospital, Goethe-University, 60596 Frankfurt/M., Germany; (A.G.); (B.K.); (S.F.); (H.G.)
| | - Benjamin Koch
- Division of Nephrology, Department of Internal Medicine III, University Hospital, Goethe-University, 60596 Frankfurt/M., Germany; (A.G.); (B.K.); (S.F.); (H.G.)
| | - Kevin Klann
- Institute of Biochemistry II, Faculty of Medicine, Goethe-University, 60596 Frankfurt/M., Germany; (K.K.); (C.M.)
| | - Dominik C. Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany;
| | - Samira Farmand
- Division of Nephrology, Department of Internal Medicine III, University Hospital, Goethe-University, 60596 Frankfurt/M., Germany; (A.G.); (B.K.); (S.F.); (H.G.)
| | - Ralf Schubert
- Division of Allergology, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, Goethe-University, 60596 Frankfurt/M., Germany;
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe-University, 60596 Frankfurt/M., Germany; (K.K.); (C.M.)
| | - Helmut Geiger
- Division of Nephrology, Department of Internal Medicine III, University Hospital, Goethe-University, 60596 Frankfurt/M., Germany; (A.G.); (B.K.); (S.F.); (H.G.)
| | - Patrick C. Baer
- Division of Nephrology, Department of Internal Medicine III, University Hospital, Goethe-University, 60596 Frankfurt/M., Germany; (A.G.); (B.K.); (S.F.); (H.G.)
- Correspondence: ; Tel.: +49-6301-5554
| |
Collapse
|
16
|
Han TTY, Walker JT, Grant A, Dekaban GA, Flynn LE. Preconditioning Human Adipose-Derived Stromal Cells on Decellularized Adipose Tissue Scaffolds Within a Perfusion Bioreactor Modulates Cell Phenotype and Promotes a Pro-regenerative Host Response. Front Bioeng Biotechnol 2021; 9:642465. [PMID: 33816453 PMCID: PMC8012684 DOI: 10.3389/fbioe.2021.642465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-based therapies involving the delivery of adipose-derived stromal cells (ASCs) on decellularized adipose tissue (DAT) scaffolds are a promising approach for soft tissue augmentation and reconstruction. Our lab has recently shown that culturing human ASCs on DAT scaffolds within a perfusion bioreactor prior to implantation can enhance their capacity to stimulate in vivo adipose tissue regeneration. Building from this previous work, the current study investigated the effects of bioreactor preconditioning on the ASC phenotype and secretory profile in vitro, as well as host cell recruitment following implantation in an athymic nude mouse model. Immunohistochemical analyses indicated that culturing within the bioreactor increased the percentage of ASCs co-expressing inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1), as well as tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10), within the peripheral regions of the DAT relative to statically cultured controls. In addition, bioreactor culture altered the expression levels of a range of immunomodulatory factors in the ASC-seeded DAT. In vivo testing revealed that culturing the ASCs on the DAT within the perfusion bioreactor prior to implantation enhanced the infiltration of host CD31+ endothelial cells and CD26+ cells into the DAT implants, but did not alter CD45+F4/80+CD68+ macrophage recruitment. However, a higher fraction of the CD45+ cell population expressed the pro-regenerative macrophage marker CD163 in the bioreactor group, which may have contributed to enhanced remodeling of the scaffolds into host-derived adipose tissue. Overall, the findings support that bioreactor preconditioning can augment the capacity of human ASCs to stimulate regeneration through paracrine-mediated mechanisms.
Collapse
Affiliation(s)
- Tim Tian Y. Han
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - John T. Walker
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Aaron Grant
- Division of Plastic and Reconstructive Surgery, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Gregory A. Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Lauren E. Flynn
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn,
| |
Collapse
|
17
|
Zhao Y, Zhang M, Lu GL, Huang BX, Wang DW, Shao Y, Lu MJ. Hypoxic Preconditioning Enhances Cellular Viability and Pro-angiogenic Paracrine Activity: The Roles of VEGF-A and SDF-1a in Rat Adipose Stem Cells. Front Cell Dev Biol 2020; 8:580131. [PMID: 33330455 PMCID: PMC7719676 DOI: 10.3389/fcell.2020.580131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
To achieve the full therapeutic potential of implanted adipose stem cells (ASCs) in vivo, it is crucial to improve the viability and pro-angiogenic properties of the stem cells. Here, we first simulated the conditions of ischemia and hypoxia using the in vitro oxygen-glucose deprivation (OGD) model and confirmed that hypoxic preconditioning of ASCs could provide improved protection against OGD and enhance ASC viability. Second, we assessed the effect of hypoxic preconditioning on pro-angiogenic potential of ASCs, with a particular focus on the role of vascular endothelial growth factor-A (VEGF-A) and stromal derived factor-1a (SDF-1a) paracrine activity in mediating angiogenesis. We found that the conditioned medium of ASCs (ASCCM) with hypoxic preconditioning enhanced angiogenesis by a series of angiogenesis assay models in vivo and in vitro through the upregulation of and a synergistic effect between VEGF-A and SDF-1a. Finally, to investigate the possible downstream mechanisms of VEGF/VEGFR2 and SDF-1a/CXCR4 axes-driven angiogenesis, we evaluated relevant protein kinases involved the signal transduction pathway of angiogenesis and showed that VEGF/VEGFR2 and SDF-1a/CXCR4 axes may synergistically promote angiogenesis by activating Akt. Collectively, our findings demonstrate that hypoxic preconditioning may constitute a promising strategy to enhance cellular viability and angiogenesis of transplanted ASCs, therein improving the success rate of stem cell-based therapies in tissue engineering.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Liang Lu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bao-Xing Huang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Da-Wei Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Shao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mu-Jun Lu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Wan X, Xie MK, Xu H, Wei ZW, Yao HJ, Wang Z, Zheng DC. Hypoxia-preconditioned adipose-derived stem cells combined with scaffold promote urethral reconstruction by upregulation of angiogenesis and glycolysis. Stem Cell Res Ther 2020; 11:535. [PMID: 33308306 PMCID: PMC7731784 DOI: 10.1186/s13287-020-02052-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale Tissue engineering is a promising alternative for urethral reconstruction, and adipose-derived stem cells (ADSCs) are widely used as seeding cells. Hypoxia preconditioning can significantly enhance the therapeutic effects of ADSCs. The low oxygen tension of postoperative wound healing is inevitable and may facilitate the nutritional function of ADSCs. This study aimed to investigate if hypoxia-preconditioned ADSCs, compared to normoxia-preconditioned ADSCs, combined with scaffold could better promote urethral reconstruction and exploring the underlying mechanism. Methods In vitro, paracrine cytokines and secretomes that were secreted by hypoxia- or normoxia-preconditioned ADSCs were added to cultures of human umbilical vein endothelial cells (HUVECs) to measure their functions. In vivo, hypoxia- or normoxia-preconditioned ADSCs were seeded on a porous nanofibrous scaffold for urethral repair on a defect model in rabbits. Results The in vitro results showed that hypoxia could enhance the secretion of VEGFA by ADSCs, and hypoxia-preconditioned ADSCs could enhance the viability, proliferation, migration, angiogenesis, and glycolysis of HUVECs (p < 0.05). After silencing VEGFA, angiogenesis and glycolysis were significantly inhibited (p < 0.05). The in vivo results showed that compared to normoxia-preconditioned ADSCs, hypoxia-preconditioned ADSCs combined with scaffolds led to a larger urethral lumen diameter, preserved urethral morphology, and enhanced angiogenesis (p < 0.05). Conclusions Hypoxia preconditioning of ADSCs combined with scaffold could better promote urethral reconstruction by upregulating angiogenesis and glycolysis. Hypoxia-preconditioned ADSCs combined with novel scaffold may provide a promising alternative treatment for urethral reconstruction.
Collapse
Affiliation(s)
- Xiang Wan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road in Huangpu District, Shanghai, 200011, China
| | - Min-Kai Xie
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road in Huangpu District, Shanghai, 200011, China
| | - Huan Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road in Huangpu District, Shanghai, 200011, China
| | - Zi-Wei Wei
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road in Huangpu District, Shanghai, 200011, China
| | - Hai-Jun Yao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road in Huangpu District, Shanghai, 200011, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road in Huangpu District, Shanghai, 200011, China.
| | - Da-Chao Zheng
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road in Huangpu District, Shanghai, 200011, China.
| |
Collapse
|
19
|
Sharma S, Bhonde R. Genetic and epigenetic stability of stem cells: Epigenetic modifiers modulate the fate of mesenchymal stem cells. Genomics 2020; 112:3615-3623. [DOI: 10.1016/j.ygeno.2020.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
|
20
|
Relevance of Oxygen Concentration in Stem Cell Culture for Regenerative Medicine. Int J Mol Sci 2019; 20:ijms20051195. [PMID: 30857245 PMCID: PMC6429522 DOI: 10.3390/ijms20051195] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/10/2023] Open
Abstract
The key hallmark of stem cells is their ability to self-renew while keeping a differentiation potential. Intrinsic and extrinsic cell factors may contribute to a decline in these stem cell properties, and this is of the most importance when culturing them. One of these factors is oxygen concentration, which has been closely linked to the maintenance of stemness. The widely used environmental 21% O2 concentration represents a hyperoxic non-physiological condition, which can impair stem cell behaviour by many mechanisms. The goal of this review is to understand these mechanisms underlying the oxygen signalling pathways and their negatively-associated consequences. This may provide a rationale for culturing stem cells under physiological oxygen concentration for stem cell therapy success, in the field of tissue engineering and regenerative medicine.
Collapse
|
21
|
Farris AL, Cook CA, Grayson WL. Mathematical modeling of oxygen release from hyperbarically loaded polymers. Biotechnol Prog 2018; 35:e2751. [PMID: 30457221 DOI: 10.1002/btpr.2751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/10/2018] [Accepted: 10/26/2018] [Indexed: 01/09/2023]
Abstract
Polymer-based scaffolds are used extensively in the field of regenerative medicine. These biomaterials may induce therapeutic responses through modulating a wound microenvironment with or without the addition of cells. It has long been known that oxygen is a crucial component of the microenvironment that influences cellular and physiological processes such as metabolism, proliferation, differentiation, matrix deposition, phagocytic killing, and wound healing. Consequently, several studies have investigated the potential for using oxygen-eluting biomaterials to regulate the oxygen tension within a wound microenvironment and to tune the regenerative response. We recently demonstrated that hyperbarically loaded polymers could be used as oxygen delivery devices for biomedical uses. To further develop this strategy, it is important to quantitatively characterize the spatiotemporal oxygen diffusion profile from scaffolds. Here, we use analytical and numerical solutions to describe the profiles of oxygen diffusion from hyperbarically loaded polymers as a function of different scaffold geometries, material compositions, and ambient temperatures. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018 © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2751, 2019.
Collapse
Affiliation(s)
- Ashley L Farris
- Dept. of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Colin A Cook
- Dept. of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Warren L Grayson
- Dept. of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD.,Inst. for Nanobiotechnology (INBT), Johns Hopkins University Whiting School of Engineering, Baltimore, MD.,Dept. of Material Sciences and Engineering, Johns Hopkins University, Whiting School of Engineering, Baltimore, MD
| |
Collapse
|
22
|
Baer PC, Overath JM, Urbschat A, Schubert R, Koch B, Bohn AA, Geiger H. Effect of Different Preconditioning Regimens on the Expression Profile of Murine Adipose-Derived Stromal/Stem Cells. Int J Mol Sci 2018; 19:ijms19061719. [PMID: 29890767 PMCID: PMC6032282 DOI: 10.3390/ijms19061719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/21/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022] Open
Abstract
Stem cell-based therapies require cells with a maximum regenerative capacity in order to support regeneration after tissue injury and organ failure. Optimization of this regenerative potential of mesenchymal stromal/stem cells (MSC) or their conditioned medium by in vitro preconditioning regimens are considered to be a promising strategy to improve the release of regenerative factors. In the present study, MSC were isolated from inguinal adipose tissue (mASC) from C57BL/6 mice, cultured, and characterized. Then, mASC were either preconditioned by incubation in a hypoxic environment (0.5% O₂), or in normoxia in the presence of murine epidermal growth factor (EGF) or tumor necrosis factor α (TNFα) for 48 h. Protein expression was measured by a commercially available array. Selected factors were verified by PCR analysis. The expression of 83 out of 308 proteins (26.9%) assayed was found to be increased after preconditioning with TNFα, whereas the expression of 61 (19.8%) and 70 (22.7%) proteins was increased after incubation with EGF or in hypoxia, respectively. Furthermore, we showed the proliferation-promoting effects of the preconditioned culture supernatants on injured epithelial cells in vitro. Our findings indicate that each preconditioning regimen tested induced an individual expression profile with a wide variety of factors, including several growth factors and cytokines, and therefore may enhance the regenerative potential of mASC for cell-based therapies.
Collapse
Affiliation(s)
- Patrick C Baer
- Division of Nephrology, Department of Internal Medicine III, Goethe-University, 60596 Frankfurt/M., Germany.
| | - Jürgen M Overath
- Division of Nephrology, Department of Internal Medicine III, Goethe-University, 60596 Frankfurt/M., Germany.
| | - Anja Urbschat
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark.
| | - Ralf Schubert
- Division of Allergology, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, Goethe-University, 60596 Frankfurt/M., Germany.
| | - Benjamin Koch
- Division of Nephrology, Department of Internal Medicine III, Goethe-University, 60596 Frankfurt/M., Germany.
| | - Asanke A Bohn
- Division of Nephrology, Department of Internal Medicine III, Goethe-University, 60596 Frankfurt/M., Germany.
| | - Helmut Geiger
- Division of Nephrology, Department of Internal Medicine III, Goethe-University, 60596 Frankfurt/M., Germany.
| |
Collapse
|
23
|
Azhdari Tafti Z, Mahmoodi M, Hajizadeh MR, Ezzatizadeh V, Baharvand H, Vosough M, Piryaei A. Conditioned Media Derived from Human Adipose Tissue Mesenchymal Stromal Cells Improves Primary Hepatocyte Maintenance. CELL JOURNAL 2018; 20:377-387. [PMID: 29845792 PMCID: PMC6004997 DOI: 10.22074/cellj.2018.5288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022]
Abstract
Objective Recent advances in cell therapy have encouraged researchers to provide an alternative for treatment and
restoration of damaged liver through using hepatocytes. However, these cells quickly lose their functional capabilities in vitro.
Here, we aim to use the secretome of mesenchymal stromal cells (MSCs) to improve in vitro maintenance conditions for
hepatocytes.
Materials and Methods In this experimental study, following serum deprivation, human adipose tissue-derived MSCs
(hAT-MSCs) were cultured for 24 hours under normoxic (N) and hypoxic (H) conditions. Their conditioned media (CM)
were subsequently collected and labeled as N-CM (normoxia) and H-CM (hypoxia). Murine hepatocytes were isolated
by perfusion of mouse liver with collagenase, and were cultured in hepatocyte basal (William’s) medium supplemented
with 4% N-CM or H-CM. Untreated William’s and hepatocyte-specific media (HepZYM) were used as controls. Finally,
we evaluated the survival and proliferation rates, as well as functionality and hepatocyte-specific gene expressions of
the cells.
Results We observed a significant increase in viability of hepatocytes in the presence of N-CM and H-CM compared
to HepZYM on day 5, as indicated by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium) assay. Indocyanine green (ICG) uptake of hepatocytes in the H-CM and HepZYM groups on days 3 and
5 also suggested that H-CM maintained the hepatocytes at about the same level as the hepatocyte-specific medium.
The HepZYM group had significantly higher levels of albumin (Alb) and urea secretion compared to the other groups
(P<0.0001). However, there were no significant differences in cytochrome activity and cytochrome gene expression
profiles among these groups. Finally, we found a slightly, but not significantly higher concentration of vascular endothelial
growth factor (VEGF) in the H-CM group compared to the N-CM group (P=0.063).
Conclusion The enrichment of William’s basal medium with 4% hAT-MSC-H-CM improved some physiologic
parameters in a primary hepatocyte culture.
Collapse
Affiliation(s)
- Zahra Azhdari Tafti
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohamad Reza Hajizadeh
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Vahid Ezzatizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Medical Genetics, Medical Laboratory Center, Royesh Medical Group, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. Electronic Address:
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic Address:
| |
Collapse
|
24
|
Therapeutic Applications for Adipose-Derived Stem Cells in Wound Healing and Tissue Engineering. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0125-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Strategies to enhance paracrine potency of transplanted mesenchymal stem cells in intractable neonatal disorders. Pediatr Res 2018; 83:214-222. [PMID: 28972960 DOI: 10.1038/pr.2017.249] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation represents the next breakthrough in the treatment of currently intractable and devastating neonatal disorders with complex multifactorial etiologies, including bronchopulmonary dysplasia, hypoxic ischemic encephalopathy, and intraventricular hemorrhage. Absent engraftment and direct differentiation of transplanted MSCs, and the "hit-and-run" therapeutic effects of these MSCs suggest that their pleiotropic protection might be attributable to paracrine activity via the secretion of various biologic factors rather than to regenerative activity. The transplanted MSCs, therefore, exert their therapeutic effects not by acting as "stem cells," but rather by acting as "paracrine factors factory." The MSCs sense the microenvironment of the injury site and secrete various paracrine factors that serve several reparative functions, including antiapoptotic, anti-inflammatory, antioxidative, antifibrotic, and/or antibacterial effects in response to environmental cues to enhance regeneration of the damaged tissue. Therefore, the therapeutic efficacy of MSCs might be dependent on their paracrine potency. In this review, we focus on recent investigations that elucidate the specifically regulated paracrine mechanisms of MSCs by injury type and discuss potential strategies to enhance paracrine potency, and thus therapeutic efficacy, of transplanted MSCs, including determining the appropriate source and preconditioning strategy for MSCs and the route and timing of their administration.
Collapse
|
26
|
Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells. Stem Cells Int 2017; 2017:5946527. [PMID: 29270200 PMCID: PMC5705873 DOI: 10.1155/2017/5946527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/25/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF) from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100 μM of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.
Collapse
|
27
|
Xia X, Chiu PWY, Lam PK, Chin WC, Ng EKW, Lau JYW. Secretome from hypoxia-conditioned adipose-derived mesenchymal stem cells promotes the healing of gastric mucosal injury in a rodent model. Biochim Biophys Acta Mol Basis Dis 2017; 1864:178-188. [PMID: 28993190 DOI: 10.1016/j.bbadis.2017.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/08/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022]
Abstract
Studies have indicated that the definitive engraftment and transdifferentiation potential of stem cells do not seem crucial for its property of tissue repair. Our previous study showed that transplantation of adipose-derived mesenchymal stem cells (ADMSCs) enhanced the healing of sutured gastric perforation. This study aimed to investigate the paracrine role of ADMSCs in the experimental gastric mucosal injury. Normoxia-conditioned medium (Nor CM) and hypoxia (HPO) CM were obtained after culturing ADMSCs in 20% O2 and 5% O2 for 48h. Cell migration, proliferation, viability, and angiogenesis in vitro were significantly enhanced upon incubation with CM, especially the HPO CM. Experiments in vivo using a rodent model of gastric ulcer demonstrated that HPO CM treatment significantly accelerated wound healing by suppressing inflammation and promoting neovascularization and re-epithelization. Meanwhile, the infusion of HPO CM activated the COX2-PGE2 axis both in vitro and in vivo. And the upregulation of COX2 was further dependent on the activation of ErK1/2-MAPK pathway. In addition, vascular endothelial growth factor, tissue inhibitors of metalloproteinases-1, and chemokine (C-C motif) ligand 20 (CCL-20) were analyzed as being highly abundant factors secreted by ADMSCs under hypoxic condition. Notably, the blockade of CCL-20 abrogated the HPO CM-induced COX2 signaling in the primary gastric mucosal epithelial cells, while incubation with recombinant CCL-20 increased the expression of COX2. In conclusion, the secretome from hypoxia-conditioned ADMSCs facilitates the repair of gastric mucosal injury through the enhancement of angiogenesis and re-epithelization, as well as the activation of COX2-PGE2 axis with a paracrine activity involving CCL-20 factor.
Collapse
Affiliation(s)
- Xianfeng Xia
- Department of Surgery, Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; Chow Yuk Ho Technology Center for Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Philip Wai Yan Chiu
- Department of Surgery, Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; Chow Yuk Ho Technology Center for Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| | - Ping Kuen Lam
- Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Wai Ching Chin
- Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Enders Kwok Wai Ng
- Department of Surgery, Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - James Yun Wong Lau
- Department of Surgery, Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; Chow Yuk Ho Technology Center for Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
28
|
Protection of Human Umbilical Vein Endothelial Cells against Oxidative Stress by MicroRNA-210. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3565613. [PMID: 28367268 PMCID: PMC5359453 DOI: 10.1155/2017/3565613] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/12/2017] [Accepted: 02/09/2017] [Indexed: 01/09/2023]
Abstract
Oxidative stress induces endothelial cell apoptosis and promotes atherosclerosis development. MicroRNA-210 (miR-210) is linked with apoptosis in different cell types. This study aimed to investigate the role of miR-210 in human umbilical vein endothelial cells (HUVECs) under oxidative stress and to determine the underlying mechanism. HUVECs were treated with different concentrations of hydrogen peroxide (H2O2), and cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and ATP assay. To evaluate the role of miR-210 in H2O2-mediated apoptosis, gain-and-loss-of-function approaches were used, and the effects on apoptosis and reactive oxygen species (ROS) level were assayed using flow cytometry. Moreover, miR-210 expression was detected by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), and expression of the following apoptosis-related genes was assessed by qRT-PCR and Western blot at the RNA and protein level, respectively: caspase-8-associated protein 2 (CASP8AP2), caspase-8, and caspase-3. The results showed that H2O2 induced apoptosis in HUVECs in a dose-dependent manner and increased miR-210 expression. Overexpression of miR-210 inhibited apoptosis and reduced ROS level in HUVECs treated with H2O2. Furthermore, miR-210 downregulated CASP8AP2 and related downstream caspases at protein level. Thus, under oxidative stress, miR-210 has a prosurvival and antiapoptotic effect on HUVECs by reducing ROS generation and downregulating the CASP8AP2 pathway.
Collapse
|
29
|
Park HS, Kim JH, Sun BK, Song SU, Suh W, Sung JH. Hypoxia induces glucose uptake and metabolism of adipose‑derived stem cells. Mol Med Rep 2016; 14:4706-4714. [PMID: 27748854 DOI: 10.3892/mmr.2016.5796] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/12/2016] [Indexed: 11/05/2022] Open
Abstract
It has previously been demonstrated that hypoxia has diverse stimulatory effects on adipose‑derived stem cells (ASCs), however, metabolic responses under hypoxia remain to be elucidated. Thus, the present study aimed to investigate the glucose uptake and metabolism of ASCs under hypoxic conditions, and to identify the underlying molecular mechanisms. ASCs were cultured in 1% oxygen, and experiments were conducted in vitro. As determined by proteomic analysis and western blotting, GAPDH and enolase 1 (ENO1) expression were upregulated under hypoxia. In addition, lactate production was significantly increased, and mRNA levels of glycolytic enzymes, including GAPDH, ENO1, hexokinase 2 (HK2), and lactate dehydrogenase α (LDHα) were upregulated. Hypoxia‑inducible factor 1‑α (HIF‑1α) expression was increased as demonstrated by western blotting, and a pharmacological inhibitor of HIF‑1α significantly attenuated hypoxia‑induced lactate production and expression of glycolytic enzymes. It was also observed that hypoxia significantly increased glucose uptake in ASCs, and glucose transporter (GLUT)1 and GLUT3 expression were upregulated under hypoxia. Pharmacological inhibition of the HIF‑1α signaling pathways also attenuated hypoxia‑induced GLUT1 and GLUT3 expression. These results collectively indicate that hypoxia increases glucose uptake via GLUT1 and GLUT3 upregulation, and induces lactate production of ASCs via GAPDH, ENO1, HK2, and LDHα. Furthermore, HIF‑1α is involved in glucose uptake and metabolism of ASCs.
Collapse
Affiliation(s)
- Hyoung Sook Park
- Department of Pharmaceutics and Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Ji Hye Kim
- Department of Pharmaceutics and Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Bo Kyung Sun
- Department of Pharmaceutics and Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Sun U Song
- Translational Research Center, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Wonhee Suh
- Department of Pharmacy, College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Jong-Hyuk Sung
- Department of Pharmaceutics and Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
30
|
Hypoxia Suppresses Spontaneous Mineralization and Osteogenic Differentiation of Mesenchymal Stem Cells via IGFBP3 Up-Regulation. Int J Mol Sci 2016; 17:ijms17091389. [PMID: 27563882 PMCID: PMC5037669 DOI: 10.3390/ijms17091389] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/14/2016] [Accepted: 08/15/2016] [Indexed: 01/09/2023] Open
Abstract
Hypoxia has diverse stimulatory effects on human adipose-derived stem cells (ASCs). In the present study, we investigated whether hypoxic culture conditions (2% O₂) suppress spontaneous mineralization and osteogenic differentiation of ASCs. We also investigated signaling pathways and molecular mechanisms involved in this process. We found that hypoxia suppressed spontaneous mineralization and osteogenic differentiation of ASCs, and up-regulated mRNA and protein expression of Insulin-like growth factor binding proteins (IGFBPs) in ASCs. Although treatment with recombinant IGFBPs did not affect osteogenic differentiation of ASCs, siRNA-mediated inhibition of IGFBP3 attenuated hypoxia-suppressed osteogenic differentiation of ASCs. In contrast, overexpression of IGFBP3 via lentiviral vectors inhibited ASC osteogenic differentiation. These results indicate that hypoxia suppresses spontaneous mineralization and osteogenic differentiation of ASCs via intracellular IGFBP3 up-regulation. We determined that reactive oxygen species (ROS) generation followed by activation of the MAPK and PI3K/Akt pathways play pivotal roles in IGFBP3 expression under hypoxia. For example, ROS scavengers and inhibitors for MAPK and PI3K/Akt pathways attenuated the hypoxia-induced IGFBP3 expression. Inhibition of Elk1 and NF-κB through siRNA transfection also led to down-regulation of IGFBP3 mRNA expression. We next addressed the proliferative potential of ASCs with overexpressed IGFBP3, but IGFBP3 overexpression reduced the proliferation of ASCs. In addition, hypoxia reduced the osteogenic differentiation of bone marrow-derived clonal mesenchymal stem cells. Collectively, our results indicate that hypoxia suppresses the osteogenic differentiation of mesenchymal stem cells via IGFBP3 up-regulation.
Collapse
|
31
|
Werle SB, Chagastelles P, Pranke P, Casagrande L. The effects of hypoxia on in vitro culture of dental-derived stem cells. Arch Oral Biol 2016; 68:13-20. [DOI: 10.1016/j.archoralbio.2016.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 12/19/2022]
|
32
|
Schäfer R, Spohn G, Baer PC. Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Can Preconditioning Strategies Improve Therapeutic Efficacy? Transfus Med Hemother 2016; 43:256-267. [PMID: 27721701 DOI: 10.1159/000447458] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are becoming increasingly important for the development of cell therapeutics in regenerative medicine. Featuring immunomodulatory potential as well as secreting a variety of trophic factors, MSCs showed remarkable therapeutic effects in numerous preclinical disease models. However, sustainable translation of MSC therapies to the clinic is hampered by heterogeneity of MSCs and non-standardized in vitro culture technologies. Moreover, potent MSC therapeutics require MSCs with maximum regenerative capacity. There is growing evidence that in vitro preconditioning strategies of MSCs can optimize their therapeutic potential. In the following we will discuss achievements and challenges of the development of MSC therapies in regenerative medicine highlighting specific in vitro preconditioning strategies prior to cell transplantation to increase their therapeutic efficacy.
Collapse
Affiliation(s)
- Richard Schäfer
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt/M., Germany
| | - Gabriele Spohn
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt/M., Germany
| | - Patrick C Baer
- Division of Nephrology, Department of Internal Medicine III, Goethe University, Frankfurt/M., Germany
| |
Collapse
|
33
|
Yu Y, Zhou Y, Cheng T, Lu X, Yu K, Zhou Y, Hong J, Chen Y. Hypoxia enhances tenocyte differentiation of adipose-derived mesenchymal stem cells by inducing hypoxia-inducible factor-1α in a co-culture system. Cell Prolif 2016; 49:173-84. [PMID: 27021233 DOI: 10.1111/cpr.12250] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/26/2016] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Tissue engineering is a promising approach for repair of tendon injuries. Adipose-derived mesenchymal stem cells (ADMSCs) have gained increasing research interest for their potential in improving healing and regeneration of injured tendons. The present study aimed to investigate effects of O2 tension and potential signalling pathways on AMDSC differentiation into tenocytes, in an indirect co-culture system. MATERIALS AND METHODS Human ADMSCs were co-cultured under normoxia (20% O2 ) and also under hypoxia (2% O2 ). Tenocyte differentiation of AMDSCs and expression of hypoxia-inducible factor-1 (HIF-1α) were analysed by reverse transcription-PCR, Western blotting and immunohistochemistry. Furthermore, HIF-1α inhibitor and inducer (FG-4592) effects on differentiation of AMDSCs were studied using qPCR, immunofluorescence and Western blotting. RESULTS Indirect co-culture with tenocytes increased differentiation of ADMSCs into tenocytes; furthermore, hypoxia further enhanced tenocyte differentiation of AMDSCs, accompanied by increased expression of HIF-1α. HIF-1α inhibitor attenuated effects of hypoxia on differentiation of ADMSCs; in contrast, FG-4592 increased differentiation of ADMSCs under both hypoxia and normoxia. CONCLUSIONS Taken together, we found that growing ADMSCs under hypoxia, or activating expression of HIF-1α to be important in differentiation of ADMSCs, which provides a foundation for application of ADMSCs in vivo for tendon regeneration.
Collapse
Affiliation(s)
- Yang Yu
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yulong Zhou
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tao Cheng
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiaolang Lu
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Kehe Yu
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jianjun Hong
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ying Chen
- Emergency Department, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
34
|
Van Pham P, Vu NB, Phan NK. Hypoxia promotes adipose-derived stem cell proliferation via VEGF. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0004-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Kakudo N, Morimoto N, Ogawa T, Taketani S, Kusumoto K. Hypoxia Enhances Proliferation of Human Adipose-Derived Stem Cells via HIF-1ɑ Activation. PLoS One 2015; 10:e0139890. [PMID: 26465938 PMCID: PMC4605777 DOI: 10.1371/journal.pone.0139890] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/18/2015] [Indexed: 12/21/2022] Open
Abstract
Background Adipose tissue-derived stem cells (ASCs) have been recently isolated from human subcutaneous adipose tissue. ASCs may be useful in regenerative medicine as an alternative to bone marrow-derived stem cells. Changes in the oxygen concentration influence physiological activities, such as stem cell proliferation. However, the effects of the oxygen concentration on ASCs remain unclear. In the present study, the effects of hypoxia on ASC proliferation were examined. Methods Normal human adipose tissue was collected from the lower abdomen, and ASCs were prepared with collagenase treatment. The ASCs were cultured in hypoxic (1%) or normoxic (20%) conditions. Cell proliferation was investigated in the presence or absence of inhibitors of various potentially important kinases. Hypoxia inducible factor (HIF)-1α expression and MAP kinase phosphorylation in the hypoxic culture were determined with western blotting. In addition, the mRNA expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF)-2 in hypoxic or normoxic conditions were determined with real-time RT-PCR. The effects of these growth factors on ASC proliferation were investigated. Chromatin immunoprecipitation (ChIP) of the HIF–1α-binding hypoxia responsive element in FGF–2 was performed. HIF–1α was knocked down by siRNA, and FGF–2 expression was investigated. Results ASC proliferation was significantly enhanced in the hypoxic culture and was inhibited by ERK and Akt inhibitors. Hypoxia for 5–15 minutes stimulated the phosphorylation of ERK1/2 among MAP kinases and induced HIF–1α expression. The levels of VEGF and FGF–2 mRNA and protein in the ASCs were significantly enhanced in hypoxia, and FGF–2 increased ASC proliferation. The ChIP assay revealed an 8-fold increase in the binding of HIF–1α to FGF–2 in hypoxia. HIF–1α knockdown by siRNA partially inhibited the FGF–2 expression of ASCs induced by hypoxia. Conclusion ASC proliferation was enhanced by hypoxia. HIF–1α activation, FGF–2 production, and the ERK1/2 and Akt pathway were involved in this regulatory mechanism.
Collapse
Affiliation(s)
- Natsuko Kakudo
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
- * E-mail:
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| | - Takeshi Ogawa
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| | - Shigeru Taketani
- Department of Biotechnology, Kyoto Institute of Technology, Kyoto, Japan
| | - Kenji Kusumoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| |
Collapse
|
36
|
Sun J, Wei ZZ, Gu X, Zhang JY, Zhang Y, Li J, Wei L. Intranasal delivery of hypoxia-preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice. Exp Neurol 2015; 272:78-87. [PMID: 25797577 DOI: 10.1016/j.expneurol.2015.03.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022]
Abstract
Intracerebral hemorrhagic stroke (ICH) causes high mortality and morbidity with very limited treatment options. Cell-based therapy has emerged as a novel approach to replace damaged brain tissues and promote regenerative processes. In this study we tested the hypothesis that intranasally delivered hypoxia-preconditioned BMSCs could reach the brain, promote tissue repair and improve functional recovery after ICH. Hemorrhagic stroke was induced in adult C57/B6 mice by injection of collagenase IV into the striatum. Animals were randomly divided into three groups: sham group, intranasal BMSC treatment group, and vehicle treatment group. BMSCs were pre-treated with hypoxic preconditioning (HP) and pre-labeled with Hoechst before transplantation. Behavior tests, including the mNSS score, rotarod test, adhesive removal test, and locomotor function evaluation were performed at varying days, up to 21days, after ICH to evaluate the therapeutic effects of BMSC transplantation. Western blots and immunohistochemistry were performed to analyze the neurotrophic effects. Intranasally delivered HP-BMSCs were identified in peri-injury regions. NeuN+/BrdU+ co-labeled cells were markedly increased around the hematoma region, and growth factors, including BDNF, GDNF, and VEGF were significantly upregulated in the ICH brain after BMSC treatment. The BMSC treatment group showed significant improvement in behavioral performance compared with the vehicle group. Our data also showed that intranasally delivered HP-BMSCs migrated to peri-injury regions and provided growth factors to increase neurogenesis after ICH. We conclude that intranasal administration of BMSC is an effective treatment for ICH, and that it enhanced neuroregenerative effects and promoted neurological functional recovery after ICH. Overall, the investigation supports the potential therapeutic strategy for BMSC transplantation therapy against hemorrhagic stroke.
Collapse
Affiliation(s)
- Jinmei Sun
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Zachory Wei
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James Ya Zhang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jimei Li
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Ling Wei
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|