1
|
Verma S, Choudhary RN, Kanadje AP, Banerjee UC, Laha JK. Nano-structured polyaniline in biocatalysis: Manifesting simultaneous competence of polyaniline nanofibers and nanotubes as immobilization matrices for laccase mediated synthesis of drug intermediates. Int J Biol Macromol 2025; 296:139511. [PMID: 39761878 DOI: 10.1016/j.ijbiomac.2025.139511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
Customized nano-biocatalysts of laccase have been made using nano-structured polyaniline viz. nano-fibers and nano-tubes, as immobilization supports and a simultaneous comparison between them has been made. Laccases are poly-phenol oxidases having tremendous utility concerning wider areas of application especially in the field of organic and drug syntheses. Considering importance of laccases in drug syntheses, an effort has been made to immobilize laccase on the nano-structured polyaniline by adsorption. Immobilization was assessed using percentage enzyme loading as well as immobilization efficiency. Further immobilization process was strengthened using statistical optimization (Response Surface Methodology) for the parameters affecting immobilization viz. pH, Stirring rate, Enzyme Support ratio. In comparison to free enzyme, better thermal stability was depicted with almost 3- and 4-fold increase in half-life for immobilized laccase on nanofibers and nanotubes, respectively, at 80 °C. The storage stability of the nano-biocatalysts was revealed by the retention >50 % of higher enzyme activity in comparison to free form, when stored at 4 °C for up to 60 days. Moreover, slow and gradual decline in activity was observed when the immobilized laccase preparations were re-utilized for ten consecutive cycles of guaiacol oxidation. Greater than 60 % retention of enzyme activity after consistent catalytic cycles renders the utilization of immobilization preparations in industrial biocatalysis. Manifestation of efficient nano-biocatalysts has portrayed superior enzyme kinetics in rendering efficient biotransformations of ortho-phenylenediamine analogues to subsequent Phenazines which are known to possess therapeutic properties ranging from anti-microbial to anti-proliferative and so on.
Collapse
Affiliation(s)
- Sahil Verma
- Department of Pharmaceutical Technology, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Rahul N Choudhary
- Department of Pharmaceutical Technology, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Akash Prakash Kanadje
- Department of Pharmaceutical Technology, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Uttam Chand Banerjee
- Department of Pharmaceutical Technology, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Mohali, Punjab 160062, India; Department of Biotechnology, Amity University, 82A, IT City, International Airport Road, Mohali, Punjab 140306, India(1).
| | - Joydev K Laha
- Department of Pharmaceutical Technology, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Mohali, Punjab 160062, India.
| |
Collapse
|
2
|
Lee Y, Lee S, Kim S, Lee D, Won K. Solvent-free enzymatic synthesis and evaluation of vanillyl propionate as an effective and biocompatible preservative. Bioprocess Biosyst Eng 2023; 46:1579-1590. [PMID: 37682355 DOI: 10.1007/s00449-023-02921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023]
Abstract
Preservatives are chemicals added to protect products against microbial spoilage, and thus are indispensable for pharmaceuticals, cosmetics, and foods. Due to growing concerns about human health and environments in conventional chemical preservatives, many companies have been seeking safe and effective alternatives that can be produced through environment-friendly processes. In this work, in order to develop effective and safe preservatives from plants, we attempt solvent-free lipase-catalyzed transesterification of vanillyl alcohol with ethyl propionate for the first time. The reaction product, vanillyl propionate was efficiently obtained in a high yield. Unlike vanillyl alcohol and ethyl propionate, vanillyl propionate showed antimicrobial activity. The minimal inhibitory concentration test showed that it exhibited high and broad antimicrobial activity against all the tested microorganisms (Gram-negative and Gram-positive bacteria, yeasts, and molds), which was overall comparable to that of propyl paraben, which is one of the most effective preservatives. It was also found to have even higher antioxidant capacity and biocompatibility with human cells than propyl paraben. Vanillyl propionate, which is a plant-based preservative produced through a green bioprocess, is expected to be successfully applied to various industries thanks to its high antimicrobial and antioxidant effect, and high biocompatibility.
Collapse
Affiliation(s)
- Yousun Lee
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
- COSMAX, 255 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13486, Republic of Korea
| | - Sujin Lee
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Dogyeong Lee
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Keehoon Won
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
3
|
Tang Y, Qi G, Wang S, Meng X, Xiao FS. Recent Development of Bio-inspired Porous Materials for Catalytic Applications. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Fessner ND, Badenhorst CPS, Bornscheuer UT. Enzyme Kits to Facilitate the Integration of Biocatalysis into Organic Chemistry – First Aid for Synthetic Chemists. ChemCatChem 2022. [DOI: 10.1002/cctc.202200156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nico D. Fessner
- Dept. of Biotechnology & Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Christoffel P. S. Badenhorst
- Dept. of Biotechnology & Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
5
|
Hinzmann A, Betke T, Asano Y, Gröger H. Synthetic Processes toward Nitriles without the Use of Cyanide: A Biocatalytic Concept Based on Dehydration of Aldoximes in Water. Chemistry 2021; 27:5313-5321. [PMID: 33112445 PMCID: PMC8049032 DOI: 10.1002/chem.202001647] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/22/2020] [Indexed: 11/29/2022]
Abstract
While belonging to the most fundamental functional groups, nitriles represent a class of compound that still raises challenges in terms of an efficient, cost‐effective, general and, at the same time, sustainable way for their synthesis. Complementing existing chemical routes, recently a cyanide‐free enzymatic process technology based on the use of an aldoxime dehydratase (Oxd) as a biocatalyst component has been developed and successfully applied for the synthesis of a range of nitrile products. In these biotransformations, the Oxd enzymes catalyze the dehydration of aldoximes as readily available substrates to the nitrile products. Herein, these developments with such enzymes are summarized, with a strong focus on synthetic applications. It is demonstrated that this biocatalytic technology has the potential to “cross the bridge” between the production of fine chemicals and pharmaceuticals, on one hand, and bulk and commodity chemicals, on the other.
Collapse
Affiliation(s)
- Alessa Hinzmann
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Tobias Betke
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Yasuhisa Asano
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
6
|
Canbolat MF, Savas HB, Gultekin F. Improved catalytic activity by catalase immobilization using γ-cyclodextrin and electrospun PCL nanofibers. J Appl Polym Sci 2016. [DOI: 10.1002/app.44404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- M. Fatih Canbolat
- Textile Engineering Department, Engineering Faculty; Suleyman Demirel University; Isparta
| | - Hasan Basri Savas
- Department of Biochemistry, Faculty of Medicine; Suleyman Demirel University; Isparta
| | - Fatih Gultekin
- Department of Biochemistry, Faculty of Medicine; Suleyman Demirel University; Isparta
- Faculty of Medicine; Alanya Alaaddin Keykubat University; Antalya
| |
Collapse
|
7
|
Krauser S, Weyler C, Blaß LK, Heinzle E. Directed multistep biocatalysis using tailored permeabilized cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 137:185-234. [PMID: 23989897 DOI: 10.1007/10_2013_240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
: Recent developments in the field of biocatalysis using permeabilized cells are reviewed here, with a special emphasis on the newly emerging area of multistep biocatalysis using permeabilized cells. New methods of metabolic engineering using in silico network design and new methods of genetic engineering provide the opportunity to design more complex biocatalysts for the synthesis of complex biomolecules. Methods for the permeabilization of cells are thoroughly reviewed. We provide an extended review of useful available databases and bioinformatics tools, particularly for setting up genome-scale reconstructed networks. Examples described include phosphorylated carbohydrates, sugar nucleotides, and polyketides.
Collapse
Affiliation(s)
- Steffen Krauser
- Biochemical Engineering Institute, Saarland University, 66123, Saarbrücken, Germany
| | | | | | | |
Collapse
|
8
|
Cao H, Ye H, Li C, Zheng LL, Li Y, Ouyang QF. Effect of microencapsulated cell preparation technology and conditions on the catalytic performance of Penicillium purpurogenum Li-3 strain cells. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
|
10
|
Ošlaj M, Cluzeau J, Orkić D, Kopitar G, Mrak P, Časar Z. A highly productive, whole-cell DERA chemoenzymatic process for production of key lactonized side-chain intermediates in statin synthesis. PLoS One 2013; 8:e62250. [PMID: 23667462 PMCID: PMC3647077 DOI: 10.1371/journal.pone.0062250] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 03/19/2013] [Indexed: 11/18/2022] Open
Abstract
Employing DERA (2-deoxyribose-5-phosphate aldolase), we developed the first whole-cell biotransformation process for production of chiral lactol intermediates useful for synthesis of optically pure super-statins such as rosuvastatin and pitavastatin. Herein, we report the development of a fed-batch, high-density fermentation with Escherichia coli BL21 (DE3) overexpressing the native E. coli deoC gene. High activity of this biomass allows direct utilization of the fermentation broth as a whole-cell DERA biocatalyst. We further show a highly productive bioconversion processes with this biocatalyst for conversion of 2-substituted acetaldehydes to the corresponding lactols. The process is evaluated in detail for conversion of acetyloxy-acetaldehyde with the first insight into the dynamics of reaction intermediates, side products and enzyme activity, allowing optimization of the feeding strategy of the aldehyde substrates for improved productivities, yields and purities. The resulting process for production of ((2S,4R)-4,6-dihydroxytetrahydro-2H-pyran-2-yl)methyl acetate (acetyloxymethylene-lactol) has a volumetric productivity exceeding 40 g L−1 h−1 (up to 50 g L−1 h−1) with >80% yield and >80% chromatographic purity with titers reaching 100 g L−1. Stereochemical selectivity of DERA allows excellent enantiomeric purities (ee >99.9%), which were demonstrated on downstream advanced intermediates. The presented process is highly cost effective and environmentally friendly. To our knowledge, this is the first asymmetric aldol condensation process achieved with whole-cell DERA catalysis and it simplifies and extends previously developed DERA-catalyzed approaches based on the isolated enzyme. Finally, applicability of the presented process is demonstrated by efficient preparation of a key lactol precursor, which fits directly into the lactone pathway to optically pure super-statins.
Collapse
Affiliation(s)
- Matej Ošlaj
- Genetics, Anti-Infectives, Lek Pharmaceuticals d.d., Mengeš, Slovenia
| | - Jérôme Cluzeau
- API Development, Sandoz Development Center Slovenia, Lek Pharmaceuticals d.d., Mengeš, Slovenia
| | - Damir Orkić
- API Development, Sandoz Development Center Slovenia, Lek Pharmaceuticals d.d., Mengeš, Slovenia
| | - Gregor Kopitar
- Genetics, Anti-Infectives, Lek Pharmaceuticals d.d., Mengeš, Slovenia
| | - Peter Mrak
- Genetics, Anti-Infectives, Lek Pharmaceuticals d.d., Mengeš, Slovenia
- * E-mail: (PM); (ZC)
| | - Zdenko Časar
- API Development, Sandoz Development Center Slovenia, Lek Pharmaceuticals d.d., Mengeš, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (PM); (ZC)
| |
Collapse
|
11
|
Zhang YHP, Huang WD. Constructing the electricity–carbohydrate–hydrogen cycle for a sustainability revolution. Trends Biotechnol 2012; 30:301-6. [DOI: 10.1016/j.tibtech.2012.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
|
12
|
Paul CE, Gotor-Fernández V, Lavandera I, Montejo-Bernardo J, García-Granda S, Gotor V. Chemoenzymatic preparation of optically active 3-(1H-imidazol-1-yl)cyclohexanol-based ionic liquids: application in organocatalysis and toxicity studies. RSC Adv 2012. [DOI: 10.1039/c2ra20876h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Creus M, Ward TR. Design and Evolution of Artificial Metalloenzymes: Biomimetic Aspects. PROGRESS IN INORGANIC CHEMISTRY 2011. [DOI: 10.1002/9781118148235.ch4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
|
15
|
Zhang YHP. Simpler Is Better: High-Yield and Potential Low-Cost Biofuels Production through Cell-Free Synthetic Pathway Biotransformation (SyPaB). ACS Catal 2011. [DOI: 10.1021/cs200218f] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Y.-H. Percival Zhang
- Biological Systems Engineering Department, Virginia Tech, 210-A Seitz Hall, Blacksburg, Virginia 24061, United States
- Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, Virginia 24061, United States
- DOE Bioenergy Science Center, Oak Ridge, Tennessee 37831, United States
- Gate Fuels Inc., 3107 Alice Dr., Blacksburg, Virginia 24060, United States
| |
Collapse
|
16
|
Velankar H, Clarke KG, Preez RD, Cowan DA, Burton SG. Developments in nitrile and amide biotransformation processes. Trends Biotechnol 2010; 28:561-9. [DOI: 10.1016/j.tibtech.2010.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/29/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
|
17
|
Domínguez de María P. Minimal Hydrolases: Organocatalytic Ring-Opening Polymerizations Catalyzed by Naturally Occurring Carboxylic Acids. ChemCatChem 2010. [DOI: 10.1002/cctc.201000030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|