1
|
Noguchi S, Yamasaki R, Nagai-Yoshioka Y, Sato T, Kuroishi K, Gunjigake K, Ariyoshi W, Kawamoto T. The Mechanism of Interleukin 33-Induced Stimulation of Interleukin 6 in MLO-Y4 Cells. Int J Mol Sci 2023; 24:14842. [PMID: 37834290 PMCID: PMC10573633 DOI: 10.3390/ijms241914842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
The differentiation and function of osteocytes are controlled by surrounding cells and mechanical stress; however, the detailed mechanisms are unknown. Recent findings suggest that IL-33 is highly expressed in periodontal tissues in orthodontic tooth movement. The present study aimed to elucidate the effect of IL-33 on the expression of regulatory factors for bone remodeling and their molecular mechanisms in the osteocyte-like cell line MLO-Y4. MLO-Y4 cells were treated with IL-33, and the activation of intracellular signaling molecules and transcriptional factors was determined using Western blot analysis and chromatin immunoprecipitation assay. IL-33 treatment enhanced the expression of IL-6 in MLO-Y4 cells, which was suppressed by the knockdown of the IL-33 receptor ST2L. Additionally, IL-33 treatment induced activation of NF-κB, JNK/AP-1, and p38 MAPK signaling pathways in MLO-Y4 cells. Moreover, pretreatment with specific inhibitors of NF-κB, p38 MAPK, and JNK/AP-1 attenuated the IL-33-induced expression of IL-6. Furthermore, chromatin immunoprecipitation indicated that IL-33 increased c-Jun recruitment to the IL-6 promoter. Overall, these results suggest that IL-33 induces IL-6 expression and regulates osteocyte function via activation of the NF-κB, JNK/AP-1, and p38 MAPK pathways through interaction with ST2L receptors on the plasma membrane.
Collapse
Affiliation(s)
- Sae Noguchi
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (S.N.); (K.K.); (K.G.); (T.K.)
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (R.Y.); (Y.N.-Y.)
| | - Ryota Yamasaki
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (R.Y.); (Y.N.-Y.)
| | - Yoshie Nagai-Yoshioka
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (R.Y.); (Y.N.-Y.)
| | - Tsuyoshi Sato
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, 38 Moro-hongou, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan;
| | - Kayoko Kuroishi
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (S.N.); (K.K.); (K.G.); (T.K.)
| | - Kaori Gunjigake
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (S.N.); (K.K.); (K.G.); (T.K.)
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (R.Y.); (Y.N.-Y.)
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan; (S.N.); (K.K.); (K.G.); (T.K.)
| |
Collapse
|
2
|
Lei WJ, Zhang F, Lin YK, Li MD, Pan F, Sun K, Wang WS. IL-33/ST2 axis of human amnion fibroblasts participates in inflammatory reactions at parturition. Mol Med 2023; 29:88. [PMID: 37403020 DOI: 10.1186/s10020-023-00668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/19/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Inflammation of the fetal membranes is an indispensable event of labor onset at both term and preterm birth. Interleukin-33 (IL-33) is known to participate in inflammation via ST2 (suppression of tumorigenicity 2) receptor as an inflammatory cytokine. However, it remains unknown whether IL-33/ST2 axis exists in human fetal membranes to promote inflammatory reactions in parturition. METHODS The presence of IL-33 and ST2 and their changes at parturition were examined with transcriptomic sequencing, quantitative real-time polymerase chain reaction, Western blotting or immunohistochemistry in human amnion obtained from term and preterm birth with or without labor. Cultured primary human amnion fibroblasts were utilized to investigate the regulation and the role of IL-33/ST2 axis in the inflammation reactions. A mouse model was used to further study the role of IL-33 in parturition. RESULTS Although IL-33 and ST2 expression were detected in both epithelial and fibroblast cells of human amnion, they are more abundant in amnion fibroblasts. Their abundance increased significantly in the amnion at both term and preterm birth with labor. Lipopolysaccharide, serum amyloid A1 and IL-1β, the inflammatory mediators pertinent to labor onset, could all induce IL-33 expression through NF-κB activation in human amnion fibroblasts. In turn, via ST2 receptor, IL-33 induced the production of IL-1β, IL-6 and PGE2 in human amnion fibroblasts via the MAPKs-NF-κB pathway. Moreover, IL-33 administration induced preterm birth in mice. CONCLUSION IL-33/ST2 axis is present in human amnion fibroblasts, which is activated in both term and preterm labor. Activation of this axis leads to increased production of inflammatory factors pertinent to parturition, and results in preterm birth. Targeting the IL-33/ST2 axis may have potential value in the treatment of preterm birth.
Collapse
Affiliation(s)
- Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Yi-Kai Lin
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China.
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P. R. China.
| |
Collapse
|
3
|
Reivan Ortiz GG, Ciongradi CI, Chaitanya MVNL, Narayanan J, Mohany M, Al-Rejaie SS, Arias-Gonzáles JL, Sârbu I, Assefi M, Akram SV, Döğüş Y, Bahrami A, Akhavan-Sigari R. Identification of novel candidate targets for suppressing ovarian cancer progression through IL-33/ST2 axis components using the system biology approach. Front Mol Biosci 2023; 10:1189527. [PMID: 37333018 PMCID: PMC10272621 DOI: 10.3389/fmolb.2023.1189527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Background: Cancer-associated fibroblasts (CAFs) of ovarian cancer (OvC) are the most prevalent element of the tumor microenvironment (TM). By promoting angiogenesis, immunological suppression, and invasion, CAFs speed up the growth of tumors by changing the extracellular matrix's structure and composition and/or initiating the epithelial cells (EPT). IL-33/ST2 signaling has drawn a lot of attention since it acts as a pro-tumor alarmin and encourages spread by altering TM. Methods: Differentially expressed genes (DEGs) of the OvC tumor microenvironment were found in the GEO database, qRT-PCR, western blotting, and immunohistochemistry, and their presence and changes in healthy and tumor tissue content were examined. Primary cultures of healthy fibroblasts and CAFs obtained from healthy and tumor tissues retrieved from OvC samples were used for in vitro and in vivo investigations. Cultured primary human CAFs were utilized to investigate the regulation and the IL-33/ST2 axis role in the inflammation reactions. Results: Although ST2 and IL-33 expression was detected in both epithelial (EPT) and fibroblast cells of ovarian cancer, they are more abundant in CAFs. Lipopolysaccharides, serum amyloid A1, and IL-1β, the inflammatory mediators, could all induce IL-33 expression through NF-κB activation in human CAFs. In turn, via the ST2 receptor, IL-33 affected the production of IL-6, IL-1β, and PTGS2 in human CAFs via the MAPKs-NF-κB pathway. Conclusion: Our findings suggest that IL-33/ST2 is affected by the interaction of CAFs and epithelial cells inside the tumor microenvironment. Activation of this axis leads to increased expression of inflammatory factors in tumor CAFs and EPT cells. Therefore, targeting the IL-33/ST2 axis could have potential value in the prevention of OvC progression.
Collapse
Affiliation(s)
- Geovanny Genaro Reivan Ortiz
- Laboratory of Basic Psychology, Behavioral Analysis and Programmatic Development (PAD-LAB), Catholic University of Cuenca, Cuenca, Ecuador
| | - Carmen Iulia Ciongradi
- Department of Surgery-Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - M. V. N. L. Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jayasankar Narayanan
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Kattankulathu, Tamil Nadu, India
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - José Luis Arias-Gonzáles
- Department of Social Sciences, Faculty of Social Studies, University of British Columbia, Vancouver, BC, Canada
| | - Ioan Sârbu
- Department of Surgery-Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Marjan Assefi
- University of North Carolina, Greensboro, NC, United States
| | | | - Yusuf Döğüş
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Türkiye
| | - Abolfazl Bahrami
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Healthcare Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
4
|
Molecular Basis beyond Interrelated Bone Resorption/Regeneration in Periodontal Diseases: A Concise Review. Int J Mol Sci 2023; 24:ijms24054599. [PMID: 36902030 PMCID: PMC10003253 DOI: 10.3390/ijms24054599] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Periodontitis is the sixth most common chronic inflammatory disease, destroying the tissues supporting the teeth. There are three distinct stages in periodontitis: infection, inflammation, and tissue destruction, where each stage has its own characteristics and hence its line of treatment. Illuminating the underlying mechanisms of alveolar bone loss is vital in the treatment of periodontitis to allow for subsequent reconstruction of the periodontium. Bone cells, including osteoclasts, osteoblasts, and bone marrow stromal cells, classically were thought to control bone destruction in periodontitis. Lately, osteocytes were found to assist in inflammation-related bone remodeling besides being able to initiate physiological bone remodeling. Furthermore, mesenchymal stem cells (MSCs) either transplanted or homed exhibit highly immunosuppressive properties, such as preventing monocytes/hematopoietic precursor differentiation and downregulating excessive release of inflammatory cytokines. In the early stages of bone regeneration, an acute inflammatory response is critical for the recruitment of MSCs, controlling their migration, and their differentiation. Later during bone remodeling, the interaction and balance between proinflammatory and anti-inflammatory cytokines could regulate MSC properties, resulting in either bone formation or bone resorption. This narrative review elaborates on the important interactions between inflammatory stimuli during periodontal diseases, bone cells, MSCs, and subsequent bone regeneration or bone resorption. Understanding these concepts will open up new possibilities for promoting bone regeneration and hindering bone loss caused by periodontal diseases.
Collapse
|
5
|
Dong X, Feng J, Li B, Bai D, Xu H. Inhibition of osteoclastogenesis by interleukin-33 administration in the periodontal ligament under mechanical loading. J Periodontal Res 2022; 57:1003-1013. [PMID: 35930702 DOI: 10.1111/jre.13039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/12/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES The molecular mechanisms mediating external root resorption are poorly understood. Interleukin-33 (IL-33) expression increased remarkably in the periodontal ligament (PDL) under orthodontic loading. The IL-33-driven responses are delicately cell type- and tissue context-dependent. It is unknown how IL-33 act on osteoclastogenesis in the context of root surface. This study aimed to investigate the effect of IL-33 on osteoclastogenesis in the PDL under mechanical loading. MATERIALS AND METHODS C57BL/6J mice were treated with injections of phosphate buffer saline (PBS) or recombinant mouse IL-33 (rmIL-33, 6 μl, 30 μg/ml), and subjected to models of orthodontic tooth movement. Tartrated resistant acid phosphates (TRAP)-positive cells and IL-33 expressions were examined in the PDL. IL-33 release from human PDL cells (hPDLCs) was detected by ELISA. Cementoblast-like (OCCM-30) cells were cultured in the presence of rmIL-33 to examine the release of osteoclast-regulatory proteins. The effects of rmIL-33 on osteoclastogenesis were examined in vitro in cultures of bone marrow macrophages (BMMs) and in BMMs-OCCM-30 cocultures. Expressions of osteoclast-specific or -related genes and proteins were investigated in BMMs-OCCM-30 cocultures treated with or without rmIL-33, in the presence or absence of granulocyte-macrophage colony-stimulating factor (GM-CSF) neutralizing antibody. RESULTS Interleukin-33 expressions were upregulated in the PDL under orthodontic loading. Static compressive force enhanced expression and release of IL-33 from hPDLCs. Administration of rmIL-33 resulted in reduced number of TRAP-positive cells in the PDL, and inhibited osteoclast differentiation from BMMs in vitro. OCCM-30 cells had varied osteoprotegerin (OPG) / receptor activator for nuclear factor-κB ligand (RANKL) secretion and increased release of GM-CSF under rmIL-33 stimulation. Treatment with rmIL-33 in BMMs-OCCM-30 cocultures resulted in inhibited differentiation and decreased activity of osteoclasts, and these effects were partially reversed by GM-CSF neutralizing antibody. CONCLUSIONS Interleukin-33 inhibits osteoclastogenesis in the PDL under orthodontic loading. The anti-osteoclastogenic effects were mediated partly by directly affecting osteoclast precursors and partly by cementoblast-mediated release of GM-CSF.
Collapse
Affiliation(s)
- Xiaomeng Dong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Feng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
The Merkel Cell Polyomavirus T-Antigens and IL-33/ST2-IL1RAcP Axis: Possible Role in Merkel Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23073702. [PMID: 35409061 PMCID: PMC8998536 DOI: 10.3390/ijms23073702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a causal factor in Merkel cell carcinoma (MCC). The oncogenic potential is mediated through its viral oncoproteins large T-antigen (LT) and small T-antigen (sT). Cytokines produced by tumor cells play an important role in cancer pathogenesis, and viruses affect their expression. Therefore, we compared human cytokine and receptor transcript levels in virus positive (V+) and virus negative (V−) MCC cell lines. Increased expression of IL-33, a potent modulator of tumor microenvironment, was observed in V+ MCC cell lines when compared to V− MCC-13 cells. Transient transfection studies with luciferase reporter plasmids demonstrated that LT and sT stimulated IL-33, ST2/IL1RL1 and IL1RAcP promoter activity. The induction of IL-33 expression was confirmed by transfecting MCC-13 cells with MCPyV LT. Furthermore, recombinant human cytokine domain IL-33 induced activation of MAP kinase and NF-κB pathways, which could be blocked by a ST2 receptor antibody. Immunohistochemical analysis demonstrated a significantly stronger IL-33, ST2, and IL1RAcP expression in MCC tissues compared to normal skin. Of interest, significantly higher IL-33 and IL1RAcP protein levels were observed in MCC patient plasma compared to plasma from healthy controls. Previous studies have demonstrated the implication of the IL-33/STL2 pathway in cancer. Because our results revealed a T-antigens-dependent induction of the IL-33/ST2 axis, IL-33/ST2 may play a role in the tumorigenesis of MCPyV-positive MCC. Therefore, neutralizing the IL-33/ST2 axis may present a novel therapeutic approach for MCC patients.
Collapse
|
7
|
Li H, He D, Xiao X, Yu G, Hu G, Zhang W, Wen X, Lin Y, Li X, Lin H, Diao Y, Tang Y. Nitrogen-Doped Multiwalled Carbon Nanotubes Enhance Bone Remodeling through Immunomodulatory Functions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25290-25305. [PMID: 33908252 DOI: 10.1021/acsami.1c05437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It has been reported that multiwalled carbon nanotubes (MWCNTs) can reportedly positively affect growth and differentiation of bone-related cells and therefore offer great potential in biomedical applications. To overcome negative immune responses that limit their application, specific doping and functionalization can improve their biocompatibility. Here, we demonstrated that nitrogen-doped carboxylate-functionalized MWCNTs (N-MWCNTs) enhance bone remodeling both in vitro and in vivo with excellent biocompatibility, via stimulation of both bone resorption and formation. We revealed that 0.2 μg/mL N-MWCNTs not only increase the transcription of osteoblastogenic and osteoclastogenic genes but also up-regulate the activities of both TRAP and AKP in the differentiation of bone marrow stromal cells (BMSCs). Additionally, intramuscular administration of N-MWCNTs at a dosage of 1.0 mg/kg body weight enhances bone mineral density and bone mass content in mice, as well as induces potentiated degree of TRAP- and ARS-positive staining in the femur. The positive regulation of N-MWCNTs on bone remodeling is initiated by macrophage phagocytosis, which induces altered production of inflammatory cytokines by immune response pathways, and consequently up-regulates IL1α, IL10, and IL16. These cytokines collectively regulate the central osteoclastogenic transcription factor NFATc1 and osteoblastogenic BMP signaling, the suppression of which confirmed that these factors respectively participate in N-MWCNT-mediated regulation of osteoclastic and osteoblastic bone marrow stem cell activities. These results suggest that N-MWCNTs can be readily generalized for use as biomaterials in bone tissue engineering for metabolic bone disorders.
Collapse
Affiliation(s)
- Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Dalin He
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xue Xiao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Guanliu Yu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Geng Hu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Wenqian Zhang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xin Wen
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yun Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xianyao Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Youxiang Diao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Yi Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
8
|
Mahmoud MAA, Saleh DO, Safar MM, Agha AM, Khattab MM. Chloroquine ameliorates bone loss induced by d-galactose in male rats via inhibition of ERK associated osteoclastogenesis and antioxidant effect. Toxicol Rep 2021; 8:366-375. [PMID: 33665135 PMCID: PMC7905189 DOI: 10.1016/j.toxrep.2021.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Cloroquine (CQ) has reduced the adverse bone changes caused by d-galactose. It improved bone health, switched off nuclear factor kappa-B ligand (RANKL) receptor activator activation and decreased ERK bone expression. CQ treatment inhibited osteoclastogenesis and consequently restored the RANKL/OPG ratio. CQ demonstrated an antioxidant effect in bone where it increased both catalase (CAT) and superoxide dismutase (SOD). CQ is a possible anti-osteoporotic agent through the suppression of osteoclastogenesis associated with ERK.
Chloroquine (CQ); a lysosomotropic agent used for decade ago as anti-malarial, was tested against aging induced osteoporosis. Osteoporosis in male rats was induced using d-galactose (D-gal) as a reducing sugar at a dose of 200 mg/kg/day; i.p. Osteoporotic rats were orally treated with CQ (10 mg/kg/day) for four successive weeks. Bone densitometry of tibia and femur were evaluated. Bone formation biomarkers; osteoprotegrin (OPG), bone specific alkaline phosphatse (BALP), and osteocalcin (OCN), and bone resorption biomarker; receptor activator of nuclear factor kappa-B ligand (RANKL), cathepsin-k (CTSK), tartrate-resistant acid phosphatase (TRAP) were estimated. Moreover, the expression of extracellular regulated kinase (ERK) in bone was determined. CQ ameliorated the bone detrimental changes induced by d-galactose. It enhanced bone health as revealed by measurement of bone densitometry, halted the activation of receptor activator of nuclear factor kappa-B ligand (RANKL) and reduced bone manifestation of ERK. Furthermore, CQ treatment abated serum cathepsin-k (CTSK) and serum tartrate-resistant acid phosphatase (TRAP) thus inhibited osteoclastogenesis and consequently restored the RANKL/OPG ratio. CQ demonstrated an antioxidant effect in bone where it increased both Catalase (CAT) and Superoxide dismutase (SOD). These CQ preserving effect in rats treated with d-galactose were confirmed by the histopathological examination. The present study points to the potential therapeutic effect of CQ as anti-osteoporotic agent possibly through its antioxidant effects and suppression of ERK associated osteoclastogenesis.
Collapse
Affiliation(s)
| | - Dalia O Saleh
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Marwa M Safar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, Egypt
| | - Azza M Agha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Lin J, Ma S, Zhu C, Chen C, Lin W, Lin C, Huang G, Ding Z. Circular RNA atlas in osteoclast differentiation with and without alendronate treatment. J Orthop Surg Res 2020; 15:240. [PMID: 32611361 PMCID: PMC7331147 DOI: 10.1186/s13018-020-01722-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Alendronate (AL) is the most widely used bisphosphonate in the treatment of osteoporosis (OP). However, the role of circular RNAs (circRNAs) in the treatment of OP with AL remains unclear. METHODS In this study, we showed that osteoclast (OC) precursors (OPCSs) could be induced into OCs with macrophage colony-stimulating factor (MCSF) and receptor activator of nuclear factor-κB ligand (RANKL) treatment. Subsequently, the OCs were treated with AL. OC differentiation-related biomarkers including RANK, tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CTSK) were analyzed with TRAP staining, quantitative real-time (qPCR), and western blotting. Differentially expressed circRNAs (DECs) were identified among the OPCS, OC, and OC + AL groups. In addition, the expression levels of 10 DECs related to OC differentiation were verified by qPCR. RESULTS TRAP staining showed that MCSF and RANKL treatment effectively induced OPCSs to differentiate into OCs. In addition, qPCR and western blot analysis revealed that the three biomarkers of OC (RANK, TRAP, and CTSK) were expressed significantly more in the OC group than those in the OPCS group. In contrast, the mRNA and protein expression levels of these three biomarkers decreased significantly in OCs treated with AL compared with those non-treated OCs. GO analysis of the DECs in the OPCS group vs. the OC group revealed that their functions were mainly related to cell, cell part, binding, and single-organism terms. KEGG analysis of the top 20 DECs in a comparison between the OPCS and OC groups showed that genes involved in mitogen-activated protein kinase signaling were the most common. Results of functional analyses of DECs in an OC vs. OC + AL comparison were similar to those in the OPCS vs. OC comparison. Finally, qPCR showed that, in the OC + AL vs. OC group comparison, the expression levels of seven and three DECs significantly decreased and increased, respectively. CONCLUSIONS Having successfully induced OPCSs to differentiate into OCs, we showed that AL suppresses the differentiation of OPCS into OC and that 10 DECs were involved in the regulation of this process. This indicates that these DECs might be important to the treatment of OP.
Collapse
Affiliation(s)
- Jianbiao Lin
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian, China
| | - Shaofeng Ma
- Obstetrics and Gynecology Department, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, Zhangzhou, China
| | - Cong Zhu
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian, China
| | - Changqing Chen
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian, China
| | - Weibin Lin
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian, China
| | - Canbin Lin
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian, China
| | - Guofeng Huang
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian, China.
| | - Zhenqi Ding
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian, China.
| |
Collapse
|
10
|
De Martinis M, Sirufo MM, Suppa M, Ginaldi L. IL-33/IL-31 Axis in Osteoporosis. Int J Mol Sci 2020; 21:E1239. [PMID: 32069819 PMCID: PMC7072890 DOI: 10.3390/ijms21041239] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
The study of the immunoskeletal interface has led to the discovery of numerous cytokines involved in the regulation of bone remodeling, providing valuable information on the pathogenesis of osteoporosis. The role of inflammatory cytokines of the Th1 and Th17 profile in osteoporosis is well known. Here we focus on two newly discovered Th2 cytokines, IL-31 and IL-33, whose implications in osteoporosis are recently emerging. Clinical and experimental observations suggest an important role of the IL-33/IL-31 axis in osteoporosis. IL-33 induces IL-31 secretion by Th2 cells and inhibits RANKL-dependent osteoclastogenesis, thus counteracting bone loss. IL-31 influences Th1/Th17 osteoclastogenetic inflammation and limits Th2 osteoprotective processes, thus favoring osteoporosis. Better knowledge of the role of IL-31 and IL-33 and their receptor complexes in osteoporosis could provide an interesting perspective for the development of new and more effective therapies, possibly with less side effects.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Mariano Suppa
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| |
Collapse
|
11
|
Effect of interleukin-33 on cementoblast-mediated cementum repair during orthodontic tooth movement. Arch Oral Biol 2020; 112:104663. [PMID: 31986333 DOI: 10.1016/j.archoralbio.2020.104663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/04/2020] [Accepted: 01/09/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study aims to uncover the role of interleukin-33 on cementoblast-mediated cementum repair. METHODS 6-8-week-old C57BL/6 mice were used to establish the model of orthodontic tooth movement. Interleukin-33 and suppression of tumorigenicity2 (ST2) expressions were immunohistochemically detected in the periodontal tissue. In vitro, cementoblast-like (OCCM-30) cells were cultured in the presence of recombinant mouse interleukin-33 protein (rmIL-33) at a 1-14 d time frame. ST2 expressions were immunofluorescently labeled and quantitatively examined. The effects of interleukin-33 on cementoblast differentiation, mineralization and proliferation were examined by alkaline phosphatase, alizarin red staining and cell counting kit-8, respectively. To further clarify the effect of interleukin-33 on cementogenesis-related protein expressions, runt-related transcription factor 2 (RUNX2), osterix, osteopontin, bone sialoprotein(BSP), osteocalcin, osteoprotegerin (OPG) and receptor activator of NF-КB ligand (RANKL) expressions were examined by western blot. RESULTS Orthodontic load of high magnitude induces external apical root resorption, and increases interleukin-33 expression in the periodontal tissue of mice. Cells in the cementum express ST2. Interleukin-33 initially down-regulates but later recovers ST2 mRNA and protein levels in OCCM-30 cells. Interleukin-33 abates cementoblast differentiation and mineralization, and suppresses RUNX2, osterix, BSP and osteopontin expressions in OCCM-30 cells at the later stage of the culture period. Interleukin-33 enhances RANKL expression, and reduces the ratio of OPG/RANKL in OCCM-30 cells. CONCLUSION Orthodontic load of high magnitude induces interleukin-33 expression in the periodontal tissue. Interleukin-33 has a negative effect on cementogenesis via suppressing cementoblast differentiation, mineralization and cementogenesis-related protein expressions.
Collapse
|
12
|
Mannucci C, Calapai G, Gangemi S. Commentary: Circulatory pattern of cytokines, adipokines and bone markers in postmenopausal women with low BMD. Front Immunol 2019; 10:2666. [PMID: 31798591 PMCID: PMC6868060 DOI: 10.3389/fimmu.2019.02666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/28/2019] [Indexed: 12/03/2022] Open
Affiliation(s)
- Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
13
|
Possible Roles of IL-33 in the Innate-Adaptive Immune Crosstalk of Psoriasis Pathogenesis. Mediators Inflamm 2019; 2019:7158014. [PMID: 31736655 PMCID: PMC6815589 DOI: 10.1155/2019/7158014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/26/2019] [Indexed: 01/18/2023] Open
Abstract
Background IL-33 belongs to the IL-1 family, playing a role in several biologic processes as well as in the pathogenesis of different diseases, including skin pathologies. It acts as an alarmin, released by damaged cells. Binding to a ST2 receptor, it stimulates many immune cells such as ILC2 and Th2 cells. IL-33/ST2 axis seems to be involved in Th17 response. According to this, a review was performed to analyze if IL-33 even interplay in the onset of psoriasis, a Th1/Th17 inflammatory disease. Methods Data obtained from the included articles are study author name, publication date, group studied, clinical and biological variables, laboratory tests, and outcome of interest of the study. Results Data are obtained from the 19 studies identified, which assessed the association between IL-33 and psoriasis. Discussion It seems to promote the innate-adaptive immune crosstalk: it could induce mast cells and neutrophil response after being released by injured keratinocytes and after stimulation by some cytokines, in particular TNFα, INFγ, and IL-17A. In addition, it seems to be involved from the onset of disease to the development of comorbidities, as psoriatic arthritis. Conclusion The core of the future research on psoriasis could be to fully understand the role of this complex cytokine, in order also to find a new therapeutic approach.
Collapse
|
14
|
George EL, Truesdell SL, Magyar AL, Saunders MM. The effects of mechanically loaded osteocytes and inflammation on bone remodeling in a bisphosphonate-induced environment. Bone 2019; 127:460-473. [PMID: 31301402 DOI: 10.1016/j.bone.2019.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/23/2022]
Abstract
Bisphosphonate-related osteonecrosis of the jaw is a disease appearing after tooth removal in patients undergoing bisphosphonate treatment for metastasizing cancers and osteoporosis. The complexity of the condition requires a multicellular model to address the net effects of two key risk factors: mechanical trauma (pathologic overload) and inflammation. In this work, a system comprised of a polydimethylsiloxane chip and mechanical loading device is used to expose bisphosphonate-treated osteocytes to mechanical trauma. Specifically, osteocytes are treated with the potent nitrogen-containing bisphosphonate, zoledronic acid, and exposed to short-term pathologic overload via substrate stretch. During bone remodeling, osteocyte apoptosis plays a role in attracting pre-osteoclasts to sites of damage; as such, lactate dehydrogenase activity, cell death and protein expression are evaluated as functions of load. Additionally, the effects of osteocyte soluble factors on osteoclast and osteoblast functional activity are quantified. Osteoclast activity and bone resorption are quantified in the presence and absence of inflammatory components, lipopolysaccharide and interferon gamma. Results suggest that inflammation associated with bacterial infection may hinder bone resorption by osteoclasts. In addition, osteocytes may respond to overload by altering expression of soluble signals that act on osteoblasts to attenuate bone formation. These findings give insight into the multicellular interactions implicated in bisphosphonate-related osteonecrosis of the jaw.
Collapse
Affiliation(s)
- Estee L George
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| | - Sharon L Truesdell
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| | - Alexandria L Magyar
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| | - Marnie M Saunders
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| |
Collapse
|
15
|
Human Enriched Serum Following Hydrolysed Collagen Absorption Modulates Bone Cell Activity: from Bedside to Bench and Vice Versa. Nutrients 2019; 11:nu11061249. [PMID: 31159319 PMCID: PMC6627680 DOI: 10.3390/nu11061249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 01/03/2023] Open
Abstract
Collagen proteins are crucial components of the bone matrix. Since collagen-derived products are widely used in the food and supplement industry, one may raise the question whether collagen-enriched diets can provide benefits for the skeleton. In this study, we designed an innovative approach to investigate this question taking into account the metabolites that are formed by the digestive tract and appear in the circulation after ingestion of hydrolysed collagen. Blood samples collected in clinical and pre-clinical trials following ingestion and absorption of hydrolysed collagen were processed and applied on bone-related primary cell cultures. This original ex vivo methodology revealed that hydrolysed collagen-enriched serum had a direct impact on the behaviour of cells from both human and mouse origin that was not observed with controls (bovine serum albumin or hydrolysed casein-enriched serum). These ex vivo findings were fully in line with in vivo results obtained from a mouse model of post-menopausal osteoporosis. A significant reduction of bone loss was observed in mice supplemented with hydrolysed collagen compared to a control protein. Both the modulation of osteoblast and osteoclast activity observed upon incubation with human or mouse serum ex vivo and the attenuation of bone loss in vivo, clearly indicates that the benefits of hydrolysed collagen for osteoporosis prevention go beyond the effect of a simple protein supplementation.
Collapse
|
16
|
Ginaldi L, De Martinis M, Saitta S, Sirufo MM, Mannucci C, Casciaro M, Ciccarelli F, Gangemi S. Interleukin-33 serum levels in postmenopausal women with osteoporosis. Sci Rep 2019; 9:3786. [PMID: 30846811 PMCID: PMC6405990 DOI: 10.1038/s41598-019-40212-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/07/2019] [Indexed: 11/09/2022] Open
Abstract
There are many cytokines involved in the pathogenesis of osteoporosis. So far IL-33 involvement in osteoporotic patients has not yet been studied. IL-33 is a pro-inflammatory cytokine which mediates several immune functions; its involvement in a wide range of diseases, such as atopic dermatitis, asthma, and rheumatoid arthritis, is now emerging. In view of the crucial role of this cytokine in inflammation and bone remodeling, we measured IL-33 levels in the serum of postmenopausal women with osteoporosis. In 50 postmenopausal osteoporotic patients and 28 healthy postmenopausal control women, serum IL-33 levels were measured by enzyme linked immunosorbent assay. In both patients and controls the bone mineral density (BMD) was measured by double-energy X-ray absorptiometry (DXA). Vitamin D, calcium, alkaline phosphatase (ALP), parathyroid hormone (PTH) serum levels, as well as bone turnover markers, such as C-terminal telopeptide of type 1 collagen (CTX) and N-terminal propeptide of type 1 procollagen (P1NP) were also evaluated. In postmenopausal osteoporotic women IL-33 levels were significantly lower compared to healthy controls (3.53 ± 2.45 vs. 13.72 ± 5.39 pg/ml; P = 0.009) and positively correlated respectively with serum PTH (rho = 0.314; P = 0.026) and P1NP (rho = 0.373; P = 0.011) levels, while a statistically significant inverse correlation was observed between serum IL-33 and CTX levels (rho = -0.455; P = 0.002). Our results thus suggest that IL-33 represents an important bone-protecting cytokine which may be of therapeutic benefit in treating bone resorption.
Collapse
Affiliation(s)
- Lia Ginaldi
- School of Allergy and Clinical Immunology, Department of Life, Health & Environmental Sciences, University of L'Aquila and Allergy and Clinical Immunology Unit "Mazzini" Hospital AUSL4, Teramo, Italy
| | - Massimo De Martinis
- School of Allergy and Clinical Immunology, Department of Life, Health & Environmental Sciences, University of L'Aquila and Allergy and Clinical Immunology Unit "Mazzini" Hospital AUSL4, Teramo, Italy.
| | - Salvatore Saitta
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, Messina, Italy
| | - Maria Maddalena Sirufo
- School of Allergy and Clinical Immunology, Department of Life, Health & Environmental Sciences, University of L'Aquila and Allergy and Clinical Immunology Unit "Mazzini" Hospital AUSL4, Teramo, Italy
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Marco Casciaro
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, Messina, Italy
| | - Fedra Ciccarelli
- School of Allergy and Clinical Immunology, Department of Life, Health & Environmental Sciences, University of L'Aquila and Allergy and Clinical Immunology Unit "Mazzini" Hospital AUSL4, Teramo, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
17
|
Suga M, Furue MK. Neural Crest Cell Models of Development and Toxicity: Cytotoxicity Assay Using Human Pluripotent Stem Cell-Derived Cranial Neural Crest Cell Model. Methods Mol Biol 2019; 1965:35-48. [PMID: 31069667 DOI: 10.1007/978-1-4939-9182-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cranial neural crest cells (NCCs) migrate to the branchial arches and give rise to the majority of cranial mesenchyme that eventually differentiates into odontoblasts, cartilage, craniofacial bone, and connective tissue; a subset of these cells differentiate into cranial ganglia. Here we present a protocol that describes directed differentiation method of human pluripotent stem cells into cranial NCC-like cells and a cytotoxicity assay using hPSC-derived cranial NCC-like cells. This cell-based assay system allows for high-sensitive cytotoxicity detection of test chemicals. These methods can be applied to predict drug/chemical toxicity effect on early craniofacial development.
Collapse
Affiliation(s)
- Mika Suga
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Ibaraki, Japan
| | - Miho K Furue
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Ibaraki, Japan.
| |
Collapse
|
18
|
Takeno A, Kanazawa I, Notsu M, Tanaka KI, Sugimoto T. Glucose uptake inhibition decreases expressions of receptor activator of nuclear factor-kappa B ligand (RANKL) and osteocalcin in osteocytic MLO-Y4-A2 cells. Am J Physiol Endocrinol Metab 2018; 314:E115-E123. [PMID: 29018002 DOI: 10.1152/ajpendo.00159.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bone and glucose metabolism are closely associated with each other. Both osteoblast and osteoclast functions are important for the action of osteocalcin, which plays pivotal roles as an endocrine hormone regulating glucose metabolism. However, it is unknown whether osteocytes are involved in the interaction between bone and glucose metabolism. We used MLO-Y4-A2, a murine long bone-derived osteocytic cell line, to investigate effects of glucose uptake inhibition on expressions of osteocalcin and bone-remodeling modulators in osteocytes. We found that glucose transporter 1 (GLUT1) is expressed in MLO-Y4-A2 cells and that treatment with phloretin, a GLUT inhibitor, significantly inhibited glucose uptake. Real-time PCR and Western blot showed that phloretin significantly and dose-dependently decreased the expressions of RANKL and osteocalcin, whereas osteoprotegerin or sclerostin was not affected. Moreover, phloretin activated AMP-activated protein kinase (AMPK), an intracellular energy sensor. Coincubation of ara-A, an AMPK inhibitor, with phloretin canceled the phloretin-induced decrease in osteocalcin expression, but not RANKL. In contrast, phloretin suppressed phosphorylation of ERK1/2, JNK, and p38 MAPK, and treatments with the p38 inhibitor SB203580 and the MEK inhibitor PD98059, but not the JNK inhibitor SP600125, significantly decreased expressions of RANKL and osteocalcin. These results indicate that glucose uptake by GLUT1 is required for RANKL and osteocalcin expressions in osteocytes, and that inhibition of glucose uptake decreases their expressions through AMPK, ERK1/2, and p38 MAPK pathways. These findings suggest that lowering glucose uptake into osteocytes may contribute to maintain blood glucose levels by decreasing osteocalcin expression and RANKL-induced bone resorption.
Collapse
Affiliation(s)
- Ayumu Takeno
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo, Shimane , Japan
| | - Ippei Kanazawa
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo, Shimane , Japan
| | - Masakazu Notsu
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo, Shimane , Japan
| | - Ken-Ichiro Tanaka
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo, Shimane , Japan
| | - Toshitsugu Sugimoto
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo, Shimane , Japan
| |
Collapse
|
19
|
Garay J, Piazuelo MB, Lopez-Carrillo L, Leal YA, Majumdar S, Li L, Cruz-Rodriguez N, Serrano-Gomez SJ, Busso CS, Schneider BG, Delgado AG, Bravo LE, Crist AM, Meadows SM, Camargo MC, Wilson KT, Correa P, Zabaleta J. Increased expression of deleted in malignant brain tumors (DMBT1) gene in precancerous gastric lesions: Findings from human and animal studies. Oncotarget 2017; 8:47076-47089. [PMID: 28423364 PMCID: PMC5564545 DOI: 10.18632/oncotarget.16792] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/16/2017] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori infection triggers a cascade of inflammatory stages that may lead to the appearance of non-atrophic gastritis, multifocal atrophic, intestinal metaplasia, dysplasia, and cancer. Deleted in malignant brain tumors 1 (DMBT1) belongs to the group of secreted scavenger receptor cysteine-rich proteins and is considered to be involved in host defense by binding to pathogens. Initial studies showed its deletion and loss of expression in a variety of tumors but the role of this gene in tumor development is not completely understood. Here, we examined the role of DMBT1 in gastric precancerous lesions in Caucasian, African American and Hispanic individuals as well as in the development of gastric pathology in a mouse model of H. pylori infection. We found that in 3 different populations, mucosal DMBT1 expression was significantly increased (2.5 fold) in individuals with dysplasia compared to multifocal atrophic gastritis without intestinal metaplasia; the increase was also observed in individuals with advanced gastritis and positive H. pylori infection. In our animal model, H. pylori infection of Dmbt1-/- mice resulted in significantly higher levels of gastritis, more extensive mucous metaplasia and reduced Il33 expression levels in the gastric mucosa compared to H. pylori-infected wild type mice. Our data in the animal model suggest that in response to H. pylori infection DMBT1 may mediate mucosal protection reducing the risk of developing gastric precancerous lesions. However, the increased expression in human gastric precancerous lesions points to a more complex role of DMBT1 in gastric carcinogenesis.
Collapse
Affiliation(s)
- Jone Garay
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Yelda A Leal
- Unidad de Investigación Médica Yucatán de la Unidad Médica de Alta Especialidad (UMAE) del Instituto Mexicano del Seguro Social (IMSS), Yucatán, Mexico
| | - Sumana Majumdar
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
| | - Li Li
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
| | - Nataly Cruz-Rodriguez
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
- Pontificia Universidad Javeriana, Bogotá, Colombia
- Grupo de Investigacion en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Silvia J Serrano-Gomez
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
- Pontificia Universidad Javeriana, Bogotá, Colombia
- Grupo de Investigacion en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Carlos S Busso
- Department of Otorhinolaryngology, LSUHSC, New Orleans, LA, USA
| | - Barbara G Schneider
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alberto G Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Luis E Bravo
- Department of Pathology, Universidad del Valle, Cali, Colombia
| | - Angela M Crist
- Department of Cell and Molecular Biology Tulane University, New Orleans LA, USA
| | - Stryder M Meadows
- Department of Cell and Molecular Biology Tulane University, New Orleans LA, USA
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Pelayo Correa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jovanny Zabaleta
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
- Department of Pediatrics, LSUHSC, New Orleans, LA, USA
| |
Collapse
|
20
|
Bayraktar S, Jungbluth P, Deenen R, Grassmann J, Schneppendahl J, Eschbach D, Scholz A, Windolf J, Suschek CV, Grotheer V. Molecular- and microarray-based analysis of diversity among resting and osteogenically induced porcine mesenchymal stromal cells of several tissue origin. J Tissue Eng Regen Med 2017; 12:114-128. [PMID: 27966263 PMCID: PMC5811815 DOI: 10.1002/term.2375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 11/12/2016] [Accepted: 12/06/2016] [Indexed: 12/25/2022]
Abstract
Mesenchymal stromal cells (MSCs) play a pivotal role in modern therapeutic approaches in bone‐healing disorders. Although bone marrow‐derived MSCs are most frequently used, the knowledge that many other adult tissues represent promising sources for potent MSCs has gained acceptance. In the present study, the osteogenic differentiation potential of porcine skin fibroblasts (FBs), as well as bone marrow‐ (BMSCs), adipose tissue‐ (ASCs) and dental pulp‐derived stromal cells (DSCs) were evaluated. However, additional application of BMP‐2 significantly elevated the delayed osteogenic differentiation capacity of ASC and FB cultures, and in DSC cultures the supplementation of platelet‐rich plasma increased osteogenic differentiation potential to a comparable level of the good differentiable BMSCs. Furthermore, microarray gene expression performed in an exemplary manner for ASCs and BMSCs revealed that ASCs and BMSCs use different gene expression patterns for osteogenic differentiation under standard media conditions, as diverse MSCs are imprinted dependent from their tissue niche. However, after increasing the differentiation potential of ASCs to a comparable level as shown in BMSCs, a small subset of identical key molecules was used to differentiate in the osteogenic lineage. Until now, the importance of identified genes seems to be underestimated for osteogenic differentiation. Apparently, the regulation of transmembrane protein 229A, interleukin‐33 and the fibroblast growth factor receptor‐2 in the early phase of osteogenic differentiation is needed for optimum results. Based on these results, bone regeneration strategies of MSCs have to be adjusted, and in vivo studies on the osteogenic capacities of the different types of MCSs are warranted. Copyright © 2016 The Authors Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Samet Bayraktar
- Department of Trauma and Hand Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Pascal Jungbluth
- Department of Trauma and Hand Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - René Deenen
- Biological and Medical Research Center (BMFZ), Genomics and Transcriptomics Laboratory (GTL), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jan Grassmann
- Department of Trauma and Hand Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Johannes Schneppendahl
- Department of Trauma and Hand Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Daphne Eschbach
- Department of Trauma-, Hand- and Reconstructive Surgery, University of Giessen and Marburg, Location Marburg, 35033, Marburg, Germany
| | - Armin Scholz
- Department of Trauma and Hand Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Joachim Windolf
- Department of Trauma and Hand Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christoph V Suschek
- Department of Trauma and Hand Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Vera Grotheer
- Department of Trauma and Hand Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
21
|
Ameloblastin and enamelin prevent osteoclast formation by suppressing RANKL expression via MAPK signaling pathway. Biochem Biophys Res Commun 2017; 485:621-626. [PMID: 28161637 DOI: 10.1016/j.bbrc.2017.01.181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 01/31/2017] [Indexed: 11/23/2022]
Abstract
Ameloblastin (Ambn) and enamelin (Enam) play a pivotal role in enamel mineralization. Previous studies have demonstrated that these enamel-related gene products also affect bone growth and remodeling; however, the underlying mechanisms have not been elucidated. In the present study, we examined the effects of Ambn and Enam on the receptor activator of nuclear factor kappa-B ligand (RANKL) expression induced with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and dexamethasone (DEX) on mouse bone marrow stromal cell line ST2 cells. We then verified the effect of Ambn and Enam on osteoclastogenesis. We found that pretreatment with recombinant human Ambn (rhAmbn) and recombinant human Enam (rhEnam) remarkably suppressed RANKL mRNA and protein expression induced with 1,25(OH)2D3 and DEX. Interestingly, rhAmbn and rhEnam attenuated the phosphorylation of mitogen-activated protein kinases (MAPK), including ERK1/2, JNK, and p38 in ST2 cells stimulated with 1,25(OH)2D3 and DEX. Moreover, pretreatment with specific inhibitors of ERK1/2 and p38, but not JNK, blocked RANKL mRNA and protein expression. Cell co-culture results showed that rhAmbn and rhEnam downregulated mouse bone marrow cell differentiation into osteoclasts induced with 1,25(OH)2D3 and DEX-stimulated ST2 cells. These results suggest that Ambn and Enam may indirectly suppress RANKL-induced osteoclastogenesis via downregulation of p38 and ERK1/2 MAPK signaling pathways in bone marrow stromal cells.
Collapse
|
22
|
Irwandi RA, Vacharaksa A. The role of microRNA in periodontal tissue: A review of the literature. Arch Oral Biol 2016; 72:66-74. [DOI: 10.1016/j.archoralbio.2016.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/04/2016] [Accepted: 08/12/2016] [Indexed: 01/12/2023]
|
23
|
Carotid plaque and bone density and microarchitecture in psoriatic arthritis: the correlation with soluble ST2. Sci Rep 2016; 6:32116. [PMID: 27554830 PMCID: PMC4995470 DOI: 10.1038/srep32116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/02/2016] [Indexed: 01/04/2023] Open
Abstract
Psoriatic arthritis (PsA) patients have increased risk of both atherosclerosis and osteoporosis. Previous studies revealed that IL-33/ST2 axis may be related to both conditions; however, these associations were never evaluated in a single patients’ group. Here we explored the association among plasma levels of IL-33 and its decoy receptor soluble ST2 (sST2), carotid plaque determined by ultrasound, and volumetric bone mineral density (vBMD)/microstructure of distal radius measured by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 80 PsA patients (55% male; 53.0 ± 10.1 years). Plasma sST2 levels were significantly higher in 33 (41%) patients with carotid plaques (11.2 ± 4.5 vs 7.7 ± 3.7 ng/ml, P < 0.001). In multivariate analysis, sST2 was an independent explanatory variable associated with carotid plaques (OR = 1.296, 95% CI: [1.091,1.540]; P = 0.003). After adjustment for the osteoporotic risk factors, sST2 was significantly associated with higher cortical porosity (β = 0.184, [0.042,0.325]; P = 0.012) and cortical pore volume (2.247, [0.434,4.060]; P = 0.016); and had a trend to be associated with lower cortical vBMD (−2.918, [−6.111,0.275]; P = 0.073). IL-33 was not associated with carotid plaque or vBMD/microstructure. In conclusion, plasma sST2 levels were independently correlated with both carotid plaque and compromised cortical vBMD/microstructure in PsA patients. IL-33/ST2 axis may be a link between accelerated atherosclerosis and osteoporosis in PsA.
Collapse
|
24
|
Okragly AJ, Hamang MJ, Pena EA, Baker HE, Bullock HA, Lucchesi J, Martin AP, Ma YL, Benschop RJ. Elevated levels of Interleukin (IL)-33 induce bone pathology but absence of IL-33 does not negatively impact normal bone homeostasis. Cytokine 2016; 79:66-73. [PMID: 26771472 DOI: 10.1016/j.cyto.2015.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/05/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Interleukin (IL)-33 is a member of the IL-1 family. IL-33 effects are mediated through its receptor, ST2 and IL-1RAcP, and its signaling induces the production of a number of pro-inflammatory mediators, including TNFα, IL-1β, IL-6, and IFN-γ. There are conflicting reports on the role of IL-33 in bone homeostasis, with some demonstrating a bone protective role for IL-33 whilst others show that IL-33 induces inflammatory arthritis with concurrent bone destruction. To better clarify the role IL-33 plays in bone biology in vivo, we studied IL-33 KO mice as well as mice in which the cytokine form of IL-33 was overexpressed. Mid-femur cortical bone mineral density (BMD) and bone strength were similar in the IL-33 KO mice compared to WT animals during the first 8months of life. However, in the absence of IL-33, we observed higher BMD in lumbar vertebrae and distal femur in female mice. In contrast, overexpression of IL-33 resulted in a marked and rapid reduction of bone volume, mineral density and strength. Moreover, this was associated with a robust increase in inflammatory cytokines (including IL-6 and IFN-γ), suggesting the bone pathology could be a direct effect of IL-33 or an indirect effect due to the induction of other mediators. Furthermore, the detrimental bone effects were accompanied by increases in osteoclast number and the bone resorption marker of C-terminal telopeptide collagen-I (CTX-I). Together, these results demonstrate that absence of IL-33 has no negative consequences in normal bone homeostasis while high levels of circulating IL-33 contributes to pathological bone loss.
Collapse
Affiliation(s)
- Angela J Okragly
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Matthew J Hamang
- Musculoskeletal-Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Emily A Pena
- Musculoskeletal-Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Hana E Baker
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Heather A Bullock
- Musculoskeletal-Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jonathan Lucchesi
- Musculoskeletal-Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Andrea P Martin
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Y Linda Ma
- Musculoskeletal-Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Robert J Benschop
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA.
| |
Collapse
|
25
|
Yu XX, Hu Z, Shen X, Dong LY, Zhou WZ, Hu WH. IL-33 Promotes Gastric Cancer Cell Invasion and Migration Via ST2-ERK1/2 Pathway. Dig Dis Sci 2015; 60:1265-72. [PMID: 25655003 DOI: 10.1007/s10620-014-3463-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 11/24/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND As a pro-inflammatory cytokine, IL-33 has been demonstrated to play an important role in tumor progression. It is reported that IL-33 is highly expressed in the serum and tumor tissues of patients with gastric cancer. However, the function of IL-33 in gastric cancer remains elusive. We here tried to elucidate the effects of IL-33 on gastric cancer cell invasion and migration. METHODS Invasion assay and migration assay were performed to assess the effects of IL-33 on gastric cancer cell invasion and migration. ST2 receptor was silenced by siRNA, and ERK1/2 pathway was inhibited by U0126. Protein levels of MMP-3 and IL-6 in cell supernatant were measured by ELISA. RESULTS IL-33 promoted the invasion and migration of gastric cancer cells, in a dose-dependent manner. Knockdown of the IL-33 receptor ST2 attenuated the IL-33-mediated invasion and migration. Furthermore, via ST2 receptor, IL-33 induced the activation of ERK1/2 and increased the secretion of MMP-3 and IL-6. In addition, blockage of ERK1/2 pathway resulted in inhibition of invasion and migration induced by IL-33, and downregulation of MMP-3 and IL-6 production. CONCLUSIONS IL-33 promotes gastric cancer cell invasion and migration by stimulating the secretion of MMP-3 and IL-6 via ST2-ERK1/2 pathway. Thus, IL-33 may be a useful marker for the diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Xi-Xiang Yu
- Department of Interventional Radiology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, China,
| | | | | | | | | | | |
Collapse
|