1
|
Unni V, Abishad P, Mohan B, Arya PR, Juliet S, John L, Vinod VK, Karthikeyan A, Kurkure NV, Barbuddhe SB, Rawool DB, Vergis J. Antibacterial and photocatalytic potential of piperine-derived zinc oxide nanoparticles against multi-drug-resistant non-typhoidal Salmonella spp. BMC Microbiol 2025; 25:89. [PMID: 40000999 PMCID: PMC11852875 DOI: 10.1186/s12866-025-03829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Drug-resistant pathogens and industrial dye wastes have emerged as critical global public health concerns, posing significant risks to human and animal health, as well as to environmental sustainability. Green synthesized nano absorbents were found to be a viable strategy for treating drug-resistant pathogens and in wastewater. Hence, this study endeavored the synthesis of piperine-driven nano-zinc oxide (ZnONPs) and evaluated them for antibacterial, antibiofilm, and photocatalytic disinfection potential against multi-drug resistant (MDR) foodborne strains of non-typhoidal Salmonella (NTS). Besides, the dye degradation potential of ZnONPs when exposed to UV, sunlight, and LED lights and their antioxidant capacity were assessed. RESULTS Initially, in silico analysis of piperine revealed drug-likeliness with minimal toxicity and strong interaction between piperine and OmpC motifs of Salmonella spp. UV spectroscopy of ZnONPs revealed a prominent absorption peak at 340 nm, while PXRD analysis confirmed the hexagonal wurtzite structure of ZnONPs by exhibiting peaks at 30°, 35.6°, 41.3°, 43.6°, 44.3°, 48°, 53°, 58°, and 59.2°, which corresponded to the lattice planes (102), (110), (103), (200), (112), (004), (104), (210), and (211). Additionally, the TEM images demonstrated predominantly spherical ZnONPs with hexagonal wurtzite crystalline SAED pattern. The minimum inhibitory concentration and minimum bactericidal concentration values (µg/mL) of the ZnONPs were found to be 62.50 and 125, respectively. The ZnONPs were observed to be safe with minimal hemolysis (less than 2%) in chicken RBCs, and no cytopathic effects were observed in the MTT assay using HEK cell lines. The NPs were found to be variably stable (high-end temperatures, proteases, cationic salts, and diverse pH), and were tested safe towards commensal gut lactobacilli. Additionally, in vitro time-kill kinetic assay indicated that the MDR-NTS strains were eliminated after co-incubating with ZnONPs for 6 h. The photocatalytic studies exhibited complete bacterial elimination under visible light at 4 h. Interestingly, the ZnONPs significantly inhibited the biofilm formation in the crystal violet staining assay by MDR-NTS strains (P < 0.001) at 24 and 48 h. Besides, a dose-dependent reducing power assay and 2,2'- azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) assay were exhibited. Moreover, ZnONPs significantly degraded methylene blue, crystal violet, and rhodamine-B under different light sources (sunlight, UV light, and LED). CONCLUSIONS This study revealed a sustainable one-pot method of synthesizing ZnONPs from piperine, which might be used as a viable antibacterial candidate with antioxidant, antibiofilm, and photocatalytic properties with eco-friendly implications and wastewater treatment.
Collapse
Affiliation(s)
- Varsha Unni
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Padikkamannil Abishad
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Bibin Mohan
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Pokkittath Radhakrishnan Arya
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Sanis Juliet
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Lijo John
- Department of Veterinary Biochemistry, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Valil Kunjukunju Vinod
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Asha Karthikeyan
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | | | | | | | - Jess Vergis
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India.
| |
Collapse
|
2
|
Zarekarizi F, Ghasempour H, Habibi B, Morsali A, Ramazani A. Development of a Novel Mixed-Metal-Organic Framework: An Innovative Photocatalyst for Simultaneous Cr(VI) Reduction and Phenol Degradation. Inorg Chem 2024; 63:24363-24373. [PMID: 39644246 DOI: 10.1021/acs.inorgchem.4c04447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The direct use of sunlight as an infinite source of energy for wastewater treatment is an overwhelming idea. For this aim, the development of novel and practical photocatalysts has been the main challenge of researchers. Among the different methodologies used, the introduction of multifunctional MOFs as photocatalysts shows a great deal of potential. Here, a simple and useful approach for the synthesis of rare mixed-valence, mixed-metal organic frameworks (MM-MOF) [Fe2CoO(TPBTM6)(H2O)3]n (Fe2CoMOF) [H6TPBTM: N,N',N″-Tris(isophthalyl)-1,3,5-benzenetricarboxamide] was investigated using a one-step hydrothermal approach. Applying mixed-metal clusters as preformed SBUs introduces multifunctionality into the MOF structure, leading to high performance in wastewater treatment. The coexistence of Fe3+ and Co2+ leads to super photocatalytic ability of the structure. Therefore, the catalytic activity of Fe2CoMOF was explored for concurrent photocatalytic Cr(VI) reduction and phenol degradation. For a better understanding of the cooperative reaction among Cr(VI) reduction and phenol oxidation, methodical tests were conducted to disclose the Cr(VI), phenol, and MOF functions in the photocatalytic procedures. The influence of the primary substrate concentration and pH on the reduction procedure was also examined empirically.
Collapse
Affiliation(s)
- Farnoosh Zarekarizi
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Hosein Ghasempour
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| | - Behnam Habibi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| | - Ali Ramazani
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
- The Convergent Sciences & Technologies Laboratory (CSTL), Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran
| |
Collapse
|
3
|
Zhang W, Wang G, Yang H, Ma R, Wang H. Covalent triazine frameworks as particle electrode for three-dimensional photoelectrocatalytic degradation of oxytetracycline: Synergy effects, pathway, and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123219. [PMID: 39500167 DOI: 10.1016/j.jenvman.2024.123219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024]
Abstract
Photoelectrocatalysis has been widely employed for degrading antibiotics due to its high efficiency. However, the application is significantly impeded by the rapid recombination of photogenerated charge carriers and the limited surface areas of photoelectrodes. In the study, high crystallinity covalent triazine frameworks were fabricated at low temperature of 150 °C and firstly used as particle photoelectrode in the three-dimensional photoelectrochemical reactor to degrade oxytetracycline (OTC). SEM, TEM, XRD, XPS, and FT-IR confirmed the successful synthesis of high crystallinity covalent triazine frameworks. Compared to CTF-120 (71.2%) and CTF-180 (46.9%), CTF-150 exhibited excellent OTC removal. Electrochemical impedance, UV-vis absorption spectra, and Mott-Schottky tests showed that CTF-150 demonstrated more wide light absorption range of 501 nm and narrow bandgap of 2.52 eV, and smaller Rct value under illumination, in comparing to CTF-120 and CTF-180. When the initial concentration of OTC was 50 mg L-1, the 86.2% of OTC removal and 62.7% of mineralization were obtained under light irradiation (λ > 420 nm), current of 10 mA, pH of 6.4, electrolyte of 0.1 M Na2SO4. The synergy effect between photocatalytic and electrocatalytic processes of CTF-150 not only enhanced by 38.5% current efficiency but also reduced energy consumption to 1.90 kWh m-3. CTF-150 had a wide range of acid-base application and displayed resistance on coexisting ions. Electron spin resonance detection, quenching experiments, and probe experiments illustrated that h+, •O2-, 1O2, and •OH contributed to the degradation of OTC and the generation pathways of •O2-, 1O2, and •OH were verified. Moreover, •O2-, 1O2, and h+ were the main reactive species responsible for OTC removal, while 1O2 was for OTC mineralization. Based on high-performance liquid chromatography-tandem mass spectrometry detection, OTC with benzene ring was decomposed to opening ring products. The acute toxicity, developmental toxicity, bioaccumulation factor and mutagenicity of OTC and its intermediates using T.E.S.T. showed the toxicity of 82.35% degradation products decreased.
Collapse
Affiliation(s)
- Wenwen Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China; College of Life Science, Hebei University, Baoding, 071002, China
| | - Guangyang Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China
| | - Heng Yang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China
| | - Ran Ma
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China; College of Life Science, Hebei University, Baoding, 071002, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China; College of Life Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
4
|
O'Callaghan P, Jarosz-Duda A, Kuncewicz J, Dzierżęga K, Macyk W. Upconverting particles in near-infrared light-induced TiO 2 photocatalysis: towards the optimal architecture of upconverter/photocatalyst systems. RSC Adv 2024; 14:36930-36936. [PMID: 39569132 PMCID: PMC11576942 DOI: 10.1039/d4ra04185b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Preparation of highly active core-shell/hybrid materials based on up-converting particles combined with semiconductors for photocatalytic application usually requires sophisticated and multi-step synthesis procedures. We propose a new design of a highly efficient NIR-driven photocatalytic system composed of spatially separated thin films of upconverting NaYF4:Yb,Tm particles (UCPs), and TiO2. Several samples of UCPs were prepared in the form of thin films and suspensions, directly coated with a titania layer or mixed with P25. Photocatalytic and photoelectrochemical studies have shown that thin film samples achieved significantly higher photocatalytic activity than their suspended counterparts. Moreover, the sample consisting of spatially separated layers of UCPs and P25 presented a significant photocatalytic activity and generated the highest photocurrent intensity. Separating the photocatalyst and upconverter layers allows for an interchangeable photocatalytic system active in a wide range of light.
Collapse
Affiliation(s)
- Paulina O'Callaghan
- Faculty of Chemistry, Jagiellonian University ul. Gronostajowa 2 30-387 Kraków Poland
| | - Agnieszka Jarosz-Duda
- Faculty of Chemistry, Jagiellonian University ul. Gronostajowa 2 30-387 Kraków Poland
| | - Joanna Kuncewicz
- Faculty of Chemistry, Jagiellonian University ul. Gronostajowa 2 30-387 Kraków Poland
| | - Krzysztof Dzierżęga
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University ul. Łojasiewicza 11 30-348 Kraków Poland
| | - Wojciech Macyk
- Faculty of Chemistry, Jagiellonian University ul. Gronostajowa 2 30-387 Kraków Poland
| |
Collapse
|
5
|
Katre S, Baghmare P, Giri AS. Photocatalytic nanomaterials and their implications towards biomass conversion for renewable chemical and fuel production. NANOSCALE ADVANCES 2024; 6:d4na00447g. [PMID: 39359352 PMCID: PMC11441473 DOI: 10.1039/d4na00447g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024]
Abstract
Photocatalytic processes have recently gained popularity as a sustainable and energy-efficient method for converting biomass. This article gives a comprehensive overview of recent improvements in the photocatalytic conversion of biomass into useful chemicals and fuels utilizing various photocatalytic materials. The work delves into the assessment of diverse biomass sources and their preparation techniques, in addition to the synthesis of plasmonic nanoparticles as photocatalysts from biomass, offering a thorough examination. This review article provides detailed techniques for fabricating and synthesizing plasmonic nanoparticles. Furthermore, the study discusses advancements in coupling photo-oxidation alongside the hydrogen evolution mechanism for water splitting. Furthermore, prospective research topics are suggested, such as conducting a systematic analysis of photocatalysis's redox potential, developing more effective catalysts, broadening the variety of reaction types, and establishing industrial-scale photocatalytic production. Plasmonic photocatalysts have been utilized to convert biomass into H2 for energy, and to explore hypothesized molecular routes for the photocatalytic oxidation of 5-hydroxymethylfurfural (HMF), which may then be converted into 2,5-furandicarboxylic acid (FDCA). This review also discusses the surface functionalization of nanophotocatalysts with -COOH, NH2, and OH groups to increase their reactivity. Reactive oxygen species (ROS) formed on the surface of nanophotocatalysts under UV or solar light play a crucial role in photocatalytic reactions. Our review has shown many challenges and difficulties related to CO2 hydrogenation reactions in the presence of sustainable H2, powered by renewable energy sources. This is very critical for achieving a transition to net-zero emissions. These technologies will drive forward the development of biomass conversion processes into CO2-based fuels. This paper explores recent advancements in the conversion of biomass-derived CO2 into valuable chemicals using plasmonic nanophotocatalysts. In addition to this, density functional theory (DFT) calculations also reveal how functional groups help stabilize these nanoparticles and enhance electron density through photo-adsorption. This study provides a remarkable and significant review that examines current trends, future directions, and ongoing debates in this field, focusing on reaction conditions, catalyst design, and proposed mechanisms for producing valuable chemicals. These chemicals include single-carbon compounds like formaldehyde, formic acid, and methanol, as well as C2 + compounds such as acetic acid, ethanol, methyl formate, and oxyethylene ethers. Additionally, it addresses the current state of liquid-phase CO2 hydrogenation in the presence of photocatalysts, highlighting existing challenges and potential research paths. The paper also provides an overview of the advances and challenges in the electro- and photocatalytic oxidation of HMF (hydroxymethylfurfural), detailing strategies for creating high-value chemicals through these oxidation processes. These methods, which may involve reactions like the hydrogen evolution reaction, organic substrate reduction, CO2 reduction reaction, or N2 reduction reaction, are summarized and analyzed. Furthermore, the catalytic efficiency and mechanisms of various catalyst types in these conversion systems are introduced and discussed. Electron paramagnetic resonance and scavenger studies reveal the major active species (˙OH and ˙O2 -) in the photocatalytic conversion of biomass to different value-added products.
Collapse
Affiliation(s)
- Shikha Katre
- Indian Institute of Science Education and Research Bhopal Bhauri Bhopal Madhya Pradesh-462066 India +91-361-258-2292 +91-755-2692609
| | - Pawan Baghmare
- Indian Institute of Science Education and Research Bhopal Bhauri Bhopal Madhya Pradesh-462066 India +91-361-258-2292 +91-755-2692609
| | - Ardhendu S Giri
- Indian Institute of Science Education and Research Bhopal Bhauri Bhopal Madhya Pradesh-462066 India +91-361-258-2292 +91-755-2692609
| |
Collapse
|
6
|
Mao BD, Vadiveloo A, Qiu J, Gao F. Artificial photosynthesis: Promising approach for the efficient production of high-value bioproducts by microalgae. BIORESOURCE TECHNOLOGY 2024; 401:130718. [PMID: 38641303 DOI: 10.1016/j.biortech.2024.130718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Recently, microalgae had received extensive attention for carbon capture and utilization. But its overall efficiency still could not reach a satisfactory degree. Artificial photosynthesis showed better efficiency in the conversion of carbon dioxide. However, artificial photosynthesis could generally only produce C1-C3 organic matters at present. Some studies showed that heterotrophic microalgae can efficiently synthesize high value organic matters by using simple organic matter such as acetate. Therefore, the combination of artificial photosynthesis with heterotrophic microalgae culture showed great potential for efficient carbon capture and high-value organic matter production. This article systematically analyzed the characteristics and challenges of carbon dioxide conversion by microalgae and artificial photosynthesis. On this basis, the coupling mode and development trend of artificial photosynthesis combined with microalgae culture were discussed. In summary, the combination of artificial photosynthesis and microalgae culture has great potential in the field of carbon capture and utilization, and deserves further study.
Collapse
Affiliation(s)
- Bin-Di Mao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Ashiwin Vadiveloo
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Jian Qiu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
7
|
Armstrong C, Otero K, Hernandez-Pagan EA. Unraveling the molecular and growth mechanism of colloidal black In 2O 3-x. NANOSCALE 2024; 16:9875-9886. [PMID: 38687003 PMCID: PMC11112652 DOI: 10.1039/d3nr05035a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Black metal oxides with varying concentrations of O-vacancies display enhanced optical and catalytic properties. However, direct solution syntheses of this class of materials have been limited despite being highly advantageous given the different synthetic handles that can be leveraged towards control of the targeted material. Herein, we present an alternate colloidal synthesis of black In2O3-x nanoparticles from the simple reaction between In(acac)3 and oleyl alcohol. Growth studies by PXRD, TEM, and STEM-EDS coupled to mechanistic insights from 1H, 13C NMR revealed the particles form via two paths, one of which involves In0. We also show that variations in the synthesis atmosphere, ligand environment, and indium precursor can inhibit formation of the black In2O3-x. The optical spectrum for the black nanoparticles displayed a significant redshift when compared to pristine In2O3, consistent with the presence of O-vacancies. Raman spectra and surface analysis also supported the presence of surface oxygen vacancies in the as-synthesized black In2O3-x.
Collapse
Affiliation(s)
- Cameron Armstrong
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | - Kayla Otero
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | - Emil A Hernandez-Pagan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
8
|
Rajan ST, Senthilnathan J, Arockiarajan A. Innovative enhancement of electron tunneling synergy in carbon-doped Ta 2O 5CuO photocatalyst with nematic liquid crystal for safe drinking water. WATER RESEARCH 2024; 255:121457. [PMID: 38555783 DOI: 10.1016/j.watres.2024.121457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
This study focuses on enhancing the photocatalytic properties of carbon-doped Ta2O5CuO (C-Ta2O5CuO) nanocomposites for drinking water purification. The nanocomposites were fabricated by depositing C-Ta2O5CuO onto Nematic Liquid Crystal Polaroid (NLCP) obtained from a discarded laptop monitor, employing the sputter deposition method. The X-ray diffraction (XRD) and High-resolution transmission electron microscopy (HRTEM) determined the nanocomposite thin films' crystallinity and structural properties. The EDX and XPS analyses confirmed the elemental composition and reality of the Cu-incorporated Ta2O5 nanocomposites, respectively. The combination of electron tunneling enhancement provided by the NLCP and graphitic carbon led to exceptional photocatalytic performance. This was particularly evident in the efficient degradation of P-Rosaniline Hydrochloride (PRH) dye in an aqueous medium. C-Ta2O5CuO catalytic activities were estimated at various dye concentrations, repeatability, reusability with time, and kinetics. Coating's stability and long-term activity in photocatalysis reactions were also tested. Additionally, Cu present in the C-Ta2O5CuO and ˙OH radicals exhibited remarkable bactericidal activity. They displayed significant antibacterial efficacy against both gram-positive Escherichia coli (E. coli) and gram-negative Staphylococcus aureus (S. aureus) bacteria. These findings have significant implications for the development of advanced materials with potent photocatalytic and antibacterial properties, holding promise for improving drinking water quality and addressing environmental and health challenges.
Collapse
Affiliation(s)
- S Thanka Rajan
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - J Senthilnathan
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - A Arockiarajan
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600 036, India; Ceramic Technology Group- Center of Excellence in Materials and Manufacturing Futuristic Mobility, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
9
|
Jabeen T, Khan MS, Javaid S, Azeem W, Ayoub R, Motola M. Synergistic effects of β-NaFeO 2 ferrite nanoparticles for photocatalytic degradation, antibacterial, and antioxidant applications. RSC Adv 2024; 14:12513-12527. [PMID: 38633481 PMCID: PMC11022939 DOI: 10.1039/d4ra02430c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
Here, synthesis and thorough characterization of β-NaFeO2 nanoparticles utilizing a co-precipitation technique is presented. XRD analysis confirmed a hexagonal-phase structure of β-NaFeO2. SEM revealed well-dispersed spherical nanoparticles with an average diameter of 45 nm. The FTIR spectrum analysis revealed weak adsorption bands at 1054 cm-1 suggested metal-metal bond stretching (Fe-Na). UV-Visible spectroscopy indicates a 4.4 eV optical band gap. Colloidal stability of β-NaFeO2 was evidenced via Zeta potential (-28.5 mV) and Dynamic Light Scattering (DLS) measurements. BET analysis reveals a substantial 343.27 m2 g-1 surface area with mesoporous characteristics. Antioxidant analysis indicates efficacy comparable to standard antioxidants, while concentration-dependent antibacterial effects suggest enhanced efficacy against Gram-positive bacteria, particularly Streptococcus. The Photocatalytic activity of β-NaFeO2 showed significant pollutant degradation (>90% efficiency), with increased degradation rates at higher nanoparticle concentrations, indicating potential for environmental remediation applications.
Collapse
Affiliation(s)
- Tahira Jabeen
- Institute of Physics, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan +923016979528 +923006421403
| | - Muhammad Shahid Khan
- Institute of Physics, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan +923016979528 +923006421403
| | - Sana Javaid
- Institute of Physics, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan +923016979528 +923006421403
| | - Waqar Azeem
- Faculty of Resilience, Rabdan Academy Abu Dhabi United Arab Emirates
| | - Rabia Ayoub
- Institute of Physics, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan +923016979528 +923006421403
| | - Martin Motola
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava Ilkovicova 6 842 15 Bratislava Slovakia +421 2 9014 9374
| |
Collapse
|
10
|
Rani M, Yadav J, Shanker U, Wang C. Recent updates on remediation approaches of environmentally occurring pollutants using visible light-active nano-photocatalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22258-22283. [PMID: 38418782 DOI: 10.1007/s11356-024-32455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Photocatalysis emerges as a potential remedy for the issue of an unreliable light source. Recognized as the most dependable and potent energy source sustaining life on Earth, sunlight offers a promising solution. Sunlight is abundant and free, operational costs associated with running photocatalytic system using nanoparticles are often lower compared to system relying on artificial light source. The escalating problem of water pollution, particularly in highly industrialized nations, necessitates effective wastewater treatment methods. These methods aim to combat elevated pollution levels, encompassing pharmaceuticals, dyes, flame retardants, and pesticide components. Advanced oxidation processes within photocatalytic wastewater treatment exhibit substantial promise for removing complex organic pollutants. Doped nanomaterials, with their enhanced properties, enable efficient utilization of light. Coupled nanomaterials present significant potential in addressing both water and energy challenges by proficiently eliminating persistent pollutants from environment. Photocatalysis when exposed to sunlight can absorb photons and generate e- h + pairs. This discussion briefly outlines the wastewater treatment facilitated by interconnected nanomaterials, emphasizing their role in water-energy nexus. In exploring the capabilities of components within a functional photocatalyst, a comprehensive analysis of both simple photocatalysts and integrated photocatalytic systems is undertaken. Review aims to provide detailed explanation of the impact of light source on photon generation and significance of solar light on reaction kinetics, considering various parameters such as catalyst dosage, pH, temperature, and types of oxidants. By shedding light on these aspects, this review seeks to enhance our understanding of intricate processes involved in photocatalysis and its potential applications in addressing contemporary environmental challenges.
Collapse
Affiliation(s)
- Manviri Rani
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| | - Jyoti Yadav
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| | - Uma Shanker
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India, 144027.
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
11
|
Kumar V, Prasad Singh G, Kumar M, Kumar A, Singh P, Ansu AK, Sharma A, Alam T, Yadav AS, Dobrotă D. Nanocomposite Marvels: Unveiling Breakthroughs in Photocatalytic Water Splitting for Enhanced Hydrogen Evolution. ACS OMEGA 2024; 9:6147-6164. [PMID: 38371806 PMCID: PMC10870388 DOI: 10.1021/acsomega.3c07822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/20/2024]
Abstract
An overview of the significant innovations in photocatalysts for H2 development, photocatalyst selection criteria, and photocatalytic modifications to improve the photocatalytic activity was examined in this Review, as well as mechanisms and thermodynamics. A variety of semiconductors have been examined in a structured fashion, such as TiO2-, g-C3N4-, graphene-, sulfide-, oxide-, nitride-, oxysulfide-, oxynitrides, and cocatalyst-based photocatalysts. The techniques for enhancing the compatibility of metals and nonmetals is discussed in order to boost photoactivity within visible light irradiation. In particular, further deliberation has been carried out on the development of heterojunctions, such as type I, type II, and type III, along with Z-systems, and S-scheme systems. It is important to thoroughly investigate these issues in the sense of visible light irradiations to enhance the efficacy of photocatalytic action. In fact, another advancement in this area may include hiring mediators including grapheme oxide and metals to establish indirect Z-scheme montages with a correct band adjustment. The potential consideration of reaction chemology, mass transfer, kinetics of reactions, restriction of light diffusion, and the process and selection of suitable light and photoreactor also will optimize sustainable hydrogen output efficiency and selectivity.
Collapse
Affiliation(s)
- Vikash Kumar
- Department
of Electronics and Communication Engineering, RV Institute of Technology and Management, Bangalore, Karnataka 560076, India
| | - Gajendra Prasad Singh
- Department
of Metallurgical and Material Engineering, Central University Jharkhand, Ranchi, Jharkhand 835205, India
| | - Manish Kumar
- Department
of Mechanical Engineering, RV Institute
of Technology and Management, Bangalore, Karnataka 560076, India
| | - Amit Kumar
- Centre
for Augmented Intelligence and Design, Department of Mechanical Engineering, Sri Eshwar College of Engineering, Coimbatore, Tamil Nadu 641202, India
| | - Pooja Singh
- Department
of Mechanical Engineering, Manipal University
Jaipur, Jaipur, Rajasthan 303007, India
| | - Alok Kumar Ansu
- Department
of Mechanical Engineering, Manipal University
Jaipur, Jaipur, Rajasthan 303007, India
| | - Abhishek Sharma
- Department
of Mechanical Engineering, BIT Sindri, Dhanbad Jharkhand 828123, India
| | - Tabish Alam
- CSIR-Central
Building Research Institute, Roorkee, Uttarakhand 247667, India
| | - Anil Singh Yadav
- Department
of Mechanical Engineering, Bakhtiyarpur
College of Engineering (Science, Technology and Technical Education
Department, Government of Bihar), Bakhtiyarpur, Bihar 803212, India
| | - Dan Dobrotă
- Faculty
of Engineering, Department of Industrial Engineering and Management, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| |
Collapse
|
12
|
Samarasinghe LV, Muthukumaran S, Baskaran K. Recent advances in visible light-activated photocatalysts for degradation of dyes: A comprehensive review. CHEMOSPHERE 2024; 349:140818. [PMID: 38056717 DOI: 10.1016/j.chemosphere.2023.140818] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
The rapid development in industrialization and urbanization coupled with an ever-increasing world population has caused a tremendous increase in contamination of water resources globally. Synthetic dyes have emerged as a major contributor to environmental pollution due to their release in large quantities into the environment, especially owing to their high demand in textile, cosmetics, clothing, food, paper, rubber, printing, and plastic industries. Photocatalytic treatment technology has gained immense research attention for dye contaminated wastewater treatment due to its environment-friendliness, ability to completely degrade dye molecules using light irradiation, high efficiency, and no generation of secondary waste. Photocatalytic technology is evolving rapidly, and the foremost goal is to synthesize highly efficient photocatalysts with solar energy harvesting abilities. The current review provides a comprehensive overview of the most recent advances in highly efficient visible light-activated photocatalysts for dye degradation, including methods of synthesis, strategies for improving photocatalytic activity, regeneration and their performance in real industrial effluent. The influence of various operational parameters on photocatalytic activity are critically evaluated in this article. Finally, this review briefly discusses the current challenges and prospects of visible-light driven photocatalysts. This review serves as a convenient and comprehensive resource for comparing and studying the fundamentals and recent advancements in visible light photocatalysts and will facilitate further research in this direction.
Collapse
Affiliation(s)
| | - Shobha Muthukumaran
- Institute for Sustainability Industries and Liveable Cities, College of Sport, Health & Engineering, Victoria University, Melbourne, VIC, 8001, Australia
| | - Kanagaratnam Baskaran
- Faculty of Science, Engineering and Built Environment, Deakin University, Victoria, 3216, Australia
| |
Collapse
|
13
|
Fang J, Wei H, Chen Y, Dai B, Ni Y, Kou J, Lu C, Xu Z. Low-Energy Photons Dual Harvest for Photocatalytic Hydrogen Evolution: Bimodal Surface Plasma Resonance Related Synergism of Upconversion and Pyroelectricity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207467. [PMID: 36634976 DOI: 10.1002/smll.202207467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Indexed: 05/04/2023]
Abstract
Utilization of low-energy photons for efficient photocatalysis remains a challenging pursuit. Herein, a strategy is reported to boost the photocatalytic performance, by promoting low-energy photons dual harvest through bimodal surface plasmon resonance (SPR)-enhanced synergistically upconversion and pyroelectricity. It is achieved by introducing triplet-triplet annihilation upconversion (TTA-UC) materials and plasmonic material (Au nanorods, AuNRs) into composite fibers composed of pyroelectric substrate (poly(vinylidene fluoride)) and photocatalyst Cd0.5 Zn0.5 S. Interestingly, the dual combination of TTA-UC and AuNRs SPR in the presence of polyvinylidene fluoride substrate with pyroelectric property promotes the photocatalytic hydrogen evolution performance by 2.88 folds with the highest average apparent quantum yield of 7.0% under the low-energy light (λ > 475 nm), which far outweighs the role of separate application of TTA-UC (34%) and AuNRs SPR (76%). The presence of pyroelectricity plays an important role in the built-in electric field as well as the accordingly photogenerated carrier behavior in the composite photocatalytic materials, and the pyroelectricity can be affected by AuNRs with different morphologies, which is proved by the Kelvin probe force microscopy and photocurrent data. This work provides a new avenue for fully utilizing low-energy photons in the solar spectrum for improving photocatalytic performance.
Collapse
Affiliation(s)
- Jiaojiao Fang
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Huimin Wei
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Yukai Chen
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Baoying Dai
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Yaru Ni
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Jiahui Kou
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Chunhua Lu
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Zhongzi Xu
- College of Materials Science and Engineering, State Key Laboratory of Materials-Orient Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
14
|
Vaz B, Pérez-Lorenzo M. Unraveling Structure-Performance Relationships in Porphyrin-Sensitized TiO 2 Photocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1097. [PMID: 36985991 PMCID: PMC10059665 DOI: 10.3390/nano13061097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Over the years, porphyrins have arisen as exceptional photosensitizers given their ability to act as chlorophyll-mimicking dyes, thus, transferring energy from the light-collecting areas to the reaction centers, as it happens in natural photosynthesis. For this reason, porphyrin-sensitized TiO2-based nanocomposites have been widely exploited in the field of photovoltaics and photocatalysis in order to overcome the well-known limitations of these semiconductors. However, even though both areas of application share some common working principles, the development of solar cells has led the way in what is referred to the continuous improvement of these architectures, particularly regarding the molecular design of these photosynthetic pigments. Yet, those innovations have not been efficiently translated to the field of dye-sensitized photocatalysis. This review aims at filling this gap by performing an in-depth exploration of the most recent advances in the understanding of the role played by the different structural motifs of porphyrins as sensitizers in light-driven TiO2-mediated catalysis. With this goal in mind, the chemical transformations, as well as the reaction conditions under which these dyes must operate, are taken in consideration. The conclusions drawn from this comprehensive analysis offer valuable hints for the implementation of novel porphyrin-TiO2 composites, which may pave the way toward the fabrication of more efficient photocatalysts.
Collapse
Affiliation(s)
- Belén Vaz
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
| | - Moisés Pérez-Lorenzo
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
| |
Collapse
|
15
|
Cai Y, Luo F, Guo Y, Guo F, Shi W, Yang S. Near-Infrared Light Driven ZnIn 2S 4-Based Photocatalysts for Environmental and Energy Applications: Progress and Perspectives. Molecules 2023; 28:molecules28052142. [PMID: 36903386 PMCID: PMC10004320 DOI: 10.3390/molecules28052142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Zinc indium sulfide (ZnIn2S4), as a significant visible-light-responsive photocatalyst, has become a research hotspot to tackle energy demand and environmental issues owing to its excellent properties of high stability, easy fabrication, and remarkable catalytic activity. However, its drawbacks, including low utilization of solar light and fast photoinduced charge carriers, limit its applications. Promoting the response for near-infrared (NIR) light (~52% solar light) of ZnIn2S4-based photocatalysts is the primary challenge to overcome. In this review, various modulation strategies of ZnIn2S4 have been described, which include hybrid with narrow optical gap materials, bandgap engineering, up-conversion materials, and surface plasmon materials for enhanced NIR photocatalytic performance in the applications of hydrogen evolution, pollutants purification, and CO2 reduction. In addition, the synthesis methods and mechanisms of NIR light-driven ZnIn2S4-based photocatalysts are summarized. Finally, this review presents perspectives for future development of efficient NIR photon conversion of ZnIn2S4-based photocatalysts.
Collapse
Affiliation(s)
- Yi Cai
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Fangxin Luo
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yujun Guo
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Feng Guo
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Weilong Shi
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
- Correspondence: (W.S.); (S.Y.)
| | - Shengtao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (W.S.); (S.Y.)
| |
Collapse
|
16
|
Ye Z, Xu Z, Yue W, Liu X, Wang L, Zhang J. Exploiting the LSPR effect for an enhanced photocatalytic hydrogen evolution reaction. Phys Chem Chem Phys 2023; 25:2706-2716. [PMID: 36629741 DOI: 10.1039/d2cp04582f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Incorporation of plasmonic metals is one of the most widely adopted strategies for improving the photocatalytic hydrogen evolution reaction (HER) activity of semiconductor photocatalysts. This article summarizes recent advances in the development of plasmonic metal-semiconductor photocatalysts and four localized surface plasmon resonance (LSPR) driven mechanisms by which plasmonic metal nanoparticles can contribute to enhancement of HER activity. In addition, principles for maximizing the contribution of these LSPR driven mechanisms are highlighted to provide insights for future design of plasmonic metal-semiconductor photocatalysts with enhanced HER activity.
Collapse
Affiliation(s)
- Ziwei Ye
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China. .,Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai 200237, China
| | - Zehong Xu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China. .,Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai 200237, China
| | - Wenhui Yue
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China. .,Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyu Liu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China. .,Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai 200237, China
| | - Lingzhi Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China. .,Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China. .,Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
17
|
Memisoglu G, Murugesan RC, Zubia J, Rozhin AG. Graphene Nanocomposite Membranes: Fabrication and Water Treatment Applications. MEMBRANES 2023; 13:145. [PMID: 36837648 PMCID: PMC9965488 DOI: 10.3390/membranes13020145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 05/31/2023]
Abstract
Graphene, a two-dimensional hexagonal honeycomb carbon structure, is widely used in membrane technologies thanks to its unique optical, electrical, mechanical, thermal, chemical and photoelectric properties. The light weight, mechanical strength, anti-bacterial effect, and pollution-adsorption properties of graphene membranes are valuable in water treatment studies. Incorporation of nanoparticles like carbon nanotubes (CNTs) and metal oxide into the graphene filtering nanocomposite membrane structure can provide an improved photocatalysis process in a water treatment system. With the rapid development of graphene nanocomposites and graphene nanocomposite membrane-based acoustically supported filtering systems, including CNTs and visible-light active metal oxide photocatalyst, it is necessary to develop the researches of sustainable and environmentally friendly applications that can lead to new and groundbreaking water treatment systems. In this review, characteristic properties of graphene and graphene nanocomposites are examined, various methods for the synthesis and dispersion processes of graphene, CNTs, metal oxide and polymer nanocomposites and membrane fabrication and characterization techniques are discussed in details with using literature reports and our laboratory experimental results. Recent membrane developments in water treatment applications and graphene-based membranes are reviewed, and the current challenges and future prospects of membrane technology are discussed.
Collapse
Affiliation(s)
- Gorkem Memisoglu
- Department of Communications Engineering, Escuela de Ingeniería de Bilbao, University of the Basque Country (UPV/EHU), E-48013 Bilbao, Spain
- Department of Electronics Technology, Istiklal University, Kahramanmaras 46300, Türkiye
| | | | - Joseba Zubia
- Department of Communications Engineering, Escuela de Ingeniería de Bilbao, University of the Basque Country (UPV/EHU), E-48013 Bilbao, Spain
| | - Aleksey G. Rozhin
- Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
18
|
Progress and challenges in full spectrum photocatalysts: Mechanism and photocatalytic applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Xie Y, Khoo KS, Chew KW, Devadas VV, Phang SJ, Lim HR, Rajendran S, Show PL. Advancement of renewable energy technologies via artificial and microalgae photosynthesis. BIORESOURCE TECHNOLOGY 2022; 363:127830. [PMID: 36029982 DOI: 10.1016/j.biortech.2022.127830] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
There has been an urgent need to tackle global climate change and replace conventional fuels with alternatives from sustainable sources. This has led to the emergence of bioenergy sources like biofuels and biohydrogen extracted from microalgae biomass. Microalgae takes up carbon dioxide and absorbs sunlight, as part of its photosynthesis process, for growth and producing useful compounds for renewable energy. While, the developments in artificial photosynthesis to a chemical process that biomimics the natural photosynthesis process to fix CO2 in the air. However, the artificial photosynthesis technology is still being investigated for its implementation in large scale production. Microalgae photosynthesis can provide the same advantages as artificial photosynthesis, along with the prospect of having final microalgae products suitable for various application. There are significant potential to adapt either microalgae photosynthesis or artificial photosynthesis to reduce the CO2 in the climate and contribute to a cleaner and green cultivation method.
Collapse
Affiliation(s)
- Youping Xie
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | - Vishno Vardhan Devadas
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sue Jiun Phang
- School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, Jalan Venna P5/2, Precinct 5, 62200 Putrajaya, Malaysia
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda. General Velasquez, 1775 Arica, Chile
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| |
Collapse
|
20
|
Chen H, Wang F, Wang K, Wu Y, Guo C. Metallic zirconium carbide mediated near-infrared driven photocatalysis and photothermal sterilization for multidirectional water purification. J Colloid Interface Sci 2022; 624:296-306. [PMID: 35660899 DOI: 10.1016/j.jcis.2022.05.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
Undoubtedly, taking full advantage of near-infrared light (NIR) for the photocatalytic reaction is a promising way to realize the efficient utilization of solar energy. In this work, zirconium carbide (ZrC) has been exploited as a NIR-driven photoactive substance for the simultaneous photodegradation of organic pollutants and photothermal sterilization of Escherichia coli (E. coli). The metallic nature and NIR-responsive localized surface plasmon resonance (LSPR) behaviors of ZrC are revealed by both experimental evidence and density function theory (DFT) calculations. ZrC exhibits extremely wide spectral absorbance, excellent NIR-triggered photosensitive effect and photothermal conversion efficiency. Activation kinetics was performed with DFT to investigate the activation process of O2 to •O2-. In addition, a possible NIR-mediated photocatalytic mechanism of ZrC was proposed on the basis of above DFT simulation and radical scavenging experiments. Metallic ZrC with NIR-responsive activity provides a new perspective for designing full-spectrum-driven photocatalysts.
Collapse
Affiliation(s)
- Hao Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Fang Wang
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Kaixin Wang
- Shanghai Chaowei Nanotechnology Co. Ltd., No.487, Edward, Road, Jiading District, Shanghai, China
| | - Yadong Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Chongshen Guo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
21
|
Recent Developments in Heterogeneous Photocatalysts with Near-Infrared Response. Symmetry (Basel) 2022. [DOI: 10.3390/sym14102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Photocatalytic technology has been considered as an efficient protocol to drive chemical reactions in a sustainable and green way. With the assistance of semiconductor-based materials, heterogeneous photocatalysis converts solar energy directly into chemical energy that can be readily stored. It has been employed in several fields including CO2 reduction, H2O splitting, and organic synthesis. Given that near-infrared (NIR) light occupies 47% of sunlight, photocatalytic systems with a NIR response are gaining more and more attention. To enhance the solar-to-chemical conversion efficiency, precise regulation of the symmetric/asymmetric nanostructures and band structures of NIR-response photocatalysts is indispensable. Under the irradiation of NIR light, the symmetric nano-morphologies (e.g., rod-like core-shell shape), asymmetric electronic structures (e.g., defect levels in band gap) and asymmetric heterojunctions (e.g., PN junctions, semiconductor-metal or semiconductor-dye composites) of designed photocatalytic systems play key roles in promoting the light absorption, the separation of electron/hole pairs, the transport of charge carriers to the surface, or the rate of surface photocatalytic reactions. This review will comprehensively analyze the four main synthesis protocols for the fabrication of NIR-response photocatalysts with improved reaction performance. The design methods involve bandgap engineering for the direct utilization of NIR photoenergy, the up-conversion of NIR light into ultraviolet/visible light, and the photothermal effect by converting NIR photons into local heat. Additionally, challenges and perspectives for the further development of heterogeneous photocatalysts with NIR response are also discussed based on their potential applications.
Collapse
|
22
|
Zhao W, Liu Y, Zhang P, Zhou P, Wu Z, Lou B, Jiang Y, Shakoor N, Li M, Li Y, Lynch I, Rui Y, Tan Z. Engineered Zn-based nano-pesticides as an opportunity for treatment of phytopathogens in agriculture. NANOIMPACT 2022; 28:100420. [PMID: 36038133 DOI: 10.1016/j.impact.2022.100420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
People's desire for food has never slowed, despite the deterioration of the global agricultural environment and the threat to food security. People rely on agrochemicals to ensure normal crop growth and to relieve the existing demand pressure. Phytopathogens have acquired resistance to traditional pesticides as a result of pesticdes' abuse. Compared with traditional formulations, nano-pesticides have superior antimicrobial performance and are environmentally friendly. Zn-based nanoparticles (NPs) have shown their potential as strong antipathogen activity. However, their full potential has not been demonstrated yet. Here, we analyzed the prerequisites for the use of Zn-based NPs as nano-pesticides in agriculture including both intrinsic properties of the materials and environmental conditions. We also summarized the mechanisms of Zn-based NPs against phytopathogens including direct and indirect strategies to alleviate plant disease stress. Finally, the current challenges and future directions are highlighted to advance our understanding of this field and guide future studies.
Collapse
Affiliation(s)
- Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanwanjing Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhangguo Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China
| | - Benzhen Lou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mingshu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; China Agricultural University Professor Workstation of Yuhuangmiao Town, Shanghe County, Jinan, Shandong, China; China Agricultural University Professor Workstation of Sunji Town, Shanghe County, Jinan, Shandong, China.
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
23
|
Du K, Feng J, Gao X, Zhang H. Nanocomposites based on lanthanide-doped upconversion nanoparticles: diverse designs and applications. LIGHT, SCIENCE & APPLICATIONS 2022; 11:222. [PMID: 35831282 PMCID: PMC9279428 DOI: 10.1038/s41377-022-00871-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 06/10/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have aroused extraordinary interest due to the unique physical and chemical properties. Combining UCNPs with other functional materials to construct nanocomposites and achieve synergistic effect abound recently, and the resulting nanocomposites have shown great potentials in various fields based on the specific design and components. This review presents a summary of diverse designs and synthesis strategies of UCNPs-based nanocomposites, including self-assembly, in-situ growth and epitaxial growth, as well as the emerging applications in bioimaging, cancer treatments, anti-counterfeiting, and photocatalytic fields. We then discuss the challenges, opportunities, and development tendency for developing UCNPs-based nanocomposites.
Collapse
Affiliation(s)
- Kaimin Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023, Dalian, China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Xuan Gao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
24
|
Arora I, Chawla H, Chandra A, Sagadevan S, Garg S. Advances in the strategies for enhancing the photocatalytic activity of TiO2: conversion from UV-light active to visible-light active photocatalyst. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Li C, Wu X, Hu J, Shan J, Zhang Z, Huang X, Liu H. Graphene-based photocatalytic nanocomposites used to treat pharmaceutical and personal care product wastewater: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35657-35681. [PMID: 35257332 DOI: 10.1007/s11356-022-19469-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Photocatalytic technology has been widely studied by researchers in the field of environmental purification. This technology can not only completely convert organic pollutants into small molecules of CO2 and H2O through redox reactions but also remove metal ions and other inorganic substances from water. This article reviews the research progress of graphene-based photocatalytic nanocomposites in the treatment of wastewater. First, we elucidate the basic principles of photocatalysis, the types of graphene-based nanocomposites, and the role of graphene in photocatalysis (e.g., graphene can accelerate the separation of photon-hole pairs and increase the intensity and range of light absorption). Second, the preparation, characterization, and application of composites in wastewater are introduced. We also discuss the kinetic model of the photocatalytic degradation of pollutants. Finally, the enhancement mechanism of graphene in terms of photocatalysis is not completely clear, and graphene-based photocatalysts with high catalytic efficiency, low cost, and large-scale production have not yet appeared, so there is an urgent need for more extensive and in-depth research.
Collapse
Affiliation(s)
- Caifang Li
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
| | - Xianliang Wu
- Guizhou Institute of Biology, Guiyang, Guizhou, 550009, China
| | - Jiwei Hu
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
| | - Junyue Shan
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
| | - Zhenming Zhang
- Guizhou Institute of Biology, Guiyang, Guizhou, 550009, China
| | - Xianfei Huang
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China.
| | - Huijuan Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| |
Collapse
|
26
|
Iqbal T, Ashraf M, Masood A. Simple synthesis of WO3 based activated carbon co-doped CuS composites for photocatalytic applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Grundke C, Silva RC, Kitzmann WR, Heinze K, de Oliveira KT, Opatz T. Photochemical α-Aminonitrile Synthesis Using Zn-Phthalocyanines as Near-Infrared Photocatalysts. J Org Chem 2022; 87:5630-5642. [PMID: 35421314 DOI: 10.1021/acs.joc.1c03101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
While photochemical transformations with sunlight almost exclusively utilize the UV-vis part of the solar spectrum, the majority of the photons emitted by the sun have frequencies in the near-infrared region. Phthalocyanines show high structural similarity to the naturally occurring light-harvesting porphyrins, chlorins, and mainly bacteriochlorins and are also known for being efficient and affordable near-infrared light absorbers as well as triplet sensitizers for the production of singlet oxygen. Although having been neglected for a long time in synthetic organic chemistry due to their low solubility and high tendency toward aggregation, their unique photophysical properties and chemical robustness make phthalocyanines attractive photocatalysts for the application in near-infrared-light-driven synthesis strategies. Herein, we report a cheap, simple, and efficient photocatalytic protocol, which is easily scalable under continuous-flow conditions. Various phthalocyanines were studied as near-infrared photosensitizers in oxidative cyanations of tertiary amines to generate α-aminonitriles, a synthetically versatile compound class.
Collapse
Affiliation(s)
- Caroline Grundke
- Department of Chemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Rodrigo C Silva
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil
| | - Winald R Kitzmann
- Department of Chemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Kleber T de Oliveira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
28
|
Sudhaik A, Parwaz Khan AA, Raizada P, Nguyen VH, Van Le Q, Asiri AM, Singh P. Strategies based review on near-infrared light-driven bismuth nanocomposites for environmental pollutants degradation. CHEMOSPHERE 2022; 291:132781. [PMID: 34748802 DOI: 10.1016/j.chemosphere.2021.132781] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Recently, solar energy has been considered the most vulnerable source to resolve environmental pollution and energy scarcity problems. Researchers have made intense research efforts to convert solar energy into chemical energy through photocatalysis processes as it is a green, clean and renewable energy source. Numerous discovered photocatalysts show absorption in the ultraviolet-visible (UV∼5% and visible ∼43%) region and are devoid of near-infrared (NIR ∼52%) light utilization. As infrared (IR) light contains a top portion of the solar spectrum; therefore, many alluring and attractive practical strategies have been explored to improve photocatalytic reactions and to harness full solar spectrum (including NIR light). Among those strategies, bandgap engineering, coupling with carbon quantum dots, heterostructure formation, mingling with plasmonic and upconversion (UC) NPs are more worthwhile. In different visible light-assisted photocatalysts, bismuth typically covers a distinctive, favorable, and earth-abundant group of freshly discovered innovative photocatalytic nanomaterials. Bi-based photocatalysts have suitable/good optoelectronic properties, crystalline geometric conformations, amendable electronic structure, and outstanding visible-light responsive range, helpful in environmental remediation and energy transformation. Due to the outstanding photo-oxidization/photodegradation capability of NIR-driven photocatalysts, bismuth-based nanomaterials have been considered suitable photocatalysts for inclusive solar energy utilization. Henceforth, keeping in mind the benefits of bismuth nanomaterials, the present review is focused on NIR-based modification strategies to upgrade solar light absorption of bismuth-based photocatalysts in the NIR region by making it NIR responsive photocatalyst. We have also discussed the photocatalytic applications of bismuth-based NIR responsive photocatalysts in pollutant degradation.
Collapse
Affiliation(s)
- Anita Sudhaik
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, 173229, India
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, 173229, India
| | - Van-Huy Nguyen
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam.
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, 173229, India.
| |
Collapse
|
29
|
Kumar A, Choudhary P, Kumar A, Camargo PHC, Krishnan V. Recent Advances in Plasmonic Photocatalysis Based on TiO 2 and Noble Metal Nanoparticles for Energy Conversion, Environmental Remediation, and Organic Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101638. [PMID: 34396695 DOI: 10.1002/smll.202101638] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/06/2021] [Indexed: 05/24/2023]
Abstract
Plasmonic photocatalysis has emerged as a prominent and growing field. It enables the efficient use of sunlight as an abundant and renewable energy source to drive a myriad of chemical reactions. For instance, plasmonic photocatalysis in materials comprising TiO2 and plasmonic nanoparticles (NPs) enables effective charge carrier separation and the tuning of optical response to longer wavelength regions (visible and near infrared). In fact, TiO2 -based materials and plasmonic effects are at the forefront of heterogeneous photocatalysis, having applications in energy conversion, production of liquid fuels, wastewater treatment, nitrogen fixation, and organic synthesis. This review aims to comprehensively summarize the fundamentals and to provide the guidelines for future work in the field of TiO2 -based plasmonic photocatalysis comprising the above-mentioned applications. The concepts and state-of-the-art description of important parameters including the formation of Schottky junctions, hot electron generation and transfer, near field electromagnetic enhancement, plasmon resonance energy transfer, scattering, and photothermal heating effects have been covered in this review. Synthetic approaches and the effect of various physicochemical parameters in plasmon-mediated TiO2 -based materials on performances are discussed. It is envisioned that this review may inspire and provide insights into the rational development of the next generation of TiO2 -based plasmonic photocatalysts with target performances and enhanced selectivities.
Collapse
Affiliation(s)
- Ajay Kumar
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Priyanka Choudhary
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Ashish Kumar
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Pedro H C Camargo
- University of Helsinki, Department of Chemistry, A.I. Virtasen aukio 1, Helsinki, Finland
| | - Venkata Krishnan
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
30
|
Cecconet D, Sturini M, Malavasi L, Capodaglio AG. Graphitic Carbon Nitride as a Sustainable Photocatalyst Material for Pollutants Removal. State-of-the Art, Preliminary Tests and Application Perspectives. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7368. [PMID: 34885523 PMCID: PMC8658503 DOI: 10.3390/ma14237368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
Photocatalysis is an attractive strategy for emerging pollutants remediation. Research towards the development of new, efficient and effective catalytic materials with high activity under wide irradiation spectra is a highly active sector in material science. Various semiconductor materials have been employed as photocatalysts, including TiO2, SrTiO3, CdS, BiVO4, Ta3N5, TaON, Ag3PO4, and g-C3N4. The latter is a metal-free, low cost polymer, providing high adsorption and catalytic properties, shown to be promising for photocatalysis applications under visible light. Furthermore, g-C3N4 composites are among the most promising advanced photocatalytical materials that can be produced by green synthesis processes. In this paper, the state-of-the-art of g-C3N4 applications is reviewed, and application perspectives are discussed. Photocatalysis tests with g-C3N4 under Xenon irradiation were performed to gather first-hand information to improve photoreactor design. Xenon light spectrum appears to be a suitable radiation source to replace direct sunlight in engineered pollutants removal processes catalyzed by g-C3N4, in lieu of other currently used heterogeneous photocatalysis processes (e.g., TiO2-UV). LED sources are also very promising due to higher energy efficiency and customizable, catalyzer-specific irradiation spectra.
Collapse
Affiliation(s)
- Daniele Cecconet
- Department of Civil Engineering & Architecture, University of Pavia, 27100 Pavia, Italy;
| | - Michela Sturini
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (M.S.); (L.M.)
| | - Lorenzo Malavasi
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (M.S.); (L.M.)
| | - Andrea G. Capodaglio
- Department of Civil Engineering & Architecture, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
31
|
Strategies to extend near-infrared light harvest of polymer carbon nitride photocatalysts. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213947] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
32
|
Li B, Hu Y, Shen Z, Ji Z, Yao L, Zhang S, Zou Y, Tang D, Qing Y, Wang S, Zhao G, Wang X. Photocatalysis Driven by Near-Infrared Light: Materials Design and Engineering for Environmentally Friendly Photoreactions. ACS ES&T ENGINEERING 2021; 1:947-964. [DOI: doi.org/10.1021/acsestengg.1c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Affiliation(s)
- Bingfeng Li
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Yezi Hu
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
| | - Zewen Shen
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
| | - Zhuoyu Ji
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
| | - Ling Yao
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
| | - Sai Zhang
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
| | - Yingtong Zou
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
| | - Duoyue Tang
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
| | - Yujia Qing
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
| | - Shuqin Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Guixia Zhao
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
| | - Xiangke Wang
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
33
|
Song T, Zhang X, Yang P. Bifunctional Nitrogen-Doped Carbon Dots in g-C 3N 4/WO x Heterojunction for Enhanced Photocatalytic Water-Splitting Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4236-4247. [PMID: 33793245 DOI: 10.1021/acs.langmuir.1c00210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel metal-free all-solid-state z-scheme g-C3N4/NCDs/WOx photocatalyst was fabricated using nitrogen-doped carbon dots (NCDs) as the electron mediator. As-prepared sandwich-structured composites displayed enhanced visible and NIR light photocatalytic activity. Under visible light irradiation, the hydrogen evolution rate reached 3.27 mmol g-1 h-1, which increased to roughly seven times higher than that of pure g-C3N4 and roughly twice that of g-C3N4/NCDs or g-C3N4/WOx binary heterojunctions. The apparent quantum efficiency is 7.58% at 420 nm. The localized surface plasmon resonance effect of WOx and the up-converted photoluminescence property of NCDs enhanced the utilization efficiency of NIR light together. In addition, the matched energy band structures of WOx and g-C3N4 as well as the effective electron conductor (NCDs) between them accelerate electron transfer at the interface. The all-solid-state z-scheme g-C3N4/NCDs/WOx photocatlyst was confirmed by a series of characterizations and experiment results. This report offered new insights into constructing an efficient all-solid-state z-scheme photocatalyst to be applied during the photocatalytic water-splitting reaction in the visible and NIR light regions.
Collapse
Affiliation(s)
- Tong Song
- School of Material Science & Engineering, University of Jinan, Jinan 250022, P R China
| | - Xiao Zhang
- W/A School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth WA6845, Australia
| | - Ping Yang
- School of Material Science & Engineering, University of Jinan, Jinan 250022, P R China
| |
Collapse
|
34
|
Belousov AS, Suleimanov EV, Fukina DG. Pyrochlore oxides as visible light-responsive photocatalysts. NEW J CHEM 2021. [DOI: 10.1039/d1nj04439g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This perspective describes the use of pyrochlore oxides in photocatalysis with focus on the strategies to enhance their activity.
Collapse
Affiliation(s)
- Artem S. Belousov
- Lobachevsky State University of Nizhny Novgorod, Research Institute for Chemistry, Gagarin Avenue 23, Nizhny Novgorod, 603950, Russian Federation
| | - Evgeny V. Suleimanov
- Lobachevsky State University of Nizhny Novgorod, Research Institute for Chemistry, Gagarin Avenue 23, Nizhny Novgorod, 603950, Russian Federation
| | - Diana G. Fukina
- Lobachevsky State University of Nizhny Novgorod, Research Institute for Chemistry, Gagarin Avenue 23, Nizhny Novgorod, 603950, Russian Federation
| |
Collapse
|
35
|
Li Y, Liao C, Tjong SC. Recent Advances in Zinc Oxide Nanostructures with Antimicrobial Activities. Int J Mol Sci 2020; 21:E8836. [PMID: 33266476 PMCID: PMC7700383 DOI: 10.3390/ijms21228836] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
This article reviews the recent developments in the synthesis, antibacterial activity, and visible-light photocatalytic bacterial inactivation of nano-zinc oxide. Polycrystalline wurtzite ZnO nanostructures with a hexagonal lattice having different shapes can be synthesized by means of vapor-, liquid-, and solid-phase processing techniques. Among these, ZnO hierarchical nanostructures prepared from the liquid phase route are commonly used for antimicrobial activity. In particular, plant extract-mediated biosynthesis is a single step process for preparing nano-ZnO without using surfactants and toxic chemicals. The phytochemical molecules of natural plant extracts are attractive agents for reducing and stabilizing zinc ions of zinc salt precursors to form green ZnO nanostructures. The peel extracts of certain citrus fruits like grapefruits, lemons and oranges, acting as excellent chelating agents for zinc ions. Furthermore, phytochemicals of the plant extracts capped on ZnO nanomaterials are very effective for killing various bacterial strains, leading to low minimum inhibitory concentration (MIC) values. Bioactive phytocompounds from green ZnO also inhibit hemolysis of Staphylococcus aureus infected red blood cells and inflammatory activity of mammalian immune system. In general, three mechanisms have been adopted to explain bactericidal activity of ZnO nanomaterials, including direct contact killing, reactive oxygen species (ROS) production, and released zinc ion inactivation. These toxic effects lead to the destruction of bacterial membrane, denaturation of enzyme, inhibition of cellular respiration and deoxyribonucleic acid replication, causing leakage of the cytoplasmic content and eventual cell death. Meanwhile, antimicrobial activity of doped and modified ZnO nanomaterials under visible light can be attributed to photogeneration of ROS on their surfaces. Thus particular attention is paid to the design and synthesis of visible light-activated ZnO photocatalysts with antibacterial properties.
Collapse
Affiliation(s)
- Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China;
| | - Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
36
|
Visible-Light Photocatalysts and Their Perspectives for Building Photocatalytic Membrane Reactors for Various Liquid Phase Chemical Conversions. Catalysts 2020. [DOI: 10.3390/catal10111334] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Photocatalytic organic synthesis/conversions and water treatment under visible light are a challenging task to use renewable energy in chemical transformations. In this review a brief overview on the mainly employed visible light photocatalysts and a discussion on the problems and advantages of Vis-light versus UV-light irradiation is reported. Visible light photocatalysts in the photocatalytic conversion of CO2, conversion of acetophenone to phenylethanol, hydrogenation of nitro compounds, oxidation of cyclohexane, synthesis of vanillin and phenol, as well as hydrogen production and water treatment are discussed. Some applications of these photocatalysts in photocatalytic membrane reactors (PMRs) for carrying out organic synthesis, conversion and/or degradation of organic pollutants are reported. The described cases show that PMRs represent a promising green technology that could shift on applications of industrial interest using visible light (from Sun) active photocatalysts.
Collapse
|
37
|
Mavuso M, Makgwane PR, Ray SS. Heterostructured CeO 2-M (M = Co, Cu, Mn, Fe, Ni) Oxide Nanocatalysts for the Visible-Light Photooxidation of Pinene to Aroma Oxygenates. ACS OMEGA 2020; 5:9775-9788. [PMID: 32391465 PMCID: PMC7203698 DOI: 10.1021/acsomega.9b04396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Herein, we report the enhanced photocatalytic activity of heterostructured CeO2 nanocatalysts interfaced with Cu, Co, Ni, Mn, and Fe metal oxides. The CeO2 catalysts exhibited an enhanced red shift in the visible-light response compared to CeO2. This improved absorption range effectively suppressed electron (e-)/hole (+h) recombination by forming localized energy bands associated with defect oxygen vacancies (V o) induced by the Mn+ ions incorporated in CeO2. Under visible-light irradiation, CeO2 catalysts are active for α-pinene oxidation to the aroma oxygenates, pinene oxide, verbenol, and verbenone. Both Fe2O3-CeO2 and NiO-CeO2 gave the highest pinene conversions of 71.3 and 53.1%, respectively, with corresponding pinene oxide selectivities of 57.3 and 58.2%. The enhanced photocatalytic performance of the heterostructured CeO2 catalysts compared to CeO2 is attributed to their enhanced visible-light absorption range and efficient suppression of e-/+h recombination. The Fe2O3-CeO2 catalyst was highly recyclable and did not show any significant loss of its photoactivity.
Collapse
Affiliation(s)
- Mlungisi
A. Mavuso
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
| | - Peter R. Makgwane
- Centre
for Nanostructures and Advanced Materials, Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa
- Department
of Chemistry, University of the Western
Cape, Bag X17, Robert
Sobukwe Drive, Bellville 7535, South Africa
| | - Suprakas Sinha Ray
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
- Centre
for Nanostructures and Advanced Materials, Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa
| |
Collapse
|
38
|
NaBiS2 as a Novel Indirect Bandgap Full Spectrum Photocatalyst: Synthesis and Application. Catalysts 2020. [DOI: 10.3390/catal10040413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Photocatalysts with a superior activity range, from ultraviolet (UV) to near-infrared (NIR) light, are attractive for solar utilization. From this perspective, sulfides are promising due to their narrower bandgap than oxides. In this report, NaBiS2 was synthesized hydrothermally under mild conditions by adjusting the alkaline amount. The rough NaBiS2 nanosheets possessed various surface atomic configurations on their surfaces, including amorphous clusters and amorphous nano-domains, revealed by HRTEM. A theoretical investigation of the band structure employing the density functional theory (DFT) method for the first time indicated that NaBiS2 is an indirect bandgap semiconductor with a narrow bandgap of 1.02 eV. Experimentally, it showed excellent photocatalytic activity for the degradation of methyl blue under UV, visible light and NIR light due to its experimental bandgap width of 1.32 eV. A degradation rate of 99.6% was reached after 80 min under full spectrum irradiation.
Collapse
|
39
|
Deng H, Xu F, Cheng B, Yu J, Ho W. Photocatalytic CO 2 reduction of C/ZnO nanofibers enhanced by an Ni-NiS cocatalyst. NANOSCALE 2020; 12:7206-7213. [PMID: 32195499 DOI: 10.1039/c9nr10451h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The photocatalytic reduction of CO2 into valuable hydrocarbon fuels via solar energy is a promising strategy for carbon utilization. In the present paper, a hierarchical Ni-NiS/C/ZnO photocatalyst was prepared via the in situ photodeposition of compact Ni-NiS nanosheets onto C/ZnO electrospun nanofibers. The existence of metallic Ni and NiS was confirmed by X-ray photoelectron spectroscopy. Photoluminescence (PL) and time-resolved PL spectra revealed that the cocatalyst Ni-NiS enhanced the charge separation efficiency of the C/ZnO nanofibers. The as-prepared Ni-NiS/C/ZnO showed enhanced CO2 reduction activity, with CO and CH4 production rates 10 and 15 times greater than those of pristine C/ZnO under 350 W visible light illumination. The intermediates of CH3O-, HCHO, and HCOO- were detected by in situ Fourier transform infrared spectroscopy, confirming that CO2 reduction is a complex reaction with multiple steps. The 13C isotopic tracer method proved that CH4 and CO were obtained from the reduction of CO2 rather than from other carbon species in the environment. The amorphous carbon in C/ZnO could promote optical absorption, improve conductivity and reduce the interfacial charge transport resistance. Ni-NiS improved the electron-hole-pair separation of the C/ZnO nanofibers. The observed enhancement in photocatalytic activity was largely attributed to higher light utilization and effective electron-hole separation. This work proves that Ni-NiS is a promising cocatalyst to ZnO for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Hongzhao Deng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | | | | | | | | |
Collapse
|
40
|
Babaryk AA, Contreras Almengor OR, Cabrero-Antonino M, Navalón S, García H, Horcajada P. A Semiconducting Bi 2O 2(C 4O 4) Coordination Polymer Showing a Photoelectric Response. Inorg Chem 2020; 59:3406-3416. [PMID: 32077286 DOI: 10.1021/acs.inorgchem.9b03290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inorganic semiconductors are extensively considered to be among the most promising materials to convert solar light into electricity or chemical energy owing to their efficiency in the separation of photoinduced electron/hole. Bismuth oxides, and, in particular, those built up of [Bi2O2]2+ layers, show an efficient charge separation and, thus, high photocatalytic activities. To explore a possible synergetic effect of bismuth metallic nodes combined with the electron-rich linker squarate, Bi2O2(C4O4) or IEF-3 (an IMDEA Energy framework) was hydrothermally prepared and adequately characterized. As determined from the X-ray structure, [Bi2O2]2+ layers are interconnected by squarate ligands, having a pronounced effect of the 6s2 lone pair on the bismuth local environment. IEF-3 shows high thermal and chemical robustness at industrially relevant model aggressive media. A large panel of physicochemical methods were applied to recognize IEF-3 as an UV-absorbing n-type semiconductor, showing a photocurrent response comparable to that of α-Bi2O3, offering further possibilities for tuning its electrochemical properties by modifying the ligand. In this way, the well-known compositional and structural versatility of coordination polymers may be applied in the future to fine-tune metal-organic semiconductor systems.
Collapse
Affiliation(s)
- Artem A Babaryk
- Advanced Porous Materials Unit, IMDEA Energy Institute. Avenida Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Oscar R Contreras Almengor
- Advanced Porous Materials Unit, IMDEA Energy Institute. Avenida Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - María Cabrero-Antonino
- Departamento de Química, Universitat Politècnica de València, c/Camino de Vera s/n, 46022 Valencia, Spain
| | - Sergio Navalón
- Departamento de Química, Universitat Politècnica de València, c/Camino de Vera s/n, 46022 Valencia, Spain
| | - Hermenegildo García
- Departamento de Química and Instituto de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, c/Camino de Vera s/n, 46022 Valencia, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute. Avenida Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| |
Collapse
|
41
|
Verkaaik M, Grote R, Meulendijks N, Sastre F, Weckhuysen BM, Buskens P. Suzuki‐Miyaura Cross‐Coupling Using Plasmonic Pd‐Decorated Au Nanorods as Catalyst: A Study on the Contribution of Laser Illumination. ChemCatChem 2019. [DOI: 10.1002/cctc.201901112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mattheus Verkaaik
- TNO Materials SolutionsHigh Tech Campus 25 Eindhoven 5656 AE The Netherlands
| | - Roos Grote
- TNO Materials SolutionsHigh Tech Campus 25 Eindhoven 5656 AE The Netherlands
| | - Nicole Meulendijks
- TNO Materials SolutionsHigh Tech Campus 25 Eindhoven 5656 AE The Netherlands
| | - Francesc Sastre
- TNO Materials SolutionsHigh Tech Campus 25 Eindhoven 5656 AE The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials ScienceUtrecht University Universiteitsweg 99 Utrecht 3584 CG The Netherlands
| | - Pascal Buskens
- TNO Materials SolutionsHigh Tech Campus 25 Eindhoven 5656 AE The Netherlands
| |
Collapse
|
42
|
Integrating the Z-scheme heterojunction into a novel Ag2O@rGO@reduced TiO2 photocatalyst: Broadened light absorption and accelerated charge separation co-mediated highly efficient UV/visible/NIR light photocatalysis. J Colloid Interface Sci 2019; 538:689-698. [DOI: 10.1016/j.jcis.2018.12.070] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 11/17/2022]
|
43
|
Fabrication of UV–Vis-NIR-driven photocatalysts Ag/Bi/BiOCl0.8Br0.2 with high catalytic activity. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Tahmasebi N, Mirzavand S, Hakimyfard A, Barzegar S. The excellent photocatalytic activity of novel Cs3PW12O40/WO3 composite toward the degradation of rhodamine B. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Shen X, Zhang Y, Duoerkun G, Shi Z, Liu J, Chen Z, Keung Wong P, Zhang L. Vis-NIR Light-Responsive Photocatalytic Activity of C3
N4
−Ag−Ag2
O Heterojunction-Decorated Carbon-fiber Cloth as Efficient Filter-Membrane-Shaped Photocatalyst. ChemCatChem 2019. [DOI: 10.1002/cctc.201801805] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaofeng Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry College of Environmental Science and Engineering; Donghua University; Shanghai 201620 China
- Shanghai Institute of Pollution Control and Ecological Security; Tongji University; Shanghai 200092 China
| | - Yan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry College of Environmental Science and Engineering; Donghua University; Shanghai 201620 China
| | - Gumila Duoerkun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry College of Environmental Science and Engineering; Donghua University; Shanghai 201620 China
| | - Zhun Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry College of Environmental Science and Engineering; Donghua University; Shanghai 201620 China
| | - Jianshe Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry College of Environmental Science and Engineering; Donghua University; Shanghai 201620 China
- Shanghai Institute of Pollution Control and Ecological Security; Tongji University; Shanghai 200092 China
| | - Zhigang Chen
- International Joint Laboratory for Advanced Fiber and Low-dimension Materials College of Materials Science and Engineering; Donghua University; Shanghai 201620 China
| | - Po Keung Wong
- School of Life Sciences; The Chinese University of Hong Kong Shatin, N.T.; Hong Kong SAR China
| | - Lisha Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry College of Environmental Science and Engineering; Donghua University; Shanghai 201620 China
- Shanghai Institute of Pollution Control and Ecological Security; Tongji University; Shanghai 200092 China
| |
Collapse
|
46
|
Tran NL, Malerba M, Talneau A, Biasiol G, Ouznali O, Bousseksou A, Manceau JM, Colombelli R. III-V on CaF 2: a possible waveguiding platform for mid-IR photonic devices. OPTICS EXPRESS 2019; 27:1672-1682. [PMID: 30696229 DOI: 10.1364/oe.27.001672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
We developed a technique that enables replacement of a metallic waveguide cladding with a low-index (n≈1.4) material - CaF2 or BaF2. It is transparent from the mid-IR up to the visible range: elevated confinement is preserved while introducing an optical entryway through the substrate. Replacing the metallic backplane also allows double-side patterning of the active region. Using this approach, we demonstrate strong light-matter coupling between an intersubband transition (λ∼10 μm) and a dispersive resonator at 300 K and at 78 K. Finally, we evaluate this approach's potential as a platform for waveguiding in the mid-IR spectral range, with numerical simulations that reveal losses in the 1-10 cm-1 range.
Collapse
|
47
|
Odling G, Robertson N. Bridging the gap between laboratory and application in photocatalytic water purification. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02438c] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite a large number of publications in the field, photocatalytic water treatment is still somewhat disconnected from real world application and we highlight recent developments to address this.
Collapse
Affiliation(s)
- Gylen Odling
- EaStCHEM School of Chemistry
- Joseph Black Building
- The King's Buildings
- Edinburgh
- UK
| | - Neil Robertson
- EaStCHEM School of Chemistry
- Joseph Black Building
- The King's Buildings
- Edinburgh
- UK
| |
Collapse
|
48
|
Wang X, Xiang Y, Zhou B, Zhang Y, Wu J, Hu R, Liu L, Song J, Qu J. Enhanced photocatalytic performance of Ag/TiO2 nanohybrid sensitized by black phosphorus nanosheets in visible and near-infrared light. J Colloid Interface Sci 2019; 534:1-11. [DOI: 10.1016/j.jcis.2018.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/21/2023]
|
49
|
Nauth AM, Schechtel E, Dören R, Tremel W, Opatz T. TiO2 Nanoparticles Functionalized with Non-innocent Ligands Allow Oxidative Photocyanation of Amines with Visible/Near-Infrared Photons. J Am Chem Soc 2018; 140:14169-14177. [DOI: 10.1021/jacs.8b07539] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Alexander M. Nauth
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Eugen Schechtel
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - René Dören
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Wolfgang Tremel
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Till Opatz
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
50
|
Li D, Yu SH, Jiang HL. From UV to Near-Infrared Light-Responsive Metal-Organic Framework Composites: Plasmon and Upconversion Enhanced Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707377. [PMID: 29766571 DOI: 10.1002/adma.201707377] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/04/2018] [Indexed: 05/21/2023]
Abstract
The exploitation of photocatalysts that harvest solar spectrum as broad as possible remains a high-priority target yet grand challenge. In this work, for the first time, metal-organic framework (MOF) composites are rationally fabricated to achieve broadband spectral response from UV to near-infrared (NIR) region. In the core-shell structured upconversion nanoparticles (UCNPs)-Pt@MOF/Au composites, the MOF is responsive to UV and a bit visible light, the plasmonic Au nanoparticles (NPs) accept visible light, whereas the UCNPs absorb NIR light to emit UV and visible light that are harvested by the MOF and Au once again. Moreover, the MOF not only facilitates the generation of "bare and clean" Au NPs on its surface and realizes the spatial separation for the Au and Pt NPs, but also provides necessary access for catalytic substrates/products to Pt active sites. As a result, the optimized composite exhibits excellent photocatalytic hydrogen production activity (280 µmol g-1 h-1 ) under simulated solar light, and the involved mechanism of photocatalytic H2 production under UV, visible, and NIR irradiation is elucidated. Reportedly, this is an extremely rare study on photocatalytic H2 production by light harvesting in all UV, visible, and NIR regions.
Collapse
Affiliation(s)
- Dandan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shu-Hong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|