1
|
Wang C, Yang F, Feng L. Recent advances in iridium-based catalysts with different dimensions for the acidic oxygen evolution reaction. NANOSCALE HORIZONS 2023; 8:1174-1193. [PMID: 37434582 DOI: 10.1039/d3nh00156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Proton exchange membrane (PEM) water electrolysis is considered a promising technology for green hydrogen production, and iridium (Ir)-based catalysts are the best materials for anodic oxygen evolution reactions (OER) owing to their high stability and anti-corrosion ability in a strong acid electrolyte. The properties of Ir-based nanocatalysts can be tuned by rational dimension engineering, which has received intensive attention recently for catalysis ability boosting. To achieve a comprehensive understanding of the structural and catalysis performance, herein, an overview of the recent progress was provided for Ir-based catalysts with different dimensions for the acidic OER. The promotional effect was first presented in terms of the nano-size effect, synergistic effect, and electronic effect based on the dimensional effect, then the latest progress of Ir-based catalysts classified into zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) catalysts was introduced in detail; and the practical application of some typical examples in the real PEM water electrolyzers (PEMWE) was also presented. Finally, the problems and challenges faced by current dimensionally engineered Ir-based catalysts in acidic electrolytes were discussed. It is concluded that the increased surface area and catalytic active sites can be realized by dimensional engineering strategies, while the controllable synthesis of different dimensional structured catalysts is still a great challenge, and the correlation between structure and performance, especially for the structural evolution during the electrochemical operation process, should be probed in depth. Hopefully, this effort could help understand the progress of dimensional engineering of Ir-based catalysts in OER catalysis and contribute to the design and preparation of novel efficient Ir-based catalysts.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| |
Collapse
|
2
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
3
|
Quinson J, Kunz S, Arenz M. Surfactant-Free Colloidal Syntheses of Precious Metal Nanoparticles for Improved Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Wang Y, Hao M. Metal Nanoclusters Synthesized in Alkaline Ethylene Glycol: Mechanism and Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:565. [PMID: 36770526 PMCID: PMC9922003 DOI: 10.3390/nano13030565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The "unprotected" metal and alloy nanoclusters (UMCs) prepared by the alkaline ethylene glycol method, which are stabilized with simple ions and solvent molecules, have the advantages of a small particle size, a narrow size distribution, good stability, highly efficient preparation, easy separation, surface modification and transfer between different phases. They can be composited with diverse materials to prepare catalytic systems with controllable structures, providing an effective means of studying the different factors' effects on the catalytic properties separately. UMCs have been widely used in the development of high-performance catalysts for a variety of functional systems. This paper will review the research progress on the formation mechanism of the unprotected metal nanoclusters, exploring the structure-function relationship of metal nanocluster catalysts and the preparation of excellent metal catalysts using the unprotected metal nanoclusters as building blocks or starting materials. A principle of the influence of carriers, ligands and modifiers in metal nanocluster catalysts on the catalytic properties is proposed.
Collapse
Affiliation(s)
- Yuan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Sunan Institute for Molecular Engineering, Peking University, Changshu 215500, China
| | - Menggeng Hao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Mathiesen JK, Quinson J, Blaseio S, Kjær ETS, Dworzak A, Cooper SR, Pedersen JK, Wang B, Bizzotto F, Schröder J, Kinnibrugh TL, Simonsen SB, Theil Kuhn L, Kirkensgaard JJK, Rossmeisl J, Oezaslan M, Arenz M, Jensen KMØ. Chemical Insights into the Formation of Colloidal Iridium Nanoparticles from In Situ X-ray Total Scattering: Influence of Precursors and Cations on the Reaction Pathway. J Am Chem Soc 2023; 145:1769-1782. [PMID: 36631996 DOI: 10.1021/jacs.2c10814] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Iridium nanoparticles are important catalysts for several chemical and energy conversion reactions. Studies of iridium nanoparticles have also been a key for the development of kinetic models of nanomaterial formation. However, compared to other metals such as gold or platinum, knowledge on the nature of prenucleation species and structural insights into the resultant nanoparticles are missing, especially for nanoparticles obtained from IrxCly precursors investigated here. We use in situ X-ray total scattering (TS) experiments with pair distribution function (PDF) analysis to study a simple, surfactant-free synthesis of colloidal iridium nanoparticles. The reaction is performed in methanol at 50 °C with only a base and an iridium salt as precursor. From different precursor salts─IrCl3, IrCl4, H2IrCl6, or Na2IrCl6─colloidal nanoparticles as small as Ir∼55 are obtained as the final product. The nanoparticles do not show the bulk iridium face-centered cubic (fcc) structure but show decahedral and icosahedral structures. The formation route is highly dependent on the precursor salt used. Using IrCl3 or IrCl4, metallic iridium nanoparticles form rapidly from IrxClyn- complexes, whereas using H2IrCl6 or Na2IrCl6, the iridium nanoparticle formation follows a sudden growth after an induction period and the brief appearance of a crystalline phase. With H2IrCl6, the formation of different Irn (n = 55, 55, 85, and 116) nanoparticles depends on the nature of the cation in the base (LiOH, NaOH, KOH, or CsOH, respectively) and larger particles are obtained with larger cations. As the particles grow, the nanoparticle structure changes from partly icosahedral to decahedral. The results show that the synthesis of iridium nanoparticles from IrxCly is a valuable iridium nanoparticle model system, which can provide new compositional and structural insights into iridium nanoparticle formation and growth.
Collapse
Affiliation(s)
- Jette K Mathiesen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark.,Department of Physics, Technical University of Denmark, Fysikvej Bldg. 312, 2800Kgs. Lyngby, Denmark
| | - Jonathan Quinson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark.,Department of Biochemical and Chemical Engineering, Aarhus University, Åbogade 40, 8200Aarhus N, Denmark
| | - Sonja Blaseio
- Institute of Technical Chemistry, Technische Universität Braunschweig, Franz-Liszt Str. 35a, 38106Braunschweig, Germany
| | - Emil T S Kjær
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| | - Alexandra Dworzak
- Institute of Technical Chemistry, Technische Universität Braunschweig, Franz-Liszt Str. 35a, 38106Braunschweig, Germany
| | - Susan R Cooper
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| | - Jack K Pedersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| | - Baiyu Wang
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| | - Francesco Bizzotto
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012Bern, Switzerland
| | - Johanna Schröder
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012Bern, Switzerland
| | - Tiffany L Kinnibrugh
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois60439, United States
| | - Søren B Simonsen
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej Bldg. 310, 2800Kgs. Lyngby, Denmark
| | - Luise Theil Kuhn
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej Bldg. 310, 2800Kgs. Lyngby, Denmark
| | - Jacob J K Kirkensgaard
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958Frederiksberg C, Denmark.,Niels-Bohr-Institute, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| | - Jan Rossmeisl
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| | - Mehtap Oezaslan
- Institute of Technical Chemistry, Technische Universität Braunschweig, Franz-Liszt Str. 35a, 38106Braunschweig, Germany
| | - Matthias Arenz
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012Bern, Switzerland
| | - Kirsten M Ø Jensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100Copenhagen Ø, Denmark
| |
Collapse
|
6
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 329] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
7
|
Quinson J. Iridium and IrO x nanoparticles: an overview and review of syntheses and applications. Adv Colloid Interface Sci 2022; 303:102643. [PMID: 35334351 DOI: 10.1016/j.cis.2022.102643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
Precious metals are key in various fields of research and precious metal nanomaterials are directly relevant for optics, catalysis, pollution management, sensing, medicine, and many other applications. Iridium based nanomaterials are less studied than metals like gold, silver or platinum. A specific feature of iridium nanomaterials is the relatively small size nanoparticles and clusters easily obtained, e.g. by colloidal syntheses. Progress over the years overcomes the related challenging characterization and it is expected that the knowledge on iridium chemistry and nanomaterials will be growing. Although Ir nanoparticles have been preferred systems for the development of kinetic-based models of nanomaterial formation, there is surprisingly little knowledge on the actual formation mechanism(s) of iridium nanoparticles. Following the impulse from the high expectations on Ir nanoparticles as catalysts for the oxygen evolution reaction in electrolyzers, new areas of applications of iridium materials have been reported while more established applications are being revisited. This review covers different synthetic strategies of iridium nanoparticles and provides an in breadth overview of applications reported. Comprehensive Tables and more detailed topic-oriented overviews are proposed in Supplementary Material, covering synthesis protocols, the historical role or iridium nanoparticles in the development of nanoscience and applications in catalysis.
Collapse
|
8
|
Alinejad S, Quinson J, Wiberg GKH, Schlegel N, Zhang D, Li Y, Reichenberger S, Barcikowski S, Arenz M. Electrochemical Reduction of CO2 on Au Electrocatalysts in a Zero‐Gap, Half‐Cell Gas Diffusion Electrode Setup:a Systematic Performance Evaluation and Comparison to an H‐cell Setup. ChemElectroChem 2022. [DOI: 10.1002/celc.202200341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shima Alinejad
- University of Bern chemistry and biochemistry Freiestrasse 3 3012 Bern SWITZERLAND
| | - Jonathan Quinson
- University of Copenhagen: Kobenhavns Universitet chemistry DENMARK
| | - Gustav K. H. Wiberg
- University of Bern: Universitat Bern Department of Chemistry and Biochemistry SWITZERLAND
| | - Nicolas Schlegel
- University of Bern: Universitat Bern Department of Chemistry and Biochemistry SWITZERLAND
| | - Damin Zhang
- University of Bern: Universitat Bern Department of Chemistry and Biochemistry SWITZERLAND
| | - Yao Li
- Universitat-GH Duisburg: Universitat Duisburg-Essen chemistry GERMANY
| | | | | | - Matthias Arenz
- Universitat Bern Department of Chemistry and Biochemistry Freiestrasse 3 3012 Bern SWITZERLAND
| |
Collapse
|
9
|
Chang TE, Chuang CH, Chen YH, Wang YC, Gu YJ, Kung CW. Iridium‐functionalized metal–organic framework nanocrystals interconnected by carbon nanotubes competent for electrocatalytic water oxidation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tzu-En Chang
- National Cheng Kung University Department of Chemical Engineering 1 University Road Tainan City TAIWAN
| | - Cheng-Hsun Chuang
- National Cheng Kung University Department of Chemical Engineering 1 University Road Tainan City TAIWAN
| | - Yu-Hsiu Chen
- National Cheng Kung University Department of Chemical Engineering 1 University Road Tainan City TAIWAN
| | - Yi-Ching Wang
- National Cheng Kung University Department of Chemical Engineering 1 University Road Tainan City TAIWAN
| | - Yu-Juan Gu
- National Cheng Kung University Department of Chemical Engineering 1 University Road Tainan City TAIWAN
| | - Chung-Wei Kung
- National Cheng Kung University Department of Chemical Engineering 1 University Road 70101 Tainan TAIWAN
| |
Collapse
|
10
|
Bizzotto F, Quinson J, Schröder J, Zana A, Arenz M. Surfactant-free colloidal strategies for highly dispersed and active supported IrO2 catalysts: Synthesis and performance evaluation for the oxygen evolution reaction. J Catal 2021. [DOI: 10.1016/j.jcat.2021.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Czioska S, Boubnov A, Escalera-López D, Geppert J, Zagalskaya A, Röse P, Saraçi E, Alexandrov V, Krewer U, Cherevko S, Grunwaldt JD. Increased Ir–Ir Interaction in Iridium Oxide during the Oxygen Evolution Reaction at High Potentials Probed by Operando Spectroscopy. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02074] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steffen Czioska
- Institute for Chemical Technology and Polymer Chemistry and Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Alexey Boubnov
- Institute for Chemical Technology and Polymer Chemistry and Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Daniel Escalera-López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Janis Geppert
- Institute for Applied Materials—Electrochemical Technologies, Karlsruhe Institute of Technology, Adenauerring 20b, 76131 Karlsruhe, Germany
| | - Alexandra Zagalskaya
- Department of Chemical and Biomolecular Engineering, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
- Nebraska Center for Materials and Nanoscience, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Philipp Röse
- Institute for Applied Materials—Electrochemical Technologies, Karlsruhe Institute of Technology, Adenauerring 20b, 76131 Karlsruhe, Germany
| | - Erisa Saraçi
- Institute for Chemical Technology and Polymer Chemistry and Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Vitaly Alexandrov
- Department of Chemical and Biomolecular Engineering, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
- Nebraska Center for Materials and Nanoscience, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Ulrike Krewer
- Institute for Applied Materials—Electrochemical Technologies, Karlsruhe Institute of Technology, Adenauerring 20b, 76131 Karlsruhe, Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry and Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| |
Collapse
|
12
|
Affiliation(s)
- Linfang Lu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shihui Zou
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Baizeng Fang
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
13
|
Quinson J, Kunz S, Arenz M. Beyond Active Site Design: A Surfactant‐Free Toolbox Approach for Optimized Supported Nanoparticle Catalysts. ChemCatChem 2021. [DOI: 10.1002/cctc.202001858] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jonathan Quinson
- Chemistry Department University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Sebastian Kunz
- Südzucker AG Central Department Research, Development and Services (CRDS) Wormser Strasse 11 67283 Obrigheim Germany
| | - Matthias Arenz
- University of Bern Department of Chemistry and Biochemistry Freiestrasse 3 CH-3012 Bern Switzerland
| |
Collapse
|
14
|
Guntern YT, Okatenko V, Pankhurst J, Varandili SB, Iyengar P, Koolen C, Stoian D, Vavra J, Buonsanti R. Colloidal Nanocrystals as Electrocatalysts with Tunable Activity and Selectivity. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04403] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yannick T. Guntern
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Valery Okatenko
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - James Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Seyedeh Behnaz Varandili
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Pranit Iyengar
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Cedric Koolen
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Dragos Stoian
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Jan Vavra
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| |
Collapse
|
15
|
Understanding Surface Modulation to Improve the Photo/Electrocatalysts for Water Oxidation/Reduction. Molecules 2020; 25:molecules25081965. [PMID: 32340202 PMCID: PMC7221846 DOI: 10.3390/molecules25081965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
Water oxidation and reduction reactions play vital roles in highly efficient hydrogen production conducted by an electrolyzer, in which the enhanced efficiency of the system is apparently accompanied by the development of active electrocatalysts. Solar energy, a sustainable and clean energy source, can supply the kinetic energy to increase the rates of catalytic reactions. In this regard, understanding of the underlying fundamental mechanisms of the photo/electrochemical process is critical for future development. Combining light-absorbing materials with catalysts has become essential to maximizing the efficiency of hydrogen production. To fabricate an efficient absorber-catalysts system, it is imperative to fully understand the vital role of surface/interface modulation for enhanced charge transfer/separation and catalytic activity for a specific reaction. The electronic and chemical structures at the interface are directly correlated to charge carrier movements and subsequent chemical adsorption and reaction of the reactants. Therefore, rational surface modulation can indeed enhance the catalytic efficiency by preventing charge recombination and prompting transfer, increasing the reactant concentration, and ultimately boosting the catalytic reaction. Herein, the authors review recent progress on the surface modification of nanomaterials as photo/electrochemical catalysts for water reduction and oxidation, considering two successive photogenerated charge transfer/separation and catalytic chemical reactions. It is expected that this review paper will be helpful for the future development of photo/electrocatalysts.
Collapse
|