1
|
Vajente M, Ghirardi M, Schmidt S. Enzyme expression in Cupriavidus necator H16 for whole-cell biocatalysis. Methods Enzymol 2025; 714:195-218. [PMID: 40288839 DOI: 10.1016/bs.mie.2025.01.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Climate change is an urgent and collective challenge, and new processes to synthesize complex molecules in a more sustainable way are highly desirable. Biocatalysis can be a strong player in this field, due to the specificity of enzymes and their ability to catalyze complex reactions at mild conditions. However, these reactions often require the regeneration of expensive cofactors in order to obtain relevant amounts of product. In vivo biocatalysis offers a solution to this problem by plugging the reaction in the microbial metabolism, which supplies the necessary energy. In particular, Cupriavidus necator H16 (C. necator H16) is an attractive microbial chassis due to its versatility and its lithoautotrophic metabolism. Its O2-tolerant soluble hydrogenase (SH) can be used to regenerate nicotinamide cofactors in an atom-efficient manner, without the creation of undesired side products. This hydrogenase has already been used as a cofactor regeneration system in vitro, but examples of in vivo biocatalysis are scarce due to the time-consuming genetic engineering process of C. necator H16. In this book chapter, we present a strategy for the engineering of C. necator from plasmid cloning (using a recently developed expression plasmid) to protein expression of a model oxidoreductase. This pipeline allows for rapid and streamlined strain engineering, which can aid the discovery and development of future in vivo biocatalytic processes using C. necator H16.
Collapse
Affiliation(s)
- Matteo Vajente
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Mattia Ghirardi
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Jämsä T, Claassens NJ, Salusjärvi L, Nyyssölä A. H 2-driven xylitol production in Cupriavidus necator H16. Microb Cell Fact 2024; 23:345. [PMID: 39716207 PMCID: PMC11665087 DOI: 10.1186/s12934-024-02615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Biocatalysis offers a potentially greener alternative to chemical processes. For biocatalytic systems requiring cofactor recycling, hydrogen emerges as an attractive reducing agent. Hydrogen is attractive because all the electrons can be fully transferred to the product, and it can be efficiently produced from water using renewable electricity. In this article, resting cells of Cupriavidus necator H16 harboring a NAD-dependent hydrogenase were employed for cofactor recycling to reduce D-xylose to xylitol, a commonly used sweetener. To enable this bioconversion, D-xylose reductase from Scheffersomyces stipitis was heterologously expressed in C. necator. RESULTS D-xylose reductase was successfully expressed in C. necator, enabling almost complete bioconversion of 30 g/L of D-xylose into xylitol. It was found that over 90% of the energy and protons derived from hydrogen were spent for the bioconversion, demonstrating the efficiency of the system. The highest xylitol productivity reached was 0.7 g/L/h. Additionally, the same chassis efficiently produced L-arabitol and D-ribitol from L-arabinose and D-ribose, respectively. CONCLUSIONS This study highlights the efficient utilization of renewable hydrogen as a reducing agent to power cofactor recycling. Hydrogen-oxidizing bacteria, such as C. necator, can be promising hosts for performing hydrogen-driven biocatalysis.
Collapse
Affiliation(s)
- Tytti Jämsä
- VTT Technical Research Centre of Finland Ltd., Tekniikantie 21, 02150, Espoo, Finland.
| | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Laura Salusjärvi
- VTT Technical Research Centre of Finland Ltd., Tekniikantie 21, 02150, Espoo, Finland
| | - Antti Nyyssölä
- VTT Technical Research Centre of Finland Ltd., Tekniikantie 21, 02150, Espoo, Finland
| |
Collapse
|
3
|
Klos N, Osterthun O, Mengers HG, Lanzerath P, Graf von Westarp W, Lim G, Gausmann M, Küsters-Spöring JD, Wiesenthal J, Guntermann N, Lauterbach L, Jupke A, Leitner W, Blank LM, Klankermayer J, Rother D. Concatenating Microbial, Enzymatic, and Organometallic Catalysis for Integrated Conversion of Renewable Carbon Sources. JACS AU 2024; 4:4546-4570. [PMID: 39735920 PMCID: PMC11672146 DOI: 10.1021/jacsau.4c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 12/31/2024]
Abstract
The chemical industry can now seize the opportunity to improve the sustainability of its processes by replacing fossil carbon sources with renewable alternatives such as CO2, biomass, and plastics, thereby thinking ahead and having a look into the future. For their conversion to intermediate and final products, different types of catalysts-microbial, enzymatic, and organometallic-can be applied. The first part of this review shows how these catalysts can work separately in parallel, each route with unique requirements and advantages. While the different types of catalysts are often seen as competitive approaches, an increasing number of examples highlight, how combinations and concatenations of catalysts of the complete spectrum can open new roads to new products. Therefore, the second part focuses on the different catalysts either in one-step, one-pot transformations or in reaction cascades. In the former, the reaction conditions must be conflated but purification steps are minimized. In the latter, each catalyst can work under optimal conditions and the "hand-over points" should be chosen according to defined criteria like minimal energy usage during separation procedures. The examples are discussed in the context of the contributions of catalysis to the envisaged (bio)economy.
Collapse
Affiliation(s)
- Nina Klos
- Institute
of Bio- and Geosciences 1: Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Ole Osterthun
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Hendrik G. Mengers
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Patrick Lanzerath
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - William Graf von Westarp
- Fluid
Process Engineering (AVT.FVT), RWTH Aachen
University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Guiyeoul Lim
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Marcel Gausmann
- Fluid
Process Engineering (AVT.FVT), RWTH Aachen
University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Jan-Dirk Küsters-Spöring
- Institute
of Bio- and Geosciences 1: Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Jan Wiesenthal
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Nils Guntermann
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Lars Lauterbach
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Andreas Jupke
- Fluid
Process Engineering (AVT.FVT), RWTH Aachen
University, Aachen, Nordrhein-Westfalen 52074, Germany
- Institute
of Bio- and Geosciences 2: Plant Science (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
| | - Walter Leitner
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
- Max-Planck-Institute
for Chemical Energy Conversion, Mülheim an der Ruhr, Nordrhein-Westfalen 45470, Germany
| | - Lars M. Blank
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Jürgen Klankermayer
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Dörte Rother
- Institute
of Bio- and Geosciences 1: Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| |
Collapse
|
4
|
Sokolova D, Vincent KA. Exploiting hydrogenases for biocatalytic hydrogenations. Chem Commun (Camb) 2024; 60:13667-13677. [PMID: 39511987 PMCID: PMC11563201 DOI: 10.1039/d4cc04525d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
The ability of hydrogenase enzymes to activate H2 with excellent selectivity leads to many interesting possibilities for biotechnology driven by H2 as a clean reductant. Here, we review examples where hydrogenase enzymes have been used to drive native and non-native hydrogenation reactions in solution or as part of a redox cascade on a conductive support, with a focus on the developments we have contributed to this field. In all of the examples discussed, hydrogenation reactions are enabled by coupled redox reactions: the oxidation of H2 at a hydrogenase active site, linked electronically (via relay clusters in the enzyme and/or via conductive support) to the site of a reduction reaction, and we note how this parallels developments in site-separated reactivity in heterogeneous catalysis. We discuss the productivities achieved with biocatalytic hydrogenations, the scope for application of these approaches in industrial biotechnology, possibilities for scaling the production of hydrogenases, and future opportunities. Our focus is on NiFe hydrogenases, but we discuss briefly how FeFe hydrogenases might contribute to this field.
Collapse
Affiliation(s)
- Daria Sokolova
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
5
|
Lim G, Calabrese D, Wolder A, Cordero PRF, Rother D, Mulks FF, Paul CE, Lauterbach L. H 2-driven biocatalysis for flavin-dependent ene-reduction in a continuous closed-loop flow system utilizing H 2 from water electrolysis. Commun Chem 2024; 7:200. [PMID: 39244618 PMCID: PMC11380674 DOI: 10.1038/s42004-024-01288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Despite the increasing demand for efficient and sustainable chemical processes, the development of scalable systems using biocatalysis for fine chemical production remains a significant challenge. We have developed a scalable flow system using immobilized enzymes to facilitate flavin-dependent biocatalysis, targeting as a proof-of-concept asymmetric alkene reduction. The system integrates a flavin-dependent Old Yellow Enzyme (OYE) and a soluble hydrogenase to enable H2-driven regeneration of the OYE cofactor FMNH2. Molecular hydrogen was produced by water electrolysis using a proton exchange membrane (PEM) electrolyzer and introduced into the flow system via a designed gas membrane addition module at a high diffusion rate. The flow system shows remarkable stability and reusability, consistently achieving >99% conversion of ketoisophorone to levodione. It also demonstrates versatility and selectivity in reducing various cyclic enones and can be extended to further flavin-based biocatalytic approaches and gas-dependent reactions. This electro-driven continuous flow system, therefore, has significant potential for advancing sustainable processes in fine chemical synthesis.
Collapse
Affiliation(s)
- Guiyeoul Lim
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
| | - Donato Calabrese
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
| | - Allison Wolder
- Biocatalysis Section, Department Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Paul R F Cordero
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
| | - Dörte Rother
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany
- Institute for Bio-and Geosciences 1: Biotechnology Forschungzentrum Jülich GmbH, Jülich, Germany
| | - Florian F Mulks
- Institute of Organic Chemistry-iOC RWTH Aachen University, Aachen, Germany
| | - Caroline E Paul
- Biocatalysis Section, Department Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Lars Lauterbach
- Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
6
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
7
|
Gasteazoro F, Catucci G, Barbieri L, De Angelis M, Dalla Costa A, Sadeghi SJ, Gilardi G, Valetti F. Cascade reactions with two non-physiological partners for NAD(P)H regeneration via renewable hydrogen. Biotechnol J 2024; 19:e2300567. [PMID: 38581100 DOI: 10.1002/biot.202300567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/08/2024]
Abstract
An attractive application of hydrogenases, combined with the availability of cheap and renewable hydrogen (i.e., from solar and wind powered electrolysis or from recycled wastes), is the production of high-value electron-rich intermediates such as reduced nicotinamide adenine dinucleotides. Here, the capability of a very robust and oxygen-resilient [FeFe]-hydrogenase (CbA5H) from Clostridium beijerinckii SM10, previously identified in our group, combined with a reductase (BMR) from Bacillus megaterium (now reclassified as Priestia megaterium) was tested. The system shows a good stability and it was demonstrated to reach up to 28 ± 2 nmol NADPH regenerated s-1 mg of hydrogenase-1 (i.e., 1.68 ± 0.12 U mg-1, TOF: 126 ± 9 min-1) and 0.46 ± 0.04 nmol NADH regenerated s-1 mg of hydrogenase-1 (i.e., 0.028 ± 0.002 U mg-1, TOF: 2.1 ± 0.2 min-1), meaning up to 74 mg of NADPH and 1.23 mg of NADH produced per hour by a system involving 1 mg of CbA5H. The TOF is comparable with similar systems based on hydrogen as regenerating molecule for NADPH, but the system is first of its kind as for the [FeFe]-hydrogenase and the non-physiological partners used. As a proof of concept a cascade reaction involving CbA5H, BMR and a mutant BVMO from Acinetobacter radioresistens able to oxidize indole is presented. The data show how the cascade can be exploited for indigo production and multiple reaction cycles can be sustained using the regenerated NADPH.
Collapse
Affiliation(s)
- Francisco Gasteazoro
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- CICATA Unidad Morelos, Instituto Politécnico Nacional, Mexico D. F., Mexico
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Lisa Barbieri
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- University School for Advanced Studies IUSS Pavia, Pavia, Italy
| | - Melissa De Angelis
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | - Sheila J Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Francesca Valetti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
8
|
Yuan B, Yang D, Qu G, Turner NJ, Sun Z. Biocatalytic reductive aminations with NAD(P)H-dependent enzymes: enzyme discovery, engineering and synthetic applications. Chem Soc Rev 2024; 53:227-262. [PMID: 38059509 DOI: 10.1039/d3cs00391d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Chiral amines are pivotal building blocks for the pharmaceutical industry. Asymmetric reductive amination is one of the most efficient and atom economic methodologies for the synthesis of optically active amines. Among the various strategies available, NAD(P)H-dependent amine dehydrogenases (AmDHs) and imine reductases (IREDs) are robust enzymes that are available from various sources and capable of utilizing a broad range of substrates with high activities and stereoselectivities. AmDHs and IREDs operate via similar mechanisms, both involving a carbinolamine intermediate followed by hydride transfer from the co-factor. In addition, both groups catalyze the formation of primary and secondary amines utilizing both organic and inorganic amine donors. In this review, we discuss advances in developing AmDHs and IREDs as biocatalysts and focus on evolutionary history, substrate scope and applications of the enzymes to provide an outlook on emerging industrial biotechnologies of chiral amine production.
Collapse
Affiliation(s)
- Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Dameng Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Nicholas J Turner
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
9
|
Partipilo M, Claassens NJ, Slotboom DJ. A Hitchhiker's Guide to Supplying Enzymatic Reducing Power into Synthetic Cells. ACS Synth Biol 2023; 12:947-962. [PMID: 37052416 PMCID: PMC10127272 DOI: 10.1021/acssynbio.3c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Indexed: 04/14/2023]
Abstract
The construction from scratch of synthetic cells by assembling molecular building blocks is unquestionably an ambitious goal from a scientific and technological point of view. To realize functional life-like systems, minimal enzymatic modules are required to sustain the processes underlying the out-of-equilibrium thermodynamic status hallmarking life, including the essential supply of energy in the form of electrons. The nicotinamide cofactors NAD(H) and NADP(H) are the main electron carriers fueling reductive redox reactions of the metabolic network of living cells. One way to ensure the continuous availability of reduced nicotinamide cofactors in a synthetic cell is to build a minimal enzymatic module that can oxidize an external electron donor and reduce NAD(P)+. In the diverse world of metabolism there is a plethora of potential electron donors and enzymes known from living organisms to provide reducing power to NAD(P)+ coenzymes. This perspective proposes guidelines to enable the reduction of nicotinamide cofactors enclosed in phospholipid vesicles, while avoiding high burdens of or cross-talk with other encapsulated metabolic modules. By determining key requirements, such as the feasibility of the reaction and transport of the electron donor into the cell-like compartment, we select a shortlist of potentially suitable electron donors. We review the most convenient proteins for the use of these reducing agents, highlighting their main biochemical and structural features. Noting that specificity toward either NAD(H) or NADP(H) imposes a limitation common to most of the analyzed enzymes, we discuss the need for specific enzymes─transhydrogenases─to overcome this potential bottleneck.
Collapse
Affiliation(s)
- Michele Partipilo
- Department
of Biochemistry, Groningen Institute of Biomolecular Sciences &
Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nico J. Claassens
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Jan Slotboom
- Department
of Biochemistry, Groningen Institute of Biomolecular Sciences &
Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
10
|
Fan Q, Waldburger S, Neubauer P, Riedel SL, Gimpel M. Implementation of a high cell density fed-batch for heterologous production of active [NiFe]-hydrogenase in Escherichia coli bioreactor cultivations. Microb Cell Fact 2022; 21:193. [PMID: 36123684 PMCID: PMC9484157 DOI: 10.1186/s12934-022-01919-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background O2-tolerant [NiFe]-hydrogenases offer tremendous potential for applications in H2-based technology. As these metalloenzymes undergo a complicated maturation process that requires a dedicated set of multiple accessory proteins, their heterologous production is challenging, thus hindering their fundamental understanding and the development of related applications. Taking these challenges into account, we selected the comparably simple regulatory [NiFe]-hydrogenase (RH) from Cupriavidus necator as a model for the development of bioprocesses for heterologous [NiFe]-hydrogenase production. We already reported recently on the high-yield production of catalytically active RH in Escherichia coli by optimizing the culture conditions in shake flasks. Results In this study, we further increase the RH yield and ensure consistent product quality by a rationally designed high cell density fed-batch cultivation process. Overall, the bioreactor cultivations resulted in ˃130 mg L−1 of catalytically active RH which is a more than 100-fold increase compared to other RH laboratory bioreactor scale processes with C. necator. Furthermore, the process shows high reproducibility of the previously selected optimized conditions and high productivity. Conclusions This work provides a good opportunity to readily supply such difficult-to-express complex metalloproteins economically and at high concentrations to meet the demand in basic and applied studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01919-w.
Collapse
Affiliation(s)
- Qin Fan
- Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstr. 76, ACK24, D-13355, Berlin, Germany
| | - Saskia Waldburger
- Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstr. 76, ACK24, D-13355, Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstr. 76, ACK24, D-13355, Berlin, Germany
| | - Sebastian L Riedel
- Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstr. 76, ACK24, D-13355, Berlin, Germany
| | - Matthias Gimpel
- Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstr. 76, ACK24, D-13355, Berlin, Germany.
| |
Collapse
|
11
|
Nowrouzi B, Rios-Solis L. Redox metabolism for improving whole-cell P450-catalysed terpenoid biosynthesis. Crit Rev Biotechnol 2021; 42:1213-1237. [PMID: 34749553 DOI: 10.1080/07388551.2021.1990210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The growing preference for producing cytochrome P450-mediated natural products in microbial systems stems from the challenging nature of the organic chemistry approaches. The P450 enzymes are redox-dependent proteins, through which they source electrons from reducing cofactors to drive their activities. Widely researched in biochemistry, most of the previous studies have extensively utilised expensive cell-free assays to reveal mechanistic insights into P450 functionalities in presence of commercial redox partners. However, in the context of microbial bioproduction, the synergic activity of P450- reductase proteins in microbial systems have not been largely investigated. This is mainly due to limited knowledge about their mutual interactions in the context of complex systems. Hence, manipulating the redox potential for natural product synthesis in microbial chassis has been limited. As the potential of redox state as crucial regulator of P450 biocatalysis has been greatly underestimated by the scientific community, in this review, we re-emphasize their pivotal role in modulating the in vivo P450 activity through affecting the product profile and yield. Particularly, we discuss the applications of widely used in vivo redox engineering methodologies for natural product synthesis to provide further suggestions for patterning on P450-based terpenoids production in microbial platforms.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Lupacchini S, Appel J, Stauder R, Bolay P, Klähn S, Lettau E, Adrian L, Lauterbach L, Bühler B, Schmid A, Toepel J. Rewiring cyanobacterial photosynthesis by the implementation of an oxygen-tolerant hydrogenase. Metab Eng 2021; 68:199-209. [PMID: 34673236 DOI: 10.1016/j.ymben.2021.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
Molecular hydrogen (H2) is considered as an ideal energy carrier to replace fossil fuels in future. Biotechnological H2 production driven by oxygenic photosynthesis appears highly promising, as biocatalyst and H2 syntheses rely mainly on light, water, and CO2 and not on rare metals. This biological process requires coupling of the photosynthetic water oxidizing apparatus to a H2-producing hydrogenase. However, this strategy is impeded by the simultaneous release of oxygen (O2) which is a strong inhibitor of most hydrogenases. Here, we addressed this challenge, by the introduction of an O2-tolerant hydrogenase into phototrophic bacteria, namely the cyanobacterial model strain Synechocystis sp. PCC 6803. To this end, the gene cluster encoding the soluble, O2-tolerant, and NAD(H)-dependent hydrogenase from Ralstonia eutropha (ReSH) was functionally transferred to a Synechocystis strain featuring a knockout of the native O2 sensitive hydrogenase. Intriguingly, photosynthetically active cells produced the O2 tolerant ReSH, and activity was confirmed in vitro and in vivo. Further, ReSH enabled the constructed strain Syn_ReSH+ to utilize H2 as sole electron source to fix CO2. Syn_ReSH+ also was able to produce H2 under dark fermentative conditions as well as in presence of light, under conditions fostering intracellular NADH excess. These findings highlight a high level of interconnection between ReSH and cyanobacterial redox metabolism. This study lays a foundation for further engineering, e.g., of electron transfer to ReSH via NADPH or ferredoxin, to finally enable photosynthesis-driven H2 production.
Collapse
Affiliation(s)
- Sara Lupacchini
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Jens Appel
- Department of Biology, Botanical Institute, University Kiel, 24118, Kiel, Germany
| | - Ron Stauder
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Paul Bolay
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Stephan Klähn
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Elisabeth Lettau
- Institute for Chemistry, Technische Universität Berlin, 10623, Berlin, Germany
| | - Lorenz Adrian
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany; Chair of Geobiotechnology, Technische Universität Berlin, 10923, Berlin, Germany
| | - Lars Lauterbach
- Institute for Chemistry, Technische Universität Berlin, 10623, Berlin, Germany; Institute of Applied Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen, 52074, Aachen, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany.
| |
Collapse
|
13
|
Joseph Srinivasan S, Cleary SE, Ramirez MA, Reeve HA, Paul CE, Vincent KA. E. coli Nickel-Iron Hydrogenase 1 Catalyses Non-native Reduction of Flavins: Demonstration for Alkene Hydrogenation by Old Yellow Enzyme Ene-reductases*. Angew Chem Int Ed Engl 2021; 60:13824-13828. [PMID: 33721401 PMCID: PMC8252551 DOI: 10.1002/anie.202101186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Indexed: 11/10/2022]
Abstract
A new activity for the [NiFe] uptake hydrogenase 1 of Escherichia coli (Hyd1) is presented. Direct reduction of biological flavin cofactors FMN and FAD is achieved using H2 as a simple, completely atom-economical reductant. The robust nature of Hyd1 is exploited for flavin reduction across a broad range of temperatures (25-70 °C) and extended reaction times. The utility of this system as a simple, easy to implement FMNH2 or FADH2 regenerating system is then demonstrated by supplying reduced flavin to Old Yellow Enzyme "ene-reductases" to support asymmetric alkene reductions with up to 100 % conversion. Hyd1 turnover frequencies up to 20.4 min-1 and total turnover numbers up to 20 200 were recorded during flavin recycling.
Collapse
Affiliation(s)
- Shiny Joseph Srinivasan
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QR, United Kingdom
| | - Sarah E Cleary
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QR, United Kingdom
| | - Miguel A Ramirez
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QR, United Kingdom
| | - Holly A Reeve
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QR, United Kingdom
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QR, United Kingdom
| |
Collapse
|
14
|
Joseph Srinivasan S, Cleary SE, Ramirez MA, Reeve HA, Paul CE, Vincent KA. E. coli Nickel-Iron Hydrogenase 1 Catalyses Non-native Reduction of Flavins: Demonstration for Alkene Hydrogenation by Old Yellow Enzyme Ene-reductases. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:13943-13947. [PMID: 38529476 PMCID: PMC10962552 DOI: 10.1002/ange.202101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Indexed: 11/10/2022]
Abstract
A new activity for the [NiFe] uptake hydrogenase 1 of Escherichia coli (Hyd1) is presented. Direct reduction of biological flavin cofactors FMN and FAD is achieved using H2 as a simple, completely atom-economical reductant. The robust nature of Hyd1 is exploited for flavin reduction across a broad range of temperatures (25-70 °C) and extended reaction times. The utility of this system as a simple, easy to implement FMNH2 or FADH2 regenerating system is then demonstrated by supplying reduced flavin to Old Yellow Enzyme "ene-reductases" to support asymmetric alkene reductions with up to 100 % conversion. Hyd1 turnover frequencies up to 20.4 min-1 and total turnover numbers up to 20 200 were recorded during flavin recycling.
Collapse
Affiliation(s)
- Shiny Joseph Srinivasan
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RdOxfordOX1 3QRUnited Kingdom
| | - Sarah E. Cleary
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RdOxfordOX1 3QRUnited Kingdom
| | - Miguel A. Ramirez
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RdOxfordOX1 3QRUnited Kingdom
| | - Holly A. Reeve
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RdOxfordOX1 3QRUnited Kingdom
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Kylie A. Vincent
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RdOxfordOX1 3QRUnited Kingdom
| |
Collapse
|
15
|
Fan Q, Caserta G, Lorent C, Lenz O, Neubauer P, Gimpel M. Optimization of Culture Conditions for Oxygen-Tolerant Regulatory [NiFe]-Hydrogenase Production from Ralstonia eutropha H16 in Escherichia coli. Microorganisms 2021; 9:1195. [PMID: 34073092 PMCID: PMC8229454 DOI: 10.3390/microorganisms9061195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Hydrogenases are abundant metalloenzymes that catalyze the reversible conversion of molecular H2 into protons and electrons. Important achievements have been made over the past two decades in the understanding of these highly complex enzymes. However, most hydrogenases have low production yields requiring many efforts and high costs for cultivation limiting their investigation. Heterologous production of these hydrogenases in a robust and genetically tractable expression host is an attractive strategy to make these enzymes more accessible. In the present study, we chose the oxygen-tolerant H2-sensing regulatory [NiFe]-hydrogenase (RH) from Ralstonia eutropha H16 owing to its relatively simple architecture compared to other [NiFe]-hydrogenases as a model to develop a heterologous hydrogenase production system in Escherichia coli. Using screening experiments in 24 deep-well plates with 3 mL working volume, we investigated relevant cultivation parameters, including inducer concentration, expression temperature, and expression time. The RH yield could be increased from 14 mg/L up to >250 mg/L by switching from a batch to an EnPresso B-based fed-batch like cultivation in shake flasks. This yield exceeds the amount of RH purified from the homologous host R. eutropha by several 100-fold. Additionally, we report the successful overproduction of the RH single subunits HoxB and HoxC, suitable for biochemical and spectroscopic investigations. Even though both RH and HoxC proteins were isolated in an inactive, cofactor free apo-form, the proposed strategy may powerfully accelerate bioprocess development and structural studies for both basic research and applied studies. These results are discussed in the context of the regulation mechanisms governing the assembly of large and small hydrogenase subunits.
Collapse
Affiliation(s)
- Qin Fan
- Institute of Biotechnology, Technische Universität Berlin, Chair of Bioprocess Engineering, Ackerstraße 76, D-13355 Berlin, Germany; (Q.F.); (P.N.)
| | - Giorgio Caserta
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany; (G.C.); (C.L.); (O.L.)
| | - Christian Lorent
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany; (G.C.); (C.L.); (O.L.)
| | - Oliver Lenz
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany; (G.C.); (C.L.); (O.L.)
| | - Peter Neubauer
- Institute of Biotechnology, Technische Universität Berlin, Chair of Bioprocess Engineering, Ackerstraße 76, D-13355 Berlin, Germany; (Q.F.); (P.N.)
| | - Matthias Gimpel
- Institute of Biotechnology, Technische Universität Berlin, Chair of Bioprocess Engineering, Ackerstraße 76, D-13355 Berlin, Germany; (Q.F.); (P.N.)
| |
Collapse
|