1
|
Swanson CB, Gourbeyre L, Ford GJ, Clapés P, Flitsch SL. Stereoselective Chemoenzymatic Cascades for the Synthesis of Densely Functionalized Iminosugars. J Am Chem Soc 2025; 147:6067-6075. [PMID: 39925122 PMCID: PMC11848910 DOI: 10.1021/jacs.4c16732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
1,4-Dicarbonyls are versatile synthons for the construction of diverse pharmacophores and natural products. However, the stereoselective synthesis of densely functionalized 1,4-dicarbonyls is challenging. Here, we report a versatile biocatalytic route to access chiral 2,3-dihydroxy-1,4-diketones in high yields and up to gram scale using d-fructose-6-phosphate aldolase (EcFSA). The utility of these compounds as synthons is exemplified in enzyme cascades with subsequent regio- and stereoselective enzymatic transamination to form densely functionalized homochiral 1-pyrrolines followed by chemical or enzymatic reduction to tetrasubstituted pyrrolidines.
Collapse
Affiliation(s)
- Christopher
R. B. Swanson
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - Léa Gourbeyre
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - Grayson J. Ford
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - Pere Clapés
- Biological
Chemistry Department, Institute for Advanced
Chemistry of Catalonia, IQAC−CSIC, Barcelona 08034, Spain
| | - Sabine L. Flitsch
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN Manchester, United Kingdom
| |
Collapse
|
2
|
Yi P, Liu M, Hao Y, Wang Z, Liu H, Cai X, Cheng F, Liu Z, Xue Y, Jin L, Zheng Y. Identification of efficient amine transaminase and applicability in dual transaminases cascade for synthesis of L-phosphinothricin. Enzyme Microb Technol 2024; 180:110501. [PMID: 39197217 DOI: 10.1016/j.enzmictec.2024.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024]
Abstract
L-phosphinothricin (L-PPT) is the most popular broad-spectrum and highly effective herbicide. Transaminases (TAs) play a pivotal role in asymmetric synthesis of L-PPT, yet encounter the challenge of unfavorable reaction equilibrium. In this study, the novel dual transaminases cascade system (DTCS) was introduced to facilitate the synthesis of L-PPT. The specific amine transaminase BdATA, originating from Bradyrhizobium diazoefficiens ZJY088, was screened and identified. It exhibited remarkable activity, good stability, and required only 2.5 equivalents of isopropylamine to transform pyruvate effectively. By coupling BdATA with previously reported SeTA to construct the DTCS for pyruvate removal in situ, the L-PPT yield escalated from 37.37 % to 85.35 %. Three advantages of the DTCS were presented: the removal of pyruvate alleviated by-product inhibition, the use of isopropylamine reduced reliance on excess L-alanine, and no demand for expensive cofactors like NAD(P)H. It demonstrated an innovative idea for addressing the challenges associated with transaminase-mediated synthesis of L-PPT.
Collapse
Affiliation(s)
- Puhong Yi
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Mengdan Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuhua Hao
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ziwen Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hanlin Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Feng Cheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yaping Xue
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Liqun Jin
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
3
|
Woo JM, Kim HJ, Hwang SY, Seo EJ, Park JB. Structure modeling-based characterization of ChnD, the 6-hydroxyhexanoate dehydrogenase from Acinetobacter sp. strain NCIMB 9871. J Biotechnol 2024; 392:90-95. [PMID: 38950627 DOI: 10.1016/j.jbiotec.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
α,ω-Dicarboxylic acids, ω-aminoalkanoic acids, and α,ω-diaminoalkanes are valuable building blocks for the production of biopolyesters and biopolyamides. One of the key steps in producing these chemicals is the oxidation of ω-hydroxycarboxylic acids using alcohol dehydrogenases (e.g., ChnD of Acinetobacter sp. NCIMB 9871). However, the reaction and structural features of these enzymes remain mostly undiscovered. Thereby, we have investigated characteristics of ChnD based on enzyme kinetics, substrate-docking simulations, and mutation studies. Kinetic analysis revealed a distinct preference of ChnD for medium chain ω-hydroxycarboxylic acids, with the highest catalytic efficiency of 18.0 mM-1s-1 for 12-hydroxydodecanoic acid among C6 to C12 ω-hydroxycarboxylic acids. The high catalytic efficiency was attributed to the positive interactions between the carboxyl group of the substrates and the guanidino group of two arginine residues (i.e., Arg62 and Arg266) in the substrate binding site. The ChnD_R62L variant showed the increased efficiency and affinity, particularly for fatty alcohols (i.e., C6-C10) and branched-chain fatty alcohols, such as 3-methyl-2-buten-1-ol. Overall, this study contributes to the deeper understanding of medium-chain primary aliphatic alcohol dehydrogenases and their applications for the production of industrially relevant chemicals such as α,ω-dicarboxylic acids, ω-aminoalkanoic acids, and α,ω-diaminoalkanes from renewable biomass.
Collapse
Affiliation(s)
- Ji-Min Woo
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, the Republic of Korea
| | - Hyun-Joo Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, the Republic of Korea
| | - Se-Yeun Hwang
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, the Republic of Korea
| | - Eun-Ji Seo
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, the Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, the Republic of Korea.
| |
Collapse
|
4
|
Belov F, Gazizova A, Bork H, Gröger H, von Langermann J. Crystallization Assisted Dynamic Kinetic Resolution for the Synthesis of (R)-β-Methylphenethylamine. Chembiochem 2024; 25:e202400203. [PMID: 38602845 DOI: 10.1002/cbic.202400203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
This study explores a combination of the concept of enantioselective enzymatic synthesis of β-chiral amines through transamination with in situ product crystallization (ISPC) to overcome product inhibition. Using 2-phenylpropanal as a readily available and easily racemizing substrate of choice, (R)-β-methylphenethylamine ((R)-2-phenylpropan-1-amine) concentrations of up to 250 mM and enantiomeric excesses of up to 99 % are achieved when using a commercially available transaminase from Ruegeria pomeroyi in a fed-batch based dynamic kinetic resolution reaction on preparative scale. The source of substrate decomposition during the reaction is also investigated and the resulting unwanted byproduct formation is successfully reduced to insignificant levels.
Collapse
Affiliation(s)
- Feodor Belov
- Institute of Chemistry, Biocatalytic Synthesis Group, Otto von Guericke University of Magdeburg, Building 28, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Alina Gazizova
- Institute of Chemistry, Department of Technical Chemistry, University of Rostock, Albert-Einstein-Str. 3A, 18059, Rostock, Germany
| | - Hannah Bork
- Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Harald Gröger
- Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Jan von Langermann
- Institute of Chemistry, Biocatalytic Synthesis Group, Otto von Guericke University of Magdeburg, Building 28, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
5
|
Bakunova AK, Matyuta IO, Minyaev ME, Isaikina TY, Boyko KM, Popov VO, Bezsudnova EY. Multifunctionality of arginine residues in the active sites of non-canonical d-amino acid transaminases. Arch Biochem Biophys 2024; 756:110011. [PMID: 38649133 DOI: 10.1016/j.abb.2024.110011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Structure-function relationships are key to understanding enzyme mechanisms, controlling enzyme activities, and designing biocatalysts. Here, we investigate the functions of arginine residues in the active sites of pyridoxal-5'-phosphate (PLP)-dependent non-canonical d-amino acid transaminases, focusing on the analysis of a transaminase from Haliscomenobacter hydrossis. Our results show that the tandem of arginine residues R28* and R90, which form the conserved R-[RK] motif in non-canonical d-amino acid transaminases, not only facilitates effective substrate binding but also regulates the catalytic properties of PLP. Non-covalent interactions between residues R28*, R90, and Y147 strengthen the hydrogen bond between Y147 and PLP, thereby maintaining the reactivity of the cofactor. Next, the R90 residue contributes to the stability of the holoenzyme. Finally, the R90I substitution induces structural changes that lead to substrate promiscuity, as evidenced by the effective binding of substrates with and without the α-carboxylate group. This study sheds light on the structural determinants of the activity of non-canonical d-amino acid transaminases. Understanding the structural basis of the active site plasticity in the non-canonical transaminase from H. hydrossis, which is characterized by effective conversion of d-amino acids and α-keto acids, may help to tailor it for industrial applications.
Collapse
Affiliation(s)
- Alina K Bakunova
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russia.
| | - Ilya O Matyuta
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russia
| | - Mikhail E Minyaev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Ave. 47, 119334, Moscow, Russia
| | - Tatiana Y Isaikina
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russia
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russia
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119991, Moscow, Russia
| | - Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071, Moscow, Russia
| |
Collapse
|
6
|
Gao J, Zhou C, Hai Y. Stereoselective Biocatalytic α-Deuteration of L-Amino Acids by a Pyridoxal 5'-Phosphate-Dependent Mannich Cyclase. Chembiochem 2023; 24:e202300561. [PMID: 37779345 PMCID: PMC10874886 DOI: 10.1002/cbic.202300561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/03/2023]
Abstract
α-Deuterated amino acids are valuable building blocks for developing deuterated drugs, and are important tools for studying biological systems. Biocatalytic deuteration represents an attractive strategy to directly access enantiopure α-deuterated amino acids. Here, we show that a PLP-dependent Mannich cyclase, LolT, involved in the biosynthesis of loline alkaloids, is capable of deuterating a diverse range of L-amino acids, including basic and acidic, nonpolar and polar, aliphatic and aromatic amino acids. Furthermore, complete deuteration of many amino acids can be achieved within minutes with exquisite control on the site- and stereoselectivity. During the course of this investigation, we also unexpectedly discovered that LolT exhibits β-elimination activity with L-cystine and O-acetyl-L-serine, confirming our previous hypothesis based on structural and phylogenetic analysis that LolT, a Cα-C bond forming enzyme, is evolved from a primordial Cβ-S lyase family. Overall, our study demonstrates that LolT is an extremely versatile biocatalyst, and can be used for not only heterocyclic quaternary amino acid biosynthesis, but also biocatalytic amino acid deuteration.
Collapse
Affiliation(s)
- Jinmin Gao
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Chen Zhou
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Yang Hai
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
7
|
Comparison of Four Immobilization Methods for Different Transaminases. Catalysts 2023. [DOI: 10.3390/catal13020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Biocatalytic syntheses often require unfavorable conditions, which can adversely affect enzyme stability. Consequently, improving the stability of biocatalysts is needed, and this is often achieved by immobilization. In this study, we aimed to compare the stability of soluble and immobilized transaminases from different species. A cysteine in a consensus sequence was converted to a single aldehyde by the formylglycine-generating enzyme for directed single-point attachment to amine beads. This immobilization was compared to cross-linked enzyme aggregates (CLEAs) and multipoint attachments to glutaraldehyde-functionalized amine- and epoxy-beads. Subsequently, the reactivity and stability (i.e., thermal, storage, and solvent stability) of all soluble and immobilized transaminases were analyzed and compared under different conditions. The effect of immobilization was highly dependent on the type of enzyme, the immobilization strategy, and the application itself, with no superior immobilization technique identified. Immobilization of HAGA-beads often resulted in the highest activities of up to 62 U/g beads, and amine beads were best for the hexameric transaminase from Luminiphilus syltensis. Furthermore, the immobilization of transaminases enabled its reusability for at least 10 cycles, while maintaining full or high activity. Upscaled kinetic resolutions (partially performed in a SpinChemTM reactor) resulted in a high conversion, maintained enantioselectivity, and high product yields, demonstrating their applicability.
Collapse
|
8
|
Abstract
α-Amino acids are essential molecular constituents of life, twenty of which are privileged because they are encoded by the ribosomal machinery. The question remains open as to why this number and why this 20 in particular, an almost philosophical question that cannot be conclusively resolved. They are closely related to the evolution of the genetic code and whether nucleic acids, amino acids, and peptides appeared simultaneously and were available under prebiotic conditions when the first self-sufficient complex molecular system emerged on Earth. This report focuses on prebiotic and metabolic aspects of amino acids and proteins starting with meteorites, followed by their formation, including peptides, under plausible prebiotic conditions, and the major biosynthetic pathways in the various kingdoms of life. Coenzymes play a key role in the present analysis in that amino acid metabolism is linked to glycolysis and different variants of the tricarboxylic acid cycle (TCA, rTCA, and the incomplete horseshoe version) as well as the biosynthesis of the most important coenzymes. Thus, the report opens additional perspectives and facets on the molecular evolution of primary metabolism.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic ChemistryLeibniz University HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
9
|
Kollipara M, Matzel P, Bornscheuer U, Höhne M. Activity Levels of Amine Transaminases Correlate with Active Site Hydrophobicity. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manideep Kollipara
- University of Greifswald Institute of Biochemistry, Protein Biochemistry Felix-Hausdorff-Straße 4 17489 Greifswald Germany
| | - Philipp Matzel
- University of Greifswald Institute of Biochemistry, Protein Biochemistry Felix-Hausdorff-Straße 4 17489 Greifswald Germany
| | - Uwe Bornscheuer
- University of Greifswald Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis Felix-Hausdorff-Straße 4 17489 Greifswald Germany
| | - Matthias Höhne
- University of Greifswald Institute of Biochemistry, Protein Biochemistry Felix-Hausdorff-Straße 4 17489 Greifswald Germany
| |
Collapse
|
10
|
Characterization of proteins from the 3N5M family reveals an operationally stable amine transaminase. Appl Microbiol Biotechnol 2022; 106:5563-5574. [PMID: 35932295 PMCID: PMC9418295 DOI: 10.1007/s00253-022-12071-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 01/24/2023]
Abstract
Abstract Amine transaminases (ATA) convert ketones into optically active amines and are used to prepare active pharmaceutical ingredients and building blocks. Novel ATA can be identified in protein databases due to the extensive knowledge of sequence-function relationships. However, predicting thermo- and operational stability from the amino acid sequence is a persisting challenge and a vital step towards identifying efficient ATA biocatalysts for industrial applications. In this study, we performed a database mining and characterized selected putative enzymes of the β-alanine:pyruvate transaminase cluster (3N5M) — a subfamily with so far only a few described members, whose tetrameric structure was suggested to positively affect operational stability. Four putative transaminases (TA-1: Bilophilia wadsworthia, TA-5: Halomonas elongata, TA-9: Burkholderia cepacia, and TA-10: Burkholderia multivorans) were obtained in a soluble form as tetramers in E. coli. During comparison of these tetrameric with known dimeric transaminases we found that indeed novel ATA with high operational stabilities can be identified in this protein subfamily, but we also found exceptions to the hypothesized correlation that a tetrameric assembly leads to increased stability. The discovered ATA from Burkholderia multivorans features a broad substrate specificity, including isopropylamine acceptance, is highly active (6 U/mg) in the conversion of 1-phenylethylamine with pyruvate and shows a thermostability of up to 70 °C under both, storage and operating conditions. In addition, 50% (v/v) of isopropanol or DMSO can be employed as co-solvents without a destabilizing effect on the enzyme during an incubation time of 16 h at 30 °C. Key points • Database mining identified a thermostable amine transaminase in the β-alanine:pyruvate transaminase subfamily. • The tetrameric transaminase tolerates 50% DMSO and isopropanol under operating conditions at 30 °C. • A tetrameric structure is not necessarily associated with a higher operational stability Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12071-1.
Collapse
|
11
|
Sheludko YV, Slagman S, Gittings S, Charnock SJ, Land H, Berglund P, Fessner WD. Enantioselective Synthesis of Pharmaceutically Relevant Bulky Arylbutylamines Using Engineered Transaminases. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Samantha Gittings
- Prozomix Limited UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Simon J. Charnock
- Prozomix Limited UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | | | | | | |
Collapse
|
12
|
Recent advances and challenges on enzymatic synthesis of biobased polyesters via polycondensation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Wang Y, Feng J, Dong W, Chen X, Yao P, Wu Q, Zhu D. Improving Catalytic Activity and Reversing Enantio‐Specificity of ω‐Transaminase by Semi‐Rational Engineering en Route to Chiral Bulky β‐Amino Esters. ChemCatChem 2021. [DOI: 10.1002/cctc.202100503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yingang Wang
- University of Chinese Academy of Sciences No.19(A) Yuquan Road Shijingshan District, Beijing 100049 P.R. China
- National Technology Innovation Center for Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao Tianjin Airport Economic Area, Tianjin 300308 P.R. China
| | - Jinhui Feng
- University of Chinese Academy of Sciences No.19(A) Yuquan Road Shijingshan District, Beijing 100049 P.R. China
- National Technology Innovation Center for Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao Tianjin Airport Economic Area, Tianjin 300308 P.R. China
| | - Wenyue Dong
- National Technology Innovation Center for Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao Tianjin Airport Economic Area, Tianjin 300308 P.R. China
| | - Xi Chen
- University of Chinese Academy of Sciences No.19(A) Yuquan Road Shijingshan District, Beijing 100049 P.R. China
- National Technology Innovation Center for Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao Tianjin Airport Economic Area, Tianjin 300308 P.R. China
| | - Peiyuan Yao
- University of Chinese Academy of Sciences No.19(A) Yuquan Road Shijingshan District, Beijing 100049 P.R. China
- National Technology Innovation Center for Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao Tianjin Airport Economic Area, Tianjin 300308 P.R. China
| | - Qiaqing Wu
- University of Chinese Academy of Sciences No.19(A) Yuquan Road Shijingshan District, Beijing 100049 P.R. China
- National Technology Innovation Center for Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao Tianjin Airport Economic Area, Tianjin 300308 P.R. China
| | - Dunming Zhu
- University of Chinese Academy of Sciences No.19(A) Yuquan Road Shijingshan District, Beijing 100049 P.R. China
- National Technology Innovation Center for Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao Tianjin Airport Economic Area, Tianjin 300308 P.R. China
| |
Collapse
|
14
|
Wang C, Tang K, Dai Y, Jia H, Li Y, Gao Z, Wu B. Identification, Characterization, and Site-Specific Mutagenesis of a Thermostable ω-Transaminase from Chloroflexi bacterium. ACS OMEGA 2021; 6:17058-17070. [PMID: 34250363 PMCID: PMC8264935 DOI: 10.1021/acsomega.1c02164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
In the present study, we have identified an ω-transaminase (ω-TA) from Chloroflexi bacterium from the genome database by using two ω-TA sequences (ATA117 Arrmut11 from Arthrobacter sp. KNK168 and amine transaminase from Aspergillus terreus NIH2624) as templates in a BLASTP search and motif sequence alignment. The protein sequence of the ω-TA from C. bacterium (CbTA) shows 38% sequence identity to that of ATA117 Arrmut11. The gene sequence of CbTA was inserted into pRSF-Duet1 and functionally expressed in Escherichia coli BL21(DE3). The results showed that the recombinant CbTA has a specific activity of 1.19 U/mg for (R)-α-methylbenzylamine [(R)-MBA] at pH 8.5 and 45 °C. The substrate acceptability test showed that CbTA has significant reactivity to aromatic amino donors and amino receptors. More importantly, CbTA also exhibited good affinity toward some cyclic substrates. The homology model of CbTA was built by Discovery Studio, and docking was performed to describe the relative activity toward some substrates. CbTA evolved by site-specific mutagenesis and found that the Q192G mutant increased the activity to (R)-MBA by around 9.8-fold. The Q192G mutant was then used to convert two cyclic ketones, N-Boc-3-pyrrolidinone and N-Boc-3-piperidone, and both the conversions were obviously improved compared to that of the parental CbTA.
Collapse
|
15
|
Sarak S, Sung S, Jeon H, Patil MD, Khobragade TP, Pagar AD, Dawson PE, Yun H. An Integrated Cofactor/Co-Product Recycling Cascade for the Biosynthesis of Nylon Monomers from Cycloalkylamines. Angew Chem Int Ed Engl 2021; 60:3481-3486. [PMID: 33140477 DOI: 10.1002/anie.202012658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 11/10/2022]
Abstract
We report a highly atom-efficient integrated cofactor/co-product recycling cascade employing cycloalkylamines as multifaceted starting materials for the synthesis of nylon building blocks. Reactions using E. coli whole cells as well as purified enzymes produced excellent conversions ranging from >80 and 95 % into desired ω-amino acids, respectively with varying substrate concentrations. The applicability of this tandem biocatalytic cascade was demonstrated to produce the corresponding lactams by employing engineered biocatalysts. For instance, ϵ-caprolactam, a valuable polymer building block was synthesized with 75 % conversion from 10 mM cyclohexylamine by employing whole-cell biocatalysts. This cascade could be an alternative for bio-based production of ω-amino acids and corresponding lactam compounds.
Collapse
Affiliation(s)
- Sharad Sarak
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| | - Sihyong Sung
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| | - Taresh P Khobragade
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| | - Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 050-29, South Korea
| |
Collapse
|
16
|
Gourbeyre L, Heuson E, Charmantray F, Hélaine V, Debard A, Petit JL, de Berardinis V, Gefflaut T. Biocatalysed synthesis of chiral amines: continuous colorimetric assays for mining amine-transaminases. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02070b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Versatile and sensitive continuous colorimetric assays were developed for the high throughput screening of a large collection of amine-TAs from biodiversity, and allowed the discovery of a set of diverse biocatalysts with high synthetic potential.
Collapse
Affiliation(s)
- Léa Gourbeyre
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Egon Heuson
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Franck Charmantray
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Virgil Hélaine
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Adrien Debard
- Génomique métabolique
- Genoscope
- Institut François Jacob
- CEA
- CNRS
| | | | | | - Thierry Gefflaut
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| |
Collapse
|
17
|
Sarak S, Sung S, Jeon H, Patil MD, Khobragade TP, Pagar AD, Dawson PE, Yun H. An Integrated Cofactor/Co‐Product Recycling Cascade for the Biosynthesis of Nylon Monomers from Cycloalkylamines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sharad Sarak
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| | - Sihyong Sung
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| | - Mahesh D. Patil
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| | - Taresh P. Khobragade
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| | - Amol D. Pagar
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| | - Philip E. Dawson
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Hyungdon Yun
- Department of Systems Biotechnology Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 050-29 South Korea
| |
Collapse
|
18
|
Bezsudnova EY, Stekhanova TN, Ruzhitskiy AO, Popov VO. Effects of pH and temperature on (S)-amine activity of transaminase from the cold-adapted bacterium Psychrobacter cryohalolentis. Extremophiles 2020; 24:537-549. [PMID: 32418069 DOI: 10.1007/s00792-020-01174-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
(7R,8S)-diaminopelargonic acid transaminase from the cold-adapted Gram-negative bacterium Psychrobacter cryohalolentis (Pcryo361) is able to react with unnatural substrates including (S)-( +)-1-phenylethylamine, aldehydes and α-diketones. Additionally, Pcryo361 is active at 0-50 °C and retains up to 10% of the maximum activity at 0 °C. Here, we report a detailed study on the stability and low temperature activity of Pcryo361. At the optimal pH for (S)-amine activity (pH 10.0), the enzyme was stable at 0-10 °C and no decrease in the enzyme activity was observed within 24 h in a slightly alkaline medium, pH 8.0, at 35 °C. Pcryo361 was solvent stable and was activated in 10% DMSO and DMFA at 35 °C. An analysis of the efficiency of catalysis of Pcryo361 at 35 °C and 10 °C showed that the specificity towards (S)-( +)-1-phenylethylamine dropped at 10 °C; however, the specificity towards 2,3-butanedione remained unchanged. Inhibition analysis showed that Pcryo361 activity was not inhibited by acetophenone but inhibited by amines (products of aldehyde amination). The observed pH stability and low temperature activity of Pcryo361 with activated keto substrates are attractive features in the field of development of stereoselective amination at low temperatures.
Collapse
Affiliation(s)
- Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russian Federation.
| | - Tatiana N Stekhanova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russian Federation
| | - Aleksandr O Ruzhitskiy
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russian Federation
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russian Federation.,Kurchatov Complex of NBICS-Technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr 1, Moscow, 123182, Russian Federation
| |
Collapse
|
19
|
Bezsudnova EY, Popov VO, Boyko KM. Structural insight into the substrate specificity of PLP fold type IV transaminases. Appl Microbiol Biotechnol 2020; 104:2343-2357. [PMID: 31989227 DOI: 10.1007/s00253-020-10369-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 01/09/2020] [Indexed: 01/19/2023]
Abstract
Pyridoxal-5'-phosphate-dependent transaminases of fold type IV (class IV) are promising enzymes for (R)-selective amination of organic compounds. Transaminases of fold type IV exhibit either strict (R)-selectivity or (S)-selectivity that is implemented within geometrically similar active sites of different amino acid compositions. Based on substrate specificity, class IV comprises three large families of transaminases: (S)-selective branched-chain L-amino acid aminotransferases and (R)-selective D-amino acid aminotransferases and (R)-amine:pyruvate transaminases. In this review, we aim to analyze the substrate profiles and correlations between the substrate specificity and organization of the active site in transaminases from these structurally related families. New transaminases with an expanded substrate specificity are also discussed. An analysis of the structural features of substrate binding and comparisons of structural determinants of chiral discrimination between members of the class IV transaminases could be helpful in identifying new biocatalytically relevant enzymes as well as rational protein engineering.
Collapse
Affiliation(s)
- Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, Russian Federation, 119071.
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, Russian Federation, 119071.,Kurchatov Complex of NBICS-Technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr 1, Moscow, Russian Federation, 123182
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, Russian Federation, 119071
| |
Collapse
|
20
|
d-Phenylglycine aminotransferase ( d-PhgAT) – substrate scope and structural insights of a stereo-inverting biocatalyst used in the preparation of aromatic amino acids. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01391a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the crystal structure and substrate scope of a versatile aminotransferase biocatalyst.
Collapse
|
21
|
Land H, Ruggieri F, Szekrenyi A, Fessner W, Berglund P. Engineering the Active Site of an (
S
)‐Selective Amine Transaminase for Acceptance of Doubly Bulky Primary Amines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Henrik Land
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Department of Industrial BiotechnologyAlbaNova University Center SE-106 91 Stockholm Sweden
- Uppsala University, Department of Chemistry-Ångström LaboratoryMolecular Biomimetics Box 523 SE-751 20 Uppsala Sweden
| | - Federica Ruggieri
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Department of Industrial BiotechnologyAlbaNova University Center SE-106 91 Stockholm Sweden
| | - Anna Szekrenyi
- Technische Universität DarmstadtInstitut für Organische Chemie und Biochemie, Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| | - Wolf‐Dieter Fessner
- Technische Universität DarmstadtInstitut für Organische Chemie und Biochemie, Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| | - Per Berglund
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Department of Industrial BiotechnologyAlbaNova University Center SE-106 91 Stockholm Sweden
| |
Collapse
|
22
|
Ruggieri F, Campillo-Brocal JC, Chen S, Humble MS, Walse B, Logan DT, Berglund P. Insight into the dimer dissociation process of the Chromobacterium violaceum (S)-selective amine transaminase. Sci Rep 2019; 9:16946. [PMID: 31740704 PMCID: PMC6861513 DOI: 10.1038/s41598-019-53177-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
One of the main factors hampering the implementation in industry of transaminase-based processes for the synthesis of enantiopure amines is their often low storage and operational stability. Our still limited understanding of the inactivation processes undermining the stability of wild-type transaminases represents an obstacle to improving their stability through enzyme engineering. In this paper we present a model describing the inactivation process of the well-characterized (S)-selective amine transaminase from Chromobacterium violaceum. The cornerstone of the model, supported by structural, computational, mutagenesis and biophysical data, is the central role of the catalytic lysine as a conformational switch. Upon breakage of the lysine-PLP Schiff base, the strain associated with the catalytically active lysine conformation is dissipated in a slow relaxation process capable of triggering the known structural rearrangements occurring in the holo-to-apo transition and ultimately promoting dimer dissociation. Due to the occurrence in the literature of similar PLP-dependent inactivation models valid for other non-transaminase enzymes belonging to the same fold-class, the role of the catalytic lysine as conformational switch might extend beyond the transaminase enzyme group and offer new insight to drive future non-trivial engineering strategies.
Collapse
Affiliation(s)
- Federica Ruggieri
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91, Stockholm, Sweden
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Jonatan C Campillo-Brocal
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91, Stockholm, Sweden
| | - Shan Chen
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91, Stockholm, Sweden
| | - Maria S Humble
- Pharem Biotech AB, Biovation Park, SE-151 36, Södertälje, Sweden
| | - Björn Walse
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Derek T Logan
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Per Berglund
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
23
|
Multi-Step Enzymatic Synthesis of 1,9-Nonanedioic Acid from a Renewable Fatty Acid and Its Application for the Enzymatic Production of Biopolyesters. Polymers (Basel) 2019; 11:polym11101690. [PMID: 31618998 PMCID: PMC6835665 DOI: 10.3390/polym11101690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/06/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022] Open
Abstract
1,9-Nonanedioic acid is one of the valuable building blocks for producing polyesters and polyamides. Thereby, whole-cell biosynthesis of 1,9-nonanedioic acid from oleic acid has been investigated. A recombinant Corynebacterium glutamicum, expressing the alcohol/aldehyde dehydrogenases (ChnDE) of Acinetobacter sp. NCIMB 9871, was constructed and used for the production of 1,9-nonanedioic acid from 9-hydroxynonanoic acid, which had been produced from oleic acid. When 9-hydroxynonanoic acid was added to a concentration of 20 mM in the reaction medium, 1,9-nonanedioic acid was produced to 16 mM within 8 h by the recombinant C. glutamicum. The dicarboxylic acid was isolated via crystallization and then used for the production of biopolyester by a lipase. For instance, the polyesterification of 1,9-nonanedioic acid and 1,8-octanediol in diphenyl ether by the immobilized lipase B from Candida antarctica led to formation of the polymer product with the number-average molecular weight (Mn) of approximately 21,000. Thereby, this study will contribute to biological synthesis of long chain dicarboxylic acids and their application for the enzymatic production of long chain biopolyesters.
Collapse
|
24
|
Zheng X, Cui Y, Li T, Li R, Guo L, Li D, Wu B. Biochemical and structural characterization of a highly active branched-chain amino acid aminotransferase from Pseudomonas sp. for efficient biosynthesis of chiral amino acids. Appl Microbiol Biotechnol 2019; 103:8051-8062. [PMID: 31485690 DOI: 10.1007/s00253-019-10105-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/24/2019] [Accepted: 08/26/2019] [Indexed: 01/11/2023]
Abstract
Aminotransferases (ATs) are important biocatalysts for the synthesis of chiral amines because of their capability of introducing amino group into ketones or keto acids as well as their high enantioselectivity, high regioselectivity. Among all ATs, branched-chain amino acid aminotransferase (BCAT) can use branched-chain amino acids (BCAAs) as substrate, including L-valine, L-leucine, and L-isoleucine, with α-ketoglutarate to form the corresponding α-keto acids and L-glutamate. Alternatively, BCATs have been used for the biosynthesis of unnatural amino acids, such as L-tert-leucine and L-norvaline. In the present study, the BCAT from Pseudomonas sp. (PsBCAT) was cloned and expressed in Escherichia coli for biochemical and structural analyses. The optimal reaction temperature and pH of PsBCAT were 40 °C and 8.5, respectively. PsBCAT exhibited a comparatively broader substrate spectrum and showed remarkably high activity with bulked aliphatic L-amino acids (kcat up to 220 s-1). Additionally, PsBCAT had activities with aromatic L-amino acids, L-histidine, L-lysine, and L-threonine. This substrate promiscuity is unique for the BCAT family and could prove useful in industrial applications. To analyze the catalytic mechanism of PsBCAT with the broad substrate spectrum, the crystal structure of PsBCAT was also determined. Based on the determined crystal structure, we found some differences in the organization of the substrate binding cavity, which may influence the substrate specificity of the enzyme. Finally, conjugated with the ornithine aminotransferase (OrnAT) to shift the reaction equilibrium towards the product formation, the coupled system was applied to the asymmetric synthesis of L-tert-leucine and L-norvaline. In summary, the structural and functional characteristics of PsBCAT were analyzed in detail, and this information will be conducive to industrial production of enantiopure chiral amino acids by aminotransferase.
Collapse
Affiliation(s)
- Xinxin Zheng
- College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, People's Republic of China.,CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yinglu Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Tao Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Ruifeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Lu Guo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Defeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
25
|
Márquez SL, Atalah J, Blamey JM. Characterization of a novel thermostable (S)-amine-transaminase from an Antarctic moderately-thermophilic bacterium Albidovulum sp. SLM16. Enzyme Microb Technol 2019; 131:109423. [PMID: 31615676 DOI: 10.1016/j.enzmictec.2019.109423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Amine-transaminases (ATAs) are enzymes that catalyze the reversible transfer of an amino group between primary amines and carbonyl compounds. They have been widely studied in the last decades for their application in stereoselective synthesis of chiral amines, which are one of the most valuable building blocks in pharmaceuticals manufacturing. Their excellent enantioselectivity, use of low-cost substrates and no need for external cofactors has turned these enzymes into a promising alternative to the chemical synthesis of chiral amines. Nevertheless, its application at industrial scale remains limited mainly because most of the available ATAs are scarcely tolerant to harsh reaction conditions such as high temperatures and presence of organic solvents. In this work, a novel (S)-ATA was discovered in a thermophilic bacterium, Albidovulum sp. SLM16, isolated from a geothermal Antarctic environmental sample, more specifically from a shoreline fumarole in Deception Island. The transaminase-coding gene was identified in the genome of the microorganism, cloned and overexpressed in Escherichia coli for biochemical characterization. The activity of the recombinant ATA was optimal at 65 °C and pH 9.5. Molecular mass estimates suggest a 75 kDa homodimeric structure. The enzyme turned out to be highly thermostable, maintaining 80% of its specific activity after 5 days of incubation at 50 °C. These results indicate that ATA_SLM16 is an excellent candidate for potential applications in biocatalytic synthesis. To the best of our knowledge, this would be the first report of the characterization of a thermostable (S)-ATA discovered by means of in vivo screening of thermophilic microorganisms.
Collapse
Affiliation(s)
- Sebastián L Márquez
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile; Fundación Científica y Cultural Biociencia, Santiago, Chile
| | - Joaquín Atalah
- Fundación Científica y Cultural Biociencia, Santiago, Chile
| | - Jenny M Blamey
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile; Fundación Científica y Cultural Biociencia, Santiago, Chile.
| |
Collapse
|
26
|
Palacio CM, Rozeboom HJ, Lanfranchi E, Meng Q, Otzen M, Janssen DB. Biochemical properties of a Pseudomonas aminotransferase involved in caprolactam metabolism. FEBS J 2019; 286:4086-4102. [PMID: 31162815 DOI: 10.1111/febs.14950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/29/2019] [Accepted: 06/01/2019] [Indexed: 01/31/2023]
Abstract
The biodegradation of the nylon-6 precursor caprolactam by a strain of Pseudomonas jessenii proceeds via ATP-dependent hydrolytic ring opening to 6-aminohexanoate. This non-natural ω-amino acid is converted to 6-oxohexanoic acid by an aminotransferase (PjAT) belonging to the fold type I pyridoxal 5'-phosphate (PLP) enzymes. To understand the structural basis of 6-aminohexanoatate conversion, we solved different crystal structures and determined the substrate scope with a range of aliphatic and aromatic amines. Comparison with the homologous aminotransferases from Chromobacterium violaceum (CvAT) and Vibrio fluvialis (VfAT) showed that the PjAT enzyme has the lowest KM values (highest affinity) and highest specificity constant (kcat /KM ) with the caprolactam degradation intermediates 6-aminohexanoate and 6-oxohexanoic acid, in accordance with its proposed in vivo function. Five distinct three-dimensional structures of PjAT were solved by protein crystallography. The structure of the aldimine intermediate formed from 6-aminohexanoate and the PLP cofactor revealed the presence of a narrow hydrophobic substrate-binding tunnel leading to the cofactor and covered by a flexible arginine, which explains the high activity and selectivity of the PjAT with 6-aminohexanoate. The results suggest that the degradation pathway for caprolactam has recruited an aminotransferase that is well adapted to 6-aminohexanoate degradation. DATABASE: The atomic coordinates and structure factors P. jessenii 6-aminohexanoate aminotransferase have been deposited in the PDB as entries 6G4B (E∙succinate complex), 6G4C (E∙phosphate complex), 6G4D (E∙PLP complex), 6G4E (E∙PLP-6-aminohexanoate intermediate), and 6G4F (E∙PMP complex).
Collapse
Affiliation(s)
- Cyntia M Palacio
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, The Netherlands
| | - Henriëtte J Rozeboom
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, The Netherlands
| | - Elisa Lanfranchi
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, The Netherlands
| | - Qinglong Meng
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, The Netherlands
| | - Marleen Otzen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, The Netherlands
| | - Dick B Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, The Netherlands
| |
Collapse
|
27
|
Aumala V, Mollerup F, Jurak E, Blume F, Karppi J, Koistinen AE, Schuiten E, Voß M, Bornscheuer U, Deska J, Master ER. Biocatalytic Production of Amino Carbohydrates through Oxidoreductase and Transaminase Cascades. CHEMSUSCHEM 2019; 12:848-857. [PMID: 30589228 PMCID: PMC6519198 DOI: 10.1002/cssc.201802580] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Plant-derived carbohydrates are an abundant renewable resource. Transformation of carbohydrates into new products, including amine-functionalized building blocks for biomaterials applications, can lower reliance on fossil resources. Herein, biocatalytic production routes to amino carbohydrates, including oligosaccharides, are demonstrated. In each case, two-step biocatalysis was performed to functionalize d-galactose-containing carbohydrates by employing the galactose oxidase from Fusarium graminearum or a pyranose dehydrogenase from Agaricus bisporus followed by the ω-transaminase from Chromobacterium violaceum (Cvi-ω-TA). Formation of 6-amino-6-deoxy-d-galactose, 2-amino-2-deoxy-d-galactose, and 2-amino-2-deoxy-6-aldo-d-galactose was confirmed by mass spectrometry. The activity of Cvi-ω-TA was highest towards 6-aldo-d-galactose, for which the highest yield of 6-amino-6-deoxy-d-galactose (67 %) was achieved in reactions permitting simultaneous oxidation of d-galactose and transamination of the resulting 6-aldo-d-galactose.
Collapse
Affiliation(s)
- Ville Aumala
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
| | - Filip Mollerup
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
| | - Edita Jurak
- Department of Aquatic Biotechnology and Bioproduct EngineeringUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Fabian Blume
- Department of Chemistry and Materials ScienceAalto UniversityKemistintie 102150EspooFinland
| | - Johanna Karppi
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
| | - Antti E. Koistinen
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
| | - Eva Schuiten
- Department of Biotechnology and Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Straße 417487GreifswaldGermany
| | - Moritz Voß
- Department of Biotechnology and Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Straße 417487GreifswaldGermany
| | - Uwe Bornscheuer
- Department of Biotechnology and Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Straße 417487GreifswaldGermany
| | - Jan Deska
- Department of Chemistry and Materials ScienceAalto UniversityKemistintie 102150EspooFinland
| | - Emma R. Master
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoOntarioM5S 3E5Canada
| |
Collapse
|
28
|
Márquez SL, Blamey JM. Isolation and partial characterization of a new moderate thermophilic Albidovulum sp. SLM16 with transaminase activity from Deception Island, Antarctica. Biol Res 2019; 52:5. [PMID: 30717794 PMCID: PMC6360757 DOI: 10.1186/s40659-018-0210-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/26/2018] [Indexed: 11/10/2022] Open
Abstract
Background A moderately thermophilic, slightly halophilic, aerobic, Gram-stain negative, bacterial strain, SLM16, was isolated from a mixed of seawater–sand-sediment sample collected from a coastal fumarole located in Whalers Bay, Deception Island, Antarctica. The aim was to screen for thermophilic microorganisms able to degrade primary amines and search for amine transaminase activity for potential industrial application. Results Identification and partial characterization of the microorganism SLM16 were carried out by means of morphological, physiological and biochemical tests along with molecular methods. Cells of strain SLM16 were non-motile irregular rods of 1.5–2.5 μm long and 0.3–0.45 μm wide. Growth occurred in the presence of 0.5–5.5% NaCl within temperature range of 35–55 °C and pH range of 5.5–9.5, respectively. The DNA G+C composition, estimated from ftsY gene, was 66% mol. Phylogenetic analysis using de 16S rRNA gene sequence showed that strain SLM16 belongs to the marine bacterial genus Albidovulum. Conclusion Strain SLM16 is a moderate thermophilic Gram negative microorganisms which belongs to the marine bacterial genus Albidovulum and is closely related to Albidovulum inexpectatum species based on phylogenetic analysis. Additionally, amine-transaminase activity towards the arylaliphatic amine α-methylbenzylamine was detected.
Collapse
Affiliation(s)
- Sebastián L Márquez
- Fundación Científica y Cultural Biociencia, José Domingo Cañas 2280, Santiago, Chile.,Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O´Higgins 3363, Santiago, Chile
| | - Jenny M Blamey
- Fundación Científica y Cultural Biociencia, José Domingo Cañas 2280, Santiago, Chile. .,Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O´Higgins 3363, Santiago, Chile.
| |
Collapse
|
29
|
Rocha JF, Pina AF, Sousa SF, Cerqueira NMFSA. PLP-dependent enzymes as important biocatalysts for the pharmaceutical, chemical and food industries: a structural and mechanistic perspective. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01210a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PLP-dependent enzymes described on this review are attractive targets for enzyme engineering towards their application in an industrial biotechnology framework.
Collapse
Affiliation(s)
- Juliana F. Rocha
- UCIBIO/REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina
- Universidade do Porto
| | - André F. Pina
- UCIBIO/REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina
- Universidade do Porto
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina
- Universidade do Porto
| | | |
Collapse
|
30
|
Structural and dynamic basis of substrate permissiveness in hydroxycinnamoyltransferase (HCT). PLoS Comput Biol 2018; 14:e1006511. [PMID: 30365487 PMCID: PMC6203249 DOI: 10.1371/journal.pcbi.1006511] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/13/2018] [Indexed: 11/19/2022] Open
Abstract
Substrate permissiveness has long been regarded as the raw materials for the evolution of new enzymatic functions. In land plants, hydroxycinnamoyltransferase (HCT) is an essential enzyme of the phenylpropanoid metabolism. Although essential enzymes are normally associated with high substrate specificity, HCT can utilize a variety of non-native substrates. To examine the structural and dynamic basis of substrate permissiveness in this enzyme, we report the crystal structure of HCT from Selaginella moellendorffii and molecular dynamics (MD) simulations performed on five orthologous HCTs from several major lineages of land plants. Through altogether 17-μs MD simulations, we demonstrate the prevalent swing motion of an arginine handle on a submicrosecond timescale across all five HCTs, which plays a key role in native substrate recognition by these intrinsically promiscuous enzymes. Our simulations further reveal how a non-native substrate of HCT engages a binding site different from that of the native substrate and diffuses to reach the catalytic center and its co-substrate. By numerically solving the Smoluchowski equation, we show that the presence of such an alternative binding site, even when it is distant from the catalytic center, always increases the reaction rate of a given substrate. However, this increase is only significant for enzyme-substrate reactions heavily influenced by diffusion. In these cases, binding non-native substrates ‘off-center’ provides an effective rationale to develop substrate permissiveness while maintaining the native functions of promiscuous enzymes. Examples abound of enzymes that can process substrates other than their native ones. However, the structural and dynamic basis of this promiscuity remains to be fully understood. In this work, we examine HCT, an intrinsically promiscuous acyltransferase with conserved function in all land plants. We uncover the sub-microsecond swing motion of a key arginine residue facilitating the recognition of both native and non-native substrates of HCT. We also quantify the impact of an off-center binding site on the non-native reaction rate. Although our calculations were inspired by HCT, the results apply in general, i.e., for enzymes heavily influenced by diffusion, binding non-native substrates ‘off-center’, even with rather weak affinity, can accelerate non-native reactions to appreciable levels.
Collapse
|
31
|
Dawood AWH, Bassut J, de Souza ROMA, Bornscheuer UT. Combination of the Suzuki-Miyaura Cross-Coupling Reaction with Engineered Transaminases. Chemistry 2018; 24:16009-16013. [DOI: 10.1002/chem.201804366] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Ayad W. H. Dawood
- Dept. of Biotechnology & Enzyme Catalysis; Institute of Biochemistry, Greifswald University; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Jonathan Bassut
- Biocatalysis and Organic Synthesis Group; Institute of Chemistry; Federal University of; Rio de Janeiro Brazil
| | - Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group; Institute of Chemistry; Federal University of; Rio de Janeiro Brazil
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis; Institute of Biochemistry, Greifswald University; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
32
|
Diaminopelargonic acid transaminase from Psychrobacter cryohalolentis is active towards (S)-(-)-1-phenylethylamine, aldehydes and α-diketones. Appl Microbiol Biotechnol 2018; 102:9621-9633. [DOI: 10.1007/s00253-018-9310-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/09/2018] [Accepted: 08/07/2018] [Indexed: 11/25/2022]
|
33
|
Dawood AWH, Weiß MS, Schulz C, Pavlidis IV, Iding H, de Souza ROMA, Bornscheuer UT. Isopropylamine as Amine Donor in Transaminase-Catalyzed Reactions: Better Acceptance through Reaction and Enzyme Engineering. ChemCatChem 2018. [DOI: 10.1002/cctc.201800936 and 21=21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ayad W. H. Dawood
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Martin S. Weiß
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Christian Schulz
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Ioannis V. Pavlidis
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
- Department of Chemistry; University of Crete; Voutes University Campus Heraklion 70013 Greece
| | - Hans Iding
- Process Chemistry and Catalysis, Biocatalysis; F. Hoffmann-La Roche Ltd.; Grenzacher Strasse 124 Basel 4070 Switzerland
| | - Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group, Institute of Chemistry; Federal University of Rio de Janeiro; Brazil
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| |
Collapse
|
34
|
Dawood AWH, Weiß MS, Schulz C, Pavlidis IV, Iding H, de Souza ROMA, Bornscheuer UT. Isopropylamine as Amine Donor in Transaminase-Catalyzed Reactions: Better Acceptance through Reaction and Enzyme Engineering. ChemCatChem 2018. [DOI: 10.1002/cctc.201800936 and 67=89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ayad W. H. Dawood
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Martin S. Weiß
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Christian Schulz
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Ioannis V. Pavlidis
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
- Department of Chemistry; University of Crete; Voutes University Campus Heraklion 70013 Greece
| | - Hans Iding
- Process Chemistry and Catalysis, Biocatalysis; F. Hoffmann-La Roche Ltd.; Grenzacher Strasse 124 Basel 4070 Switzerland
| | - Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group, Institute of Chemistry; Federal University of Rio de Janeiro; Brazil
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| |
Collapse
|
35
|
Dawood AWH, Weiß MS, Schulz C, Pavlidis IV, Iding H, de Souza ROMA, Bornscheuer UT. Isopropylamine as Amine Donor in Transaminase-Catalyzed Reactions: Better Acceptance through Reaction and Enzyme Engineering. ChemCatChem 2018. [DOI: 10.1002/cctc.201800936] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ayad W. H. Dawood
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Martin S. Weiß
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Christian Schulz
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Ioannis V. Pavlidis
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
- Department of Chemistry; University of Crete; Voutes University Campus Heraklion 70013 Greece
| | - Hans Iding
- Process Chemistry and Catalysis, Biocatalysis; F. Hoffmann-La Roche Ltd.; Grenzacher Strasse 124 Basel 4070 Switzerland
| | - Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group, Institute of Chemistry; Federal University of Rio de Janeiro; Brazil
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| |
Collapse
|
36
|
Putri SP, Nakayama Y, Shen C, Noguchi S, Nitta K, Bamba T, Pontrelli S, Liao J, Fukusaki E. Identifying metabolic elements that contribute to productivity of 1-propanol bioproduction using metabolomic analysis. Metabolomics 2018; 14:96. [PMID: 30830363 DOI: 10.1007/s11306-018-1386-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Previously constructed Escherichia coli strains that produce 1-propanol use the native threonine pathway, or a heterologous citramalate pathway. However, based on the energy and cofactor requirements of each pathway, a combination of the two pathways produces synergistic effects that increase the theoretical maximum yield with a simultaneous unexplained increase in productivity. OBJECTIVE Identification of key factors that contribute to synergistic effect leading to 1-propanol yield and productivity improvement in E. coli with native threonine pathway and heterologous citramalate pathway. METHOD A combination of snapshot metabolomic profiling and dynamic metabolic turnover analysis were used to identify system-wide perturbations that contribute to the productivity improvement. RESULT AND CONCLUSION In the presence of both pathways, increased glucose consumption and elevated levels of glycolytic intermediates are attributed to an elevated phosphoenolpyruvate (PEP)/pyruvate ratio that is known to increase the function of the native phosphotransferase. Turnover analysis of nitrogen containing byproducts reveals that ammonia assimilation, required for the threonine pathway, is streamlined when provided with an NAD(P)H surplus in the presence of the citramalate pathway. Our study illustrates the application of metabolomics in identification of factors that alter cellular physiology for improvement of 1-propanol bioproduction.
Collapse
Affiliation(s)
- Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yasumune Nakayama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Applied Microbial Technology, Sojo University, 4-22-1 Ikeda, Kumamoto, 860-0082, Japan
| | - Claire Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Shingo Noguchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Drug Metabolism & Pharmacokinetics Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Shinagawa R&D Center, 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Katsuaki Nitta
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takeshi Bamba
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8285, Japan
| | - Sammy Pontrelli
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - James Liao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
37
|
Recent Advances in ω-Transaminase-Mediated Biocatalysis for the Enantioselective Synthesis of Chiral Amines. Catalysts 2018. [DOI: 10.3390/catal8070254] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Buß O, Buchholz PCF, Gräff M, Klausmann P, Rudat J, Pleiss J. The ω-transaminase engineering database (oTAED): A navigation tool in protein sequence and structure space. Proteins 2018; 86:566-580. [PMID: 29423963 DOI: 10.1002/prot.25477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/03/2018] [Accepted: 02/06/2018] [Indexed: 01/02/2023]
Abstract
The ω-Transaminase Engineering Database (oTAED) was established as a publicly accessible resource on sequences and structures of the biotechnologically relevant ω-transaminases (ω-TAs) from Fold types I and IV. The oTAED integrates sequence and structure data, provides a classification based on fold type and sequence similarity, and applies a standard numbering scheme to identify equivalent positions in homologous proteins. The oTAED includes 67 210 proteins (114 655 sequences) which are divided into 169 homologous families based on global sequence similarity. The 44 and 39 highly conserved positions which were identified in Fold type I and IV, respectively, include the known catalytic residues and a large fraction of glycines and prolines in loop regions, which might have a role in protein folding and stability. However, for most of the conserved positions the function is still unknown. Literature information on positions that mediate substrate specificity and stereoselectivity was systematically examined. The standard numbering schemes revealed that many positions which have been described in different enzymes are structurally equivalent. For some positions, multiple functional roles have been suggested based on experimental data in different enzymes. The proposed standard numbering schemes for Fold type I and IV ω-TAs assist with analysis of literature data, facilitate annotation of ω-TAs, support prediction of promising mutation sites, and enable navigation in ω-TA sequence space. Thus, it is a useful tool for enzyme engineering and the selection of novel ω-TA candidates with desired biochemical properties.
Collapse
Affiliation(s)
- Oliver Buß
- Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Engler-Bunte-Ring 3, Karlsruhe, 76131, Germany
| | - Patrick C F Buchholz
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, Stuttgart, 70569, Germany
| | - Maike Gräff
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, Stuttgart, 70569, Germany
| | - Peter Klausmann
- Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Engler-Bunte-Ring 3, Karlsruhe, 76131, Germany
| | - Jens Rudat
- Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Engler-Bunte-Ring 3, Karlsruhe, 76131, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, Stuttgart, 70569, Germany
| |
Collapse
|
39
|
Abstract
In biocatalysis, structural knowledge regarding an enzyme and its substrate interactions complements and guides experimental investigations. Structural knowledge regarding an enzyme or a biocatalytic reaction system can be generated through computational techniques, such as homology- or molecular modeling. For this type of computational work, a computer program developed for molecular modeling of proteins is required. Here, we describe the use of the program YASARA Structure. Protocols for two specific biocatalytic applications, including both homology modeling and molecular modeling such as energy minimization, molecular docking simulations and molecular dynamics simulations, are shown. The applications are chosen to give realistic examples showing how structural knowledge through homology and molecular modeling is used to guide biocatalytic investigations and protein engineering studies.
Collapse
|
40
|
Fuchs CS, Farnberger JE, Steinkellner G, Sattler JH, Pickl M, Simon RC, Zepeck F, Gruber K, Kroutil W. Asymmetric Amination of α-Chiral Aliphatic Aldehydes via
Dynamic Kinetic Resolution to Access Stereocomplementary Brivaracetam and Pregabalin Precursors. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701449] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Christine S. Fuchs
- Austrian Centre of Industrial Biotechnology, ACIB GmbH, c/o; University of Graz; Harrachgasse 21 8010 Graz Austria
| | - Judith E. Farnberger
- Austrian Centre of Industrial Biotechnology, ACIB GmbH, c/o; University of Graz; Harrachgasse 21 8010 Graz Austria
| | - Georg Steinkellner
- Austrian Centre of Industrial Biotechnology, ACIB GmbH, c/o; University of Graz; Harrachgasse 21 8010 Graz Austria
- Institute of Molecular Biosciences; University of Graz; Humboldtstrasse 50/3 8010 Graz Austria
| | - Johann H. Sattler
- Institute of Chemistry, Organic and Bioorganic Chemistry; University of Graz; Harrachgasse 21 8010 Graz Austria
| | - Mathias Pickl
- Institute of Chemistry, Organic and Bioorganic Chemistry; University of Graz; Harrachgasse 21 8010 Graz Austria
| | - Robert C. Simon
- Institute of Chemistry, Organic and Bioorganic Chemistry; University of Graz; Harrachgasse 21 8010 Graz Austria
| | - Ferdinand Zepeck
- Sandoz GmbH; Biocatalysis Lab; Biochemiestrasse 10 6250 Kundl Austria
| | - Karl Gruber
- Institute of Molecular Biosciences; University of Graz; Humboldtstrasse 50/3 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, Organic and Bioorganic Chemistry; University of Graz; Harrachgasse 21 8010 Graz Austria
| |
Collapse
|
41
|
Buß O, Muller D, Jager S, Rudat J, Rabe KS. Improvement in the Thermostability of a β-Amino Acid Converting ω-Transaminase by Using FoldX. Chembiochem 2017; 19:379-387. [PMID: 29120530 DOI: 10.1002/cbic.201700467] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 12/19/2022]
Abstract
ω-Transaminases (ω-TAs) are important biocatalysts for the synthesis of active, chiral pharmaceutical ingredients containing amino groups, such as β-amino acids, which are important in peptidomimetics and as building blocks for drugs. However, the application of ω-TAs is limited by the availability and stability of enzymes with high conversion rates. One strategy for the synthesis and optical resolution of β-phenylalanine and other important aromatic β-amino acids is biotransformation by utilizing an ω-transaminase from Variovorax paradoxus. We designed variants of this ω-TA to gain higher process stability on the basis of predictions calculated by using the FoldX software. We herein report the first thermostabilization of a nonthermostable S-selective ω-TA by FoldX-guided site-directed mutagenesis. The melting point (Tm ) of our best-performing mutant was increased to 59.3 °C, an increase of 4.0 °C relative to the Tm value of the wild-type enzyme, whereas the mutant fully retained its specific activity.
Collapse
Affiliation(s)
- Oliver Buß
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 3, 76131, Karlsruhe, Germany
| | - Delphine Muller
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 3, 76131, Karlsruhe, Germany
| | - Sven Jager
- Computational Biology, Technische Universität Darmstadt, Schnittspahnstrasse 2, 64287, Darmstadt, Germany
| | - Jens Rudat
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 3, 76131, Karlsruhe, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces I, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
42
|
Ferrandi EE, Monti D. Amine transaminases in chiral amines synthesis: recent advances and challenges. World J Microbiol Biotechnol 2017; 34:13. [PMID: 29255954 DOI: 10.1007/s11274-017-2395-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/07/2017] [Indexed: 01/10/2023]
Abstract
Transaminases, which catalyze the stereoselective transfer of an amino group between an amino donor and a prochiral ketone substrate, are interesting biocatalytic tools for the generation of optically pure chiral amines. In particular, amine transaminases (ATAs) are of industrial interest because they are capable of performing reductive amination reactions using a broad range of amine donors and acceptors. The most remarkable example of ATAs industrial application is in the production process of the anti-hyperglycaemic drug sitagliptin (Januvia®/Janumet®), which generated around 6 billion U.S. dollars of revenue to Merck in 2016. In this review, an update about the availability of microbial ATAs, discovered by both screening and database-mining approaches, or obtained by protein engineering of wild-type enzymes, will be provided. Current challenges in ATAs application and possible solutions will be also discussed. In particular, innovative biocatalytic process strategies aimed at the improvement of ATAs performances in chiral amines synthesis, e.g., using in situ product removal process strategies or flow reactors, will be presented. The progress in the industrial exploitation of these enzymes will be highlighted by selected examples of large-scale ATA-catalyzed processes.
Collapse
Affiliation(s)
- Erica E Ferrandi
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131, Milan, Italy
| | - Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare, C.N.R., Via Mario Bianco 9, 20131, Milan, Italy.
| |
Collapse
|
43
|
Schwarte A, Genz M, Skalden L, Nobili A, Vickers C, Melse O, Kuipers R, Joosten HJ, Stourac J, Bendl J, Black J, Haase P, Baakman C, Damborsky J, Bornscheuer U, Vriend G, Venselaar H. NewProt – a protein engineering portal. Protein Eng Des Sel 2017; 30:441-447. [DOI: 10.1093/protein/gzx024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/13/2017] [Indexed: 11/13/2022] Open
|
44
|
Han SW, Kim J, Cho HS, Shin JS. Active Site Engineering of ω-Transaminase Guided by Docking Orientation Analysis and Virtual Activity Screening. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03242] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sang-Woo Han
- Department
of Biotechnology and ‡Department of Systems Biology, Yonsei University, Yonsei-Ro 50, Seodaemun-Gu, Seoul 03722, South Korea
| | - Juyeon Kim
- Department
of Biotechnology and ‡Department of Systems Biology, Yonsei University, Yonsei-Ro 50, Seodaemun-Gu, Seoul 03722, South Korea
| | - Hyun-Soo Cho
- Department
of Biotechnology and ‡Department of Systems Biology, Yonsei University, Yonsei-Ro 50, Seodaemun-Gu, Seoul 03722, South Korea
| | - Jong-Shik Shin
- Department
of Biotechnology and ‡Department of Systems Biology, Yonsei University, Yonsei-Ro 50, Seodaemun-Gu, Seoul 03722, South Korea
| |
Collapse
|
45
|
Manta B, Cassimjee KE, Himo F. Quantum Chemical Study of Dual-Substrate Recognition in ω-Transaminase. ACS OMEGA 2017; 2:890-898. [PMID: 30023618 PMCID: PMC6044752 DOI: 10.1021/acsomega.6b00376] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/20/2017] [Indexed: 05/14/2023]
Abstract
ω-Transaminases are attractive biocatalysts for the production of chiral amines. These enzymes usually have a broad substrate range. Their substrates include hydrophobic amines as well as amino acids, a feature referred to as dual-substrate recognition. In the present study, the reaction mechanism for the half-transamination of l-alanine to pyruvate in (S)-selective Chromobacterium violaceum ω-transaminase is investigated using density functional theory calculations. The role of a flexible arginine residue, Arg416, in the dual-substrate recognition is investigated by employing two active-site models, one including this residue and one lacking it. The results of this study are compared to those of the mechanism of the conversion of (S)-1-phenylethylamine to acetophenone. The calculations suggest that the deaminations of amino acids and hydrophobic amines follow essentially the same mechanism, but the energetics of the reactions differ significantly. It is shown that the amine is kinetically favored in the half-transamination of l-alanine/pyruvate, whereas the ketone is kinetically favored in the half-transamination of (S)-1-phenylethylamine/acetophenone. The calculations further support the proposal that the arginine residue facilitates the dual-substrate recognition by functioning as an arginine switch, where the side chain is positioned inside or outside of the active site depending on the substrate. Arg416 participates in the binding of l-alanine by forming a salt bridge to the carboxylate moiety, whereas the conversion of (S)-1-phenylethylamine is feasible in the absence of Arg416, which here represents the case in which the side chain of Arg416 is positioned outside of the active site.
Collapse
Affiliation(s)
- Bianca Manta
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Fahmi Himo
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
46
|
Dourado DFAR, Pohle S, Carvalho ATP, Dheeman DS, Caswell JM, Skvortsov T, Miskelly I, Brown RT, Quinn DJ, Allen CCR, Kulakov L, Huang M, Moody TS. Rational Design of a (S)-Selective-Transaminase for Asymmetric Synthesis of (1S)-1-(1,1′-biphenyl-2-yl)ethanamine. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02380] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel F. A. R. Dourado
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, David
Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
| | - Stefan Pohle
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
| | - Alexandra T. P. Carvalho
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, David
Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
| | - Dharmendra S. Dheeman
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
| | - Jill M. Caswell
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
| | - Timofey Skvortsov
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
- School
of Biological Sciences, Queen’s University Belfast, Medical Biology
Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Iain Miskelly
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
| | - Rodney T. Brown
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
| | - Derek J. Quinn
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
| | - Christopher C. R. Allen
- School
of Biological Sciences, Queen’s University Belfast, Medical Biology
Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Leonid Kulakov
- School
of Biological Sciences, Queen’s University Belfast, Medical Biology
Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Meilan Huang
- School
of Chemistry and Chemical Engineering, Queen’s University Belfast, David
Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - Thomas S. Moody
- Department
of Biocatalysis and Isotope Chemistry, Almac Sciences, 20 Seagoe Industrial
Estate, Craigavon BT63
5QD, Northern Ireland, United Kingdom
| |
Collapse
|
47
|
Genz M, Melse O, Schmidt S, Vickers C, Dörr M, van den Bergh T, Joosten HJ, Bornscheuer UT. Engineering the Amine Transaminase fromVibrio fluvialistowards Branched-Chain Substrates. ChemCatChem 2016. [DOI: 10.1002/cctc.201601007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Maika Genz
- Department of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Ernst-Moritz-Arndt-Universität Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Okke Melse
- Department of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Ernst-Moritz-Arndt-Universität Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Sandy Schmidt
- Department of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Ernst-Moritz-Arndt-Universität Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Clare Vickers
- Department of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Ernst-Moritz-Arndt-Universität Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Mark Dörr
- Department of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Ernst-Moritz-Arndt-Universität Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Tom van den Bergh
- Bio-Prodict; Nieuwe Marktstraat 54E 6511 AA Nijmegen The Netherlands
| | - Henk-Jan Joosten
- Bio-Prodict; Nieuwe Marktstraat 54E 6511 AA Nijmegen The Netherlands
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Ernst-Moritz-Arndt-Universität Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
48
|
Pavlidis IV, Weiß MS, Genz M, Spurr P, Hanlon SP, Wirz B, Iding H, Bornscheuer UT. Identification of (S)-selective transaminases for the asymmetric synthesis of bulky chiral amines. Nat Chem 2016; 8:1076-1082. [PMID: 27768108 DOI: 10.1038/nchem.2578] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/16/2016] [Indexed: 11/09/2022]
Abstract
The use of transaminases to access pharmaceutically relevant chiral amines is an attractive alternative to transition-metal-catalysed asymmetric chemical synthesis. However, one major challenge is their limited substrate scope. Here we report the creation of highly active and stereoselective transaminases starting from fold class I. The transaminases were developed by extensive protein engineering followed by optimization of the identified motif. The resulting enzymes exhibited up to 8,900-fold higher activity than the starting scaffold and are highly stereoselective (up to >99.9% enantiomeric excess) in the asymmetric synthesis of a set of chiral amines bearing bulky substituents. These enzymes should therefore be suitable for use in the synthesis of a wide array of potential intermediates for pharmaceuticals. We also show that the motif can be engineered into other protein scaffolds with sequence identities as low as 70%, and as such should have a broad impact in the field of biocatalytic synthesis and enzyme engineering.
Collapse
Affiliation(s)
- Ioannis V Pavlidis
- Department of Biotechnology, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany.,Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
| | - Martin S Weiß
- Department of Biotechnology, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Maika Genz
- Department of Biotechnology, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Paul Spurr
- Process Research and Development, Biocatalysis, F. Hoffmann-LaRoche Ltd, Grenzacher Str. 124, 4070 Basel, Switzerland
| | - Steven P Hanlon
- Process Research and Development, Biocatalysis, F. Hoffmann-LaRoche Ltd, Grenzacher Str. 124, 4070 Basel, Switzerland
| | - Beat Wirz
- Process Research and Development, Biocatalysis, F. Hoffmann-LaRoche Ltd, Grenzacher Str. 124, 4070 Basel, Switzerland
| | - Hans Iding
- Process Research and Development, Biocatalysis, F. Hoffmann-LaRoche Ltd, Grenzacher Str. 124, 4070 Basel, Switzerland
| | - Uwe T Bornscheuer
- Department of Biotechnology, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| |
Collapse
|
49
|
Gundersen MT, Tufvesson P, Rackham EJ, Lloyd RC, Woodley JM. A Rapid Selection Procedure for Simple Commercial Implementation of ω-Transaminase Reactions. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.5b00159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria T. Gundersen
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Pär Tufvesson
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Emma J. Rackham
- Dr. Reddy’s
Chirotech Technology Centre, 410 Cambridge
Science Park, Milton Road, CB4 0PE, Cambridge, U.K
| | - Richard C. Lloyd
- Dr. Reddy’s
Chirotech Technology Centre, 410 Cambridge
Science Park, Milton Road, CB4 0PE, Cambridge, U.K
| | - John M. Woodley
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
50
|
Dörr M, Fibinger MP, Last D, Schmidt S, Santos-Aberturas J, Böttcher D, Hummel A, Vickers C, Voss M, Bornscheuer UT. Fully automatized high-throughput enzyme library screening using a robotic platform. Biotechnol Bioeng 2016; 113:1421-32. [DOI: 10.1002/bit.25925] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/15/2015] [Accepted: 12/28/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Mark Dörr
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17489 Germany
| | - Michael P.C. Fibinger
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17489 Germany
| | - Daniel Last
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17489 Germany
| | - Sandy Schmidt
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17489 Germany
| | - Javier Santos-Aberturas
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17489 Germany
| | - Dominique Böttcher
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17489 Germany
| | - Anke Hummel
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17489 Germany
| | - Clare Vickers
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17489 Germany
| | - Moritz Voss
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17489 Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 Greifswald 17489 Germany
| |
Collapse
|