1
|
Yang Y, Xu B, Lu W. Phosphorylated ERM regulates meiotic maturation in mouse oocytes. Biochem Biophys Res Commun 2024; 734:150602. [PMID: 39243677 DOI: 10.1016/j.bbrc.2024.150602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
The cytoskeleton of mammal oocytes provides structural support to the plasma membrane and contributes to critical cellular dynamic processes such as nuclear positioning, germinal vesicle breakdown, spindle orientation, chromosome segregation, polar body extrusion, and transmembrane signaling pathways. The ERM family (ezrin, radixin and moesin) well known as membrane-cytoskeletal crosslinkers play a crucial role in organizing plasma membrane domains through their capacity to interact with transmembrane proteins and the underlying cytoskeleton. Recent works mainly focused on the structural analysis of the ERM family members and their binding partners, together with multiple functions in cell mitosis, have significantly advanced our understanding of the importance of membrane-cytoskeletal interactions. In the present study, we documented that p-ERM was expressed and localized at cortical and nucleus during mouse oocyte meiosis. p-ERM and microfilaments were colocalized from GV to MII during mouse oocyte maturation. After being treated with cytochalasin B (CB), the F-actin was disassembled. Meanwhile, p-ERM exhibited a diffuse cytoplasmic distribution and no special staining was detected in either the oocyte membrane or condensed chromosomes. p-ERM depletion by trim-away caused the meiotic procedure arrest with a significantly lower polar body extrusion rate. Collectively, these data demonstrate that the subcellular distribution of p-ERM is correlated with microfilaments. Meanwhile, the p-ERM contributes to the first polar extrusion but does not regulate the microfilament assembly.
Collapse
Affiliation(s)
- Yifeng Yang
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Baozeng Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Wenfa Lu
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
2
|
Kovács Z, Bajusz C, Szabó A, Borkúti P, Vedelek B, Benke R, Lipinszki Z, Kristó I, Vilmos P. A bipartite NLS motif mediates the nuclear import of Drosophila moesin. Front Cell Dev Biol 2024; 12:1206067. [PMID: 38450250 PMCID: PMC10915024 DOI: 10.3389/fcell.2024.1206067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
The ERM protein family, which consists of three closely related proteins in vertebrates, ezrin, radixin, and moesin (ERM), is an ancient and important group of cytoplasmic actin-binding and organizing proteins. With their FERM domain, ERMs bind various transmembrane proteins and anchor them to the actin cortex through their C-terminal F-actin binding domain, thus they are major regulators of actin dynamics in the cell. ERMs participate in many fundamental cellular processes, such as phagocytosis, microvilli formation, T-cell activation and tumor metastasis. We have previously shown that, besides its cytoplasmic activities, the single ERM protein of Drosophila melanogaster, moesin, is also present in the cell nucleus, where it participates in gene expression and mRNA export. Here we study the mechanism by which moesin enters the nucleus. We show that the nuclear import of moesin is an NLS-mediated, active process. The nuclear localization sequence of the moesin protein is an evolutionarily highly conserved, conventional bipartite motif located on the surface of the FERM domain. Our experiments also reveal that the nuclear import of moesin does not require PIP2 binding or protein activation, and occurs in monomeric form. We propose, that the balance between the phosphorylated and non-phosphorylated protein pools determines the degree of nuclear import of moesin.
Collapse
Affiliation(s)
- Zoltán Kovács
- HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Science, University of Szeged, Szeged, Hungary
| | - Csaba Bajusz
- HUN-REN Biological Research Centre, Szeged, Hungary
| | - Anikó Szabó
- HUN-REN Biological Research Centre, Szeged, Hungary
| | | | | | - Réka Benke
- HUN-REN Biological Research Centre, Szeged, Hungary
| | - Zoltán Lipinszki
- HUN-REN Biological Research Centre, Institute of Biochemistry, MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Szeged, Hungary
| | | | - Péter Vilmos
- HUN-REN Biological Research Centre, Szeged, Hungary
| |
Collapse
|
3
|
Zhao A, Varady S, O'Kelley-Bangsberg M, Deng V, Platenkamp A, Wijngaard P, Bern M, Gormley W, Kushkowski E, Thompson K, Tibbetts L, Conner AT, Noeckel D, Teran A, Ritz A, Applewhite DA. From network analysis to experimental validation: identification of regulators of non-muscle myosin II contractility using the folded-gastrulation signaling pathway. BMC Mol Cell Biol 2023; 24:32. [PMID: 37821823 PMCID: PMC10568788 DOI: 10.1186/s12860-023-00492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
The morphogenetic process of apical constriction, which relies on non-muscle myosin II (NMII) generated constriction of apical domains of epithelial cells, is key to the development of complex cellular patterns. Apical constriction occurs in almost all multicellular organisms, but one of the most well-characterized systems is the Folded-gastrulation (Fog)-induced apical constriction that occurs in Drosophila. The binding of Fog to its cognizant receptors Mist/Smog results in a signaling cascade that leads to the activation of NMII-generated contractility. Despite our knowledge of key molecular players involved in Fog signaling, we sought to explore whether other proteins have an undiscovered role in its regulation. We developed a computational method to predict unidentified candidate NMII regulators using a network of pairwise protein-protein interactions called an interactome. We first constructed a Drosophila interactome of over 500,000 protein-protein interactions from several databases that curate high-throughput experiments. Next, we implemented several graph-based algorithms that predicted 14 proteins potentially involved in Fog signaling. To test these candidates, we used RNAi depletion in combination with a cellular contractility assay in Drosophila S2R + cells, which respond to Fog by contracting in a stereotypical manner. Of the candidates we screened using this assay, two proteins, the serine/threonine phosphatase Flapwing and the putative guanylate kinase CG11811 were demonstrated to inhibit cellular contractility when depleted, suggestive of their roles as novel regulators of the Fog pathway.
Collapse
Affiliation(s)
- Andy Zhao
- Reed College Department of Biology, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA
| | - Sophia Varady
- Reed College Department of Biology, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA
| | | | - Vicki Deng
- Reed College Department of Biology, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA
| | - Amy Platenkamp
- Reed College Department of Biology, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA
| | - Petra Wijngaard
- Reed College Department of Biology, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA
| | - Miriam Bern
- Reed College Department of Biology, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA
| | - Wyatt Gormley
- Reed College Department of Biology, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA
| | - Elaine Kushkowski
- Reed College Department of Biology, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA
| | - Kat Thompson
- Reed College Department of Biology, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA
| | - Logan Tibbetts
- Reed College Department of Biology, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA
| | - A Tamar Conner
- Reed College Department of Biology, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA
| | - David Noeckel
- Reed College Department of Biology, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA
| | - Aidan Teran
- Reed College Department of Biology, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA
| | - Anna Ritz
- Reed College Department of Biology, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA.
| | - Derek A Applewhite
- Reed College Department of Biology, 3203 SE Woodstock Blvd, Portland, OR, 97202, USA.
| |
Collapse
|
4
|
Jeruzalska E, Mazur AJ. The Role of non-muscle actin paralogs in cell cycle progression and proliferation. Eur J Cell Biol 2023; 102:151315. [PMID: 37099935 DOI: 10.1016/j.ejcb.2023.151315] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Uncontrolled cell proliferation leads to several pathologies, including cancer. Thus, this process must be tightly regulated. The cell cycle accounts for cell proliferation, and its progression is coordinated with changes in cell shape, for which cytoskeleton reorganization is responsible. Rearrangement of the cytoskeleton allows for its participation in the precise division of genetic material and cytokinesis. One of the main cytoskeletal components is filamentous actin-based structures. Mammalian cells have at least six actin paralogs, four of which are muscle-specific, while two, named β- and γ-actin, are abundantly present in all types of cells. This review summarizes the findings that establish the role of non-muscle actin paralogs in regulating cell cycle progression and proliferation. We discuss studies showing that the level of a given non-muscle actin paralog in a cell influences the cell's ability to progress through the cell cycle and, thus, proliferation. Moreover, we elaborate on the non-muscle actins' role in regulating gene transcription, interactions of actin paralogs with proteins involved in controlling cell proliferation, and the contribution of non-muscle actins to different structures in a dividing cell. The data cited in this review show that non-muscle actins regulate the cell cycle and proliferation through varying mechanisms. We point to the need for further studies addressing these mechanisms.
Collapse
Affiliation(s)
- Estera Jeruzalska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland.
| |
Collapse
|
5
|
A biophysical perspective of the regulatory mechanisms of ezrin/radixin/moesin proteins. Biophys Rev 2022; 14:199-208. [PMID: 35340609 PMCID: PMC8921360 DOI: 10.1007/s12551-021-00928-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
Many signal transductions resulting from ligand-receptor interactions occur at the cell surface. These signaling pathways play essential roles in cell polarization, membrane morphogenesis, and the modulation of membrane tension at the cell surface. However, due to the large number of membrane-binding proteins, including actin-membrane linkers, and transmembrane proteins present at the cell surface, the molecular mechanisms underlying the regulation at the cell surface are yet unclear. Here, we describe the molecular functions of one of the key players at the cell surface, ezrin/radixin/moesin (ERM) proteins from a biophysical point of view. We focus our discussion on biophysical properties of ERM proteins revealed by using biophysical tools in live cells and in vitro reconstitution systems. We first describe the structural properties of ERM proteins and then discuss the interactions of ERM proteins with PI(4,5)P2 and the actin cytoskeleton. These properties of ERM proteins revealed by using biophysical approaches have led to a better understanding of their physiological functions in cells and tissues. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00928-0.
Collapse
|
6
|
Rahimi N, Ho RXY, Chandler KB, De La Cena KOC, Amraei R, Mitchel AJ, Engblom N, Costello CE. The cell adhesion molecule TMIGD1 binds to moesin and regulates tubulin acetylation and cell migration. J Biomed Sci 2021; 28:61. [PMID: 34503512 PMCID: PMC8427838 DOI: 10.1186/s12929-021-00757-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
Background The cell adhesion molecule transmembrane and immunoglobulin (Ig) domain containing1 (TMIGD1) is a novel tumor suppressor that plays important roles in regulating cell–cell adhesion, cell proliferation and cell cycle. However, the mechanisms of TMIGD1 signaling are not yet fully elucidated. Results TMIGD1 binds to the ERM family proteins moesin and ezrin, and an evolutionarily conserved RRKK motif on the carboxyl terminus of TMIGD1 mediates the interaction of TMIGD1 with the N-terminal ERM domains of moesin and ezrin. TMIGD1 governs the apical localization of moesin and ezrin, as the loss of TMIGD1 in mice altered apical localization of moesin and ezrin in epithelial cells. In cell culture, TMIGD1 inhibited moesin-induced filopodia-like protrusions and cell migration. More importantly, TMIGD1 stimulated the Lysine (K40) acetylation of α-tubulin and promoted mitotic spindle organization and CRISPR/Cas9-mediated knockout of moesin impaired the TMIGD1-mediated acetylation of α-tubulin and filamentous (F)-actin organization. Conclusions TMIGD1 binds to moesin and ezrin, and regulates their cellular localization. Moesin plays critical roles in TMIGD1-dependent acetylation of α-tubulin, mitotic spindle organization and cell migration. Our findings offer a molecular framework for understanding the complex functional interplay between TMIGD1 and the ERM family proteins in the regulation of cell adhesion and mitotic spindle assembly, and have wide-ranging implications in physiological and pathological processes such as cancer progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00757-z.
Collapse
Affiliation(s)
- Nader Rahimi
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA, 02118, USA.
| | - Rachel X Y Ho
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA, 02118, USA
| | - Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Razie Amraei
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA, 02118, USA
| | - Ashley J Mitchel
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA, 02118, USA
| | - Nels Engblom
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA, 02118, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
7
|
Farina F, Ramkumar N, Brown L, Samandar Eweis D, Anstatt J, Waring T, Bithell J, Scita G, Thery M, Blanchoin L, Zech T, Baum B. Local actin nucleation tunes centrosomal microtubule nucleation during passage through mitosis. EMBO J 2019; 38:e99843. [PMID: 31015335 PMCID: PMC6545563 DOI: 10.15252/embj.201899843] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Cells going through mitosis undergo precisely timed changes in cell shape and organisation, which serve to ensure the fair partitioning of cellular components into the two daughter cells. These structural changes are driven by changes in actin filament and microtubule dynamics and organisation. While most evidence suggests that the two cytoskeletal systems are remodelled in parallel during mitosis, recent work in interphase cells has implicated the centrosome in both microtubule and actin nucleation, suggesting the potential for regulatory crosstalk between the two systems. Here, by using both in vitro and in vivo assays to study centrosomal actin nucleation as cells pass through mitosis, we show that mitotic exit is accompanied by a burst in cytoplasmic actin filament formation that depends on WASH and the Arp2/3 complex. This leads to the accumulation of actin around centrosomes as cells enter anaphase and to a corresponding reduction in the density of centrosomal microtubules. Taken together, these data suggest that the mitotic regulation of centrosomal WASH and the Arp2/3 complex controls local actin nucleation, which may function to tune the levels of centrosomal microtubules during passage through mitosis.
Collapse
Affiliation(s)
- Francesca Farina
- MRC-LMCB, UCL, London, UK
- IPLS, UCL, London, UK
- IFOM, the FIRC Institute of Molecular Oncology, University of Milan, Milan, Italy
- University of Grenoble, Grenoble, France
| | | | - Louise Brown
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | | | | | - Thomas Waring
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Jessica Bithell
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, University of Milan, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | | | - Tobias Zech
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Buzz Baum
- MRC-LMCB, UCL, London, UK
- IPLS, UCL, London, UK
| |
Collapse
|
8
|
Nuclear actin: ancient clue to evolution in eukaryotes? Histochem Cell Biol 2018; 150:235-244. [DOI: 10.1007/s00418-018-1693-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 12/31/2022]
|
9
|
Wang D, Cao Y, Zheng L, Lv D, Chen L, Xing X, Zhu Z, Li X, Chai Y. Identification of Annexin A2 as a target protein for plant alkaloid matrine. Chem Commun (Camb) 2017; 53:5020-5023. [DOI: 10.1039/c7cc02227a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cellular target of matrine is identified.
Collapse
Affiliation(s)
- Dongyao Wang
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Yan Cao
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Leyi Zheng
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Diya Lv
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Langdong Chen
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Xinrui Xing
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Zhenyu Zhu
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Xiaoyu Li
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- China
| | - Yifeng Chai
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| |
Collapse
|