1
|
Mitura P, Paja W, Klebowski B, Płaza P, Bar K, Młynarczyk G, Depciuch J. Urine Analysed by FTIR, Chemometrics and Machine Learning Methods in Determination Spectroscopy Marker of Prostate Cancer in Urine. JOURNAL OF BIOPHOTONICS 2025; 18:e202400278. [PMID: 39572857 DOI: 10.1002/jbio.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/14/2024] [Accepted: 10/05/2024] [Indexed: 01/07/2025]
Abstract
Prostate-specific antigen (PSA) is the most commonly used marker of prostate cancer. However, nearly 25% of men with elevated PSA levels do not have cancer and nearly 20% of patients with prostate cancer have normal serum PSA levels. Therefore, in this study, Fourier transform infrared (FTIR) spectroscopy was investigated as a new tool for detection of prostate cancer from urine. Obtained results showed higher levels of glucose, urea and creatinine in urine collected from patients with prostate cancer than that in control. Principal component analysis (PCA) was not noticed possibility of differentiation urine collected from healthy and nonhealthy patients. However, machine learning algorithms showed 0.90 accuracy and precision of FTIR in detection of prostate cancer from urine. We showed that wavenumbers at 1614 cm-1 and 2972 cm-1 were candidates for prostate cancer spectroscopy markers. Importantly, these FTIR markers correlated with Gleason score, PSA and mpMRI PI-RADS category.
Collapse
Affiliation(s)
- Przemysław Mitura
- Department of Urology and Oncological Urology, Medical University of Lublin, Lublin, Poland
| | - Wiesław Paja
- Department of Artificial Intelligence, Institute of Computer Science, University of Rzeszow, Rzeszów, Poland
| | - Bartosz Klebowski
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Paweł Płaza
- Department of Urology and Oncological Urology, Medical University of Lublin, Lublin, Poland
| | - Krzyszof Bar
- Department of Urology and Oncological Urology, Medical University of Lublin, Lublin, Poland
| | | | - Joanna Depciuch
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
2
|
Dahiya V, Hans S, Kumari R, Bagchi G. Prostate cancer biomarkers: from early diagnosis to precision treatment. Clin Transl Oncol 2024; 26:2444-2456. [PMID: 38744755 DOI: 10.1007/s12094-024-03508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Prostate cancer (PCa) is the second most prevalent cancer in men. In 2020, approximately 1,414,259 new cases were reported that accounted for 3,75,324 deaths (Sung et al. in CA 71:209-249, 2021). PCa is often asymptomatic at early stages; hence, routine screening and monitoring based on reliable biomarkers is crucial for early detection and assessment of cancer progression. Early diagnosis of disease is key step in reducing PCa-induced mortality. Biomarkers such as PSA have played vital role in reducing recent PCa deaths. Recent research has identified many other biomarkers and also refined PSA-based tests for non-invasive diagnosis of PCa in patients. Despite progress in screening methods, an important issue that influences treatment is heterogeneity of the cancer in different individuals, necessitating personalized treatment. Currently, focus is to identify biomarkers that can accurately diagnose PCa at early stage, indicate the stage of the disease, metastatic nature and chances of survival based on individual patient profile (Fig. 1). Fig. 1 Graphical abstract.
Collapse
Affiliation(s)
- Versha Dahiya
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India, 122413
| | - Sanjana Hans
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India, 122413
| | - Ruchi Kumari
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India, 122413
| | - Gargi Bagchi
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India, 122413.
| |
Collapse
|
3
|
Kim JH, Seo H, Kim S, Rahim MA, Jo S, Barman I, Tajdozian H, Sarafraz F, Song HY, Song YS. Different Prostatic Tissue Microbiomes between High- and Low-Grade Prostate Cancer Pathogenesis. Int J Mol Sci 2024; 25:8943. [PMID: 39201629 PMCID: PMC11354394 DOI: 10.3390/ijms25168943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Numerous human pathologies, such as neoplasia, are related to particular bacteria and changes in microbiome constituents. To investigate the association between an imbalance of bacteria and prostate carcinoma, the microbiome and gene functionality from tissues of patients with high-grade prostate tumor (HGT) and low-grade prostate tumor (LGT) were compared utilizing next-generation sequencing (NGS) technology. The results showed abnormalities in the bacterial profiles between the HGT and LGT specimens, indicating alterations in the make-up of bacterial populations and gene functionalities. The HGT specimens showed higher frequencies of Cutibacterium, Pelomonas, and Corynebacterium genera than the LGT specimens. Cell proliferation and cytokine assays also showed a significant proliferation of prostate cancer cells and elevated cytokine levels in the cells treated with Cutibacterium, respectively, supporting earlier findings. In summary, the HGT and LGT specimens showed differences in bacterial populations, suggesting that different bacterial populations might characterize high-grade and low-grade prostate malignancies.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, Soonchunhyang University School of Medicine, Seoul 04401, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
| | - Hoonhee Seo
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sukyung Kim
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Md Abdur Rahim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sujin Jo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Indrajeet Barman
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hanieh Tajdozian
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Faezeh Sarafraz
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Asan 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM-MRC), Soonchunhyang University, Asan 31538, Republic of Korea
| | - Yun Seob Song
- Department of Urology, Soonchunhyang University School of Medicine, Seoul 04401, Republic of Korea
| |
Collapse
|
4
|
Li C, Wang B, Tu J, Liu C, Wang Y, Chen J, Huang Y, Liu B, Yuan X. ATM inhibition enhance immunotherapy by activating STING signaling and augmenting MHC Class I. Cell Death Dis 2024; 15:519. [PMID: 39033176 PMCID: PMC11271473 DOI: 10.1038/s41419-024-06911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Accumulating evidence supports the concept that DNA damage response targeted therapies can improve antitumor immune response by increasing the immunogenicity of tumor cells and improving the tumor immune microenvironment. Ataxia telangiectasia mutated (ATM) is a core component of the DNA repair system. Although the ATM gene has a significant mutation rate in many human cancers, including colorectal, prostate, lung, and breast, it remains understudied compared with other DDR-involved molecules such as PARP and ATR. Here, we found that either gene knockout or drug intervention, ATM inhibition activated the cGAS/STING pathway and augmented MHC class I in CRC cells, and these effects could be amplified by radiation. Furthermore, we found that MHC class I upregulation induced by ATM inhibition is dependent on the activation of the NFκB/IRF1/NLRC5 pathway and independent of STING. Animal experiments have shown increasing infiltration and cytotoxic function of T cells and better survival in ATM-deficient tumors. This work indicated that ATM nonsense mutation predicted the clinical benefits of radiotherapy combined with immune checkpoint blockade for patients with CRC. It also provides a molecular mechanism rationale for ATM-targeted agents for patients with CRC.
Collapse
Affiliation(s)
- Chunya Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boyu Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaofan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Patra KSL, Kumar P, Chand P, Vats RK. Beyond the Usual Suspects: When the Skin Tells a Different Story: Cutaneous Metastasis in Prostate Carcinoma. Indian J Dermatol 2024; 69:189-191. [PMID: 38841224 PMCID: PMC11149807 DOI: 10.4103/ijd.ijd_919_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Affiliation(s)
- Kumari Sweta Leena Patra
- From the Department of Dermatology, Venereology and Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India E-mail:
| | - Prem Kumar
- Consultant Urologist, Ranchi Urology Centre, Bariatu, Ranchi, Jharkhand, India
| | - Priyanka Chand
- Senior Consultant Pathologist, NRL, Dr. Lal PathLabs, New Delhi, Delhi, India
| | - Rajeev K Vats
- Consultant Urologist, Ranchi Urology Centre, Bariatu, Ranchi, Jharkhand, India
| |
Collapse
|
6
|
Kazmi I, Altamimi ASA, Afzal M, Majami AA, AlGhamdi AS, Alkinani KB, Abbasi FA, Almalki WH, Alzera SI, Kukreti N, Fuloria NK, Sekar M, Abida. The emerging role of non-coding RNAs in the Wnt/β-catenin signaling pathway in Prostate Cancer. Pathol Res Pract 2024; 254:155134. [PMID: 38277746 DOI: 10.1016/j.prp.2024.155134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
Prostate cancer (PCa) is an important worldwide medical concern, necessitating a greater understanding of the molecular processes driving its development. The Wnt/-catenin signaling cascade is established as a central player in PCa pathogenesis, and recent research emphasizes the critical involvement of non-coding RNAs (ncRNAs) in this scenario. This in-depth study seeks to give a thorough examination of the complex relationship between ncRNAs and the Wnt/β-catenin system in PCa. NcRNAs, such as circular RNAs (circRNAs), long ncRNAs (lncRNAs), and microRNAs (miRNAs), have been recognized as essential regulators that modulate numerous facets of the Wnt/β-catenin network. MiRNAs have been recognized as targeting vital elements of the process, either enhancing or inhibiting signaling, depending on their specific roles and targets. LncRNAs participate in fine-tuning the Wnt/β-catenin network as a result of complicated interplay with both upstream and downstream elements. CircRNAs, despite being a relatively recent addition to the ncRNA family, have been implicated in PCa, influencing the Wnt/β-catenin cascade through diverse mechanisms. This article encompasses recent advances in our comprehension of specific ncRNAs that participate in the Wnt/β-catenin network, their functional roles, and clinical relevance in PCa. We investigate their use as screening and predictive indicators, and targets for treatment. Additionally, we delve into the interplay between Wnt/β-catenin and other signaling networks in PCa and the role of ncRNAs within this complex network. As we unveil the intricate regulatory functions of ncRNAs in the Wnt/β-catenin cascade in PCa, we gain valuable insights into the disease's pathogenesis. The implementation of these discoveries in practical applications holds promise for more precise diagnosis, prognosis, and targeted therapeutic approaches, ultimately enhancing the care of PCa patients. This comprehensive review underscores the evolving landscape of ncRNA research in PCa and the potential for innovative interventions in the battle against this formidable malignancy.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | | | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Abdullah A Majami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Abeer S AlGhamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Khadijah B Alkinani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia; Department of Public Health, Faculty of Health Sciences, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Fahad Al Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzera
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
7
|
Bu T, Li L, Tian J. Unlocking the role of non-coding RNAs in prostate cancer progression: exploring the interplay with the Wnt signaling pathway. Front Pharmacol 2023; 14:1269233. [PMID: 37829301 PMCID: PMC10565042 DOI: 10.3389/fphar.2023.1269233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in males, exhibiting a wide spectrum of clinical manifestations that pose challenges in its diagnosis and treatment. The Wnt signaling pathway, a conserved and complex pathway, is crucial for embryonic development, tissue homeostasis, and various physiological processes. Apart from the classical Wnt/β-catenin signaling pathway, there exist multiple non-classical Wnt signaling pathways, including the Wnt/PCP and Wnt/Ca2+ pathways. Non-coding RNAs (ncRNAs) are involved in the occurrence and development of PCa and the response to PCa treatment. ncRNAs are known to execute diverse regulatory roles in cellular processes, despite their inability to encode proteins. Among them, microRNAs, long non-coding RNAs, and circular RNAs play key roles in the regulation of the Wnt signaling pathway in PCa. Aberrant expression of these ncRNAs and dysregulation of the Wnt signaling pathway are one of the causes of cell proliferation, apoptosis, invasion, migration, and angiogenesis in PCa. Moreover, these ncRNAs affect the characteristics of PCa cells and hold promise as diagnostic and prognostic biomarkers. Herein, we summarize the role of ncRNAs in the regulation of the Wnt signaling pathway during the development of PCa. Additionally, we present an overview of the current progress in research on the correlation between these molecules and clinical features of the disease to provide novel insights and strategies for the treatment of PCa.
Collapse
Affiliation(s)
| | | | - Jiyu Tian
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Fontana D, Crespiatico I, Crippa V, Malighetti F, Villa M, Angaroni F, De Sano L, Aroldi A, Antoniotti M, Caravagna G, Piazza R, Graudenzi A, Mologni L, Ramazzotti D. Evolutionary signatures of human cancers revealed via genomic analysis of over 35,000 patients. Nat Commun 2023; 14:5982. [PMID: 37749078 PMCID: PMC10519956 DOI: 10.1038/s41467-023-41670-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
Recurring sequences of genomic alterations occurring across patients can highlight repeated evolutionary processes with significant implications for predicting cancer progression. Leveraging the ever-increasing availability of cancer omics data, here we unveil cancer's evolutionary signatures tied to distinct disease outcomes, representing "favored trajectories" of acquisition of driver mutations detected in patients with similar prognosis. We present a framework named ASCETIC (Agony-baSed Cancer EvoluTion InferenCe) to extract such signatures from sequencing experiments generated by different technologies such as bulk and single-cell sequencing data. We apply ASCETIC to (i) single-cell data from 146 myeloid malignancy patients and bulk sequencing from 366 acute myeloid leukemia patients, (ii) multi-region sequencing from 100 early-stage lung cancer patients, (iii) exome/genome data from 10,000+ Pan-Cancer Atlas samples, and (iv) targeted sequencing from 25,000+ MSK-MET metastatic patients, revealing subtype-specific single-nucleotide variant signatures associated with distinct prognostic clusters. Validations on several datasets underscore the robustness and generalizability of the extracted signatures.
Collapse
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Ilaria Crespiatico
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valentina Crippa
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Federica Malighetti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Matteo Villa
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Fabrizio Angaroni
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
- Center of Computational Biology, Human Technopole, Milano, Italy
| | - Luca De Sano
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | - Andrea Aroldi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Hematology and Clinical Research Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marco Antoniotti
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre-B4, Milan, Italy
| | - Giulio Caravagna
- Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alex Graudenzi
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy.
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre-B4, Milan, Italy.
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-CNR), Segrate, Milan, Italy.
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
9
|
Kong Y, Jiang C, Wei G, Sun K, Wang R, Qiu T. Small Molecule Inhibitors as Therapeutic Agents Targeting Oncogenic Fusion Proteins: Current Status and Clinical. Molecules 2023; 28:4672. [PMID: 37375228 DOI: 10.3390/molecules28124672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Oncogenic fusion proteins, arising from chromosomal rearrangements, have emerged as prominent drivers of tumorigenesis and crucial therapeutic targets in cancer research. In recent years, the potential of small molecular inhibitors in selectively targeting fusion proteins has exhibited significant prospects, offering a novel approach to combat malignancies harboring these aberrant molecular entities. This review provides a comprehensive overview of the current state of small molecular inhibitors as therapeutic agents for oncogenic fusion proteins. We discuss the rationale for targeting fusion proteins, elucidate the mechanism of action of inhibitors, assess the challenges associated with their utilization, and provide a summary of the clinical progress achieved thus far. The objective is to provide the medicinal community with current and pertinent information and to expedite the drug discovery programs in this area.
Collapse
Affiliation(s)
- Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Caihong Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Kai Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruijie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
10
|
Grochot R, Carreira S, Miranda S, Figueiredo I, Bertan C, Rekowski J, Yuan W, Ferreira A, Riisnaes R, Neeb A, Gurel B, de Los Dolores Fenor de la Maza M, Guo C, Carmichael J, Westaby D, Mateo J, Sharp A, McVeigh TP, De Bono J. Germline ATM Mutations Detected by Somatic DNA Sequencing in Lethal Prostate Cancer. EUR UROL SUPPL 2023; 52:72-78. [PMID: 37284046 PMCID: PMC10240520 DOI: 10.1016/j.euros.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 06/08/2023] Open
Abstract
Background Germline mutations in the ataxia telangiectasia mutated (ATM) gene occur in 0.5-1% of the overall population and are associated with tumour predisposition. The clinical and pathological features of ATM-mutated prostate cancer (PC) are poorly defined but have been associated with lethal PC. Objective To report on the clinical characteristics including family history and clinical outcomes of a cohort of patients with advanced metastatic castration-resistant PC (CRPC) who were found to have germline ATM mutations after mutation detection by initial tumour DNA sequencing. Design setting and participants We acquired germline ATM mutation data by saliva next-generation sequencing from patients with ATM mutations in PC biopsies sequenced between January 2014 and January 2022. Demographics, family history, and clinical data were collected retrospectively. Outcome measurements and statistical analysis Outcome endpoints were based on overall survival (OS) and time from diagnosis to CRPC. Data were analysed using R version 3.6.2 (R Foundation for Statistical Computing, Vienna, Austria). Results and limitations Overall, seven patients (n = 7/1217; 0.6%) had germline ATM mutations detected, with five of them having a family history of malignancies, including breast, prostate, pancreas, and gastric cancer; leukaemia; and lymphoma. Two patients had concomitant somatic mutations in tumour biopsies in genes other than ATM, while two patients were found to carry more than one ATM pathogenic mutation. Five tumours in germline ATM variant carriers had loss of ATM by immunohistochemistry. The median OS from diagnosis was 7.1 yr (range 2.9-14 yr) and the median OS from CRPC was 5.3 yr (range 2.2-7.3 yr). When comparing these data with PC patients sequenced by The Cancer Genome Atlas, we found that the spatial localisation of mutations was similar, with distribution of alterations occurring on similar positions in the ATM gene. Interestingly, these include a mutation within the FRAP-ATM-TRRAP (FAT) domain, suggesting that this represents a mutational hotspot for ATM. Conclusions Germline ATM mutations are rare in patients with lethal PC but occur at mutational hotspots; further research is warranted to better characterise the family histories of these men and PC clinical course. Patient summary In this report, we studied the clinical and pathological features of advanced prostate cancers associated with germline mutations in the ATM gene. We found that most patients had a strong family history of cancer and that this mutation might predict the course of these prostate cancers, as well as response to specific treatments.
Collapse
Affiliation(s)
- Rafael Grochot
- The Institute of Cancer Research (ICR), London, UK
- Royal Marsden NHS Foundation Trust (RMH), London, UK
| | | | | | | | | | - Jan Rekowski
- The Institute of Cancer Research (ICR), London, UK
| | - Wei Yuan
- The Institute of Cancer Research (ICR), London, UK
| | - Ana Ferreira
- The Institute of Cancer Research (ICR), London, UK
| | | | - Antje Neeb
- The Institute of Cancer Research (ICR), London, UK
| | - Bora Gurel
- The Institute of Cancer Research (ICR), London, UK
| | | | - Christina Guo
- The Institute of Cancer Research (ICR), London, UK
- Royal Marsden NHS Foundation Trust (RMH), London, UK
| | - Juliet Carmichael
- The Institute of Cancer Research (ICR), London, UK
- Royal Marsden NHS Foundation Trust (RMH), London, UK
| | - Daniel Westaby
- The Institute of Cancer Research (ICR), London, UK
- Royal Marsden NHS Foundation Trust (RMH), London, UK
| | | | - Adam Sharp
- The Institute of Cancer Research (ICR), London, UK
- Royal Marsden NHS Foundation Trust (RMH), London, UK
| | | | - Johann De Bono
- The Institute of Cancer Research (ICR), London, UK
- Royal Marsden NHS Foundation Trust (RMH), London, UK
| |
Collapse
|
11
|
Li X, Zheng C, Xue X, Wu J, Li F, Song D, Li X. Integrated analysis of single-cell and bulk RNA sequencing identifies a signature based on macrophage marker genes involved in prostate cancer prognosis and treatment responsiveness. Funct Integr Genomics 2023; 23:115. [PMID: 37010617 DOI: 10.1007/s10142-023-01037-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023]
Abstract
In the tumor microenvironment, tumor-associated macrophages (TAMs) interact with cancer cells and contribute to the progression of solid tumors. Nonetheless, the clinical significance of TAM-related biomarkers in prostate cancer (PCa) is largely unexplored. The present study aimed to construct a macrophage-related signature (MRS) for predicting PCa patient prognosis based on macrophage marker genes. Six cohorts comprising 1056 PCa patients with RNA-Seq and follow-up data were enrolled. Based on macrophage marker genes identified by single-cell RNA-sequencing (scRNA-seq) analysis, univariate analysis, least absolute shrinkage and selection operator (Lasso)-Cox regression, and machine learning procedures were performed to derive a consensus MRS. Receiver operating characteristic curve (ROC), concordance index, and decision curve analyses were used to confirm the predictive capacity of the MRS. The predictive performance of the MRS for recurrence-free survival (RFS) was stable and robust, and the MRS outperformed traditional clinical variables. Furthermore, high-MRS-score patients presented abundant macrophage infiltration and high-expression levels of immune checkpoints (CTLA4, HAVCR2, and CD86). The frequency of mutations was relatively high in the high-MRS-score subgroup. However, the low-MRS-score patients had a better response to immune checkpoint blockade (ICB) and leuprolide-based adjuvant chemotherapy. Notably, abnormal ATF3 expression may be associated with docetaxel and cabazitaxel resistance in PCa cells, T stage, and the Gleason score. In this study, a novel MRS was first developed and validated to accurately predict patient survival outcomes, evaluate immune characteristics, infer therapeutic benefits, and provide an auxiliary tool for personalized therapy.
Collapse
Affiliation(s)
- Xiugai Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Chang Zheng
- Department of Clinical Epidemiology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoxia Xue
- Science Experiment Center, China Medical University, Shenyang, 110122, China
| | - Junying Wu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Fei Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Dan Song
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
12
|
Eickelschulte S, Riediger AL, Angeles AK, Janke F, Duensing S, Sültmann H, Görtz M. Biomarkers for the Detection and Risk Stratification of Aggressive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14246094. [PMID: 36551580 PMCID: PMC9777028 DOI: 10.3390/cancers14246094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Current strategies for the clinical management of prostate cancer are inadequate for a precise risk stratification between indolent and aggressive tumors. Recently developed tissue-based molecular biomarkers have refined the risk assessment of the disease. The characterization of tissue biopsy components and subsequent identification of relevant tissue-based molecular alterations have the potential to improve the clinical decision making and patient outcomes. However, tissue biopsies are invasive and spatially restricted due to tumor heterogeneity. Therefore, there is an urgent need for complementary diagnostic and prognostic options. Liquid biopsy approaches are minimally invasive with potential utility for the early detection, risk stratification, and monitoring of tumors. In this review, we focus on tissue and liquid biopsy biomarkers for early diagnosis and risk stratification of prostate cancer, including modifications on the genomic, epigenomic, transcriptomic, and proteomic levels. High-risk molecular alterations combined with orthogonal clinical parameters can improve the identification of aggressive tumors and increase patient survival.
Collapse
Affiliation(s)
- Samaneh Eickelschulte
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Anja Lisa Riediger
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Arlou Kristina Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Magdalena Görtz
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-42-2603
| |
Collapse
|