1
|
Alotaibi NO, Abdulhussein HA, Alamri SM, Hamza NA, Abo Nasria AH. Computational insights into the physico-chemical properties of pure and single-atom copper-indium sub-nanometre clusters: a DFT-genetic algorithm approach. RSC Adv 2025; 15:5856-5875. [PMID: 39980995 PMCID: PMC11841672 DOI: 10.1039/d4ra07404a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/16/2025] [Indexed: 02/22/2025] Open
Abstract
Catalysis involving Cu-In nanoparticles represents an exciting area of technological advancement. However, our fundamental grasp of the mechanisms governing mixing within Cu-In clusters at the sub-nanometer scale and their gas-phase physicochemical properties remains inadequate. We have determined the global minima for gas-phase Cu-In clusters containing 3 to 10 atoms using the Mexican Enhanced Genetic Algorithm in conjunction with density functional theory. Simulations were also conducted for Cu and In atoms and their dimers at the same theoretical level. Comparative analyses were performed between mixed Cu-In systems and their pure counterparts, with pure Cu and In clusters being modeled up to 13 atoms. The findings indicate a 2D-3D transition for pure Cu clusters at 7 atoms, while for pure In clusters, this transition occurs at 5 atoms. For Cu-In nanoalloys, both cluster size and doping have been found to significantly and non-linearly impact cluster structures. Stability assessments, including binding energies, second differences in energy, and mixing energies, were used to evaluate the energetics, structures, and segregation tendencies of sub-nanometer Cu-In clusters. The most stable composition, as indicated by mixing energies, is achieved when the Cu to In ratio is equal or nearly equal. The HSE06 spin-projected band structure reveals that In4Cu1 displays magnetic properties akin to monometallic In5. Conversely, the spin-projected band structure and partial density of states (PDOS) analysis for bimetallic Cu7In1 show that the cluster is non-magnetic. Analysis of the topological parameters of Cu-Cu, In-In, and Cu-In bonds in bimetallic clusters, using the Quantum Theory of Atoms in Molecules (QTAIMs), indicates that these interactions are not purely closed-shell but involve significant covalent contributions.
Collapse
Affiliation(s)
- Norah O Alotaibi
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Heider A Abdulhussein
- Department of Chemistry, Faculty of Science, University of Kufa Najaf Iraq
- College of Engineering, University of Warith Al-Anbiyaa Kerbala Iraq
| | - Shatha M Alamri
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Noorhan Ali Hamza
- Department of Chemistry, Faculty of Education for Pure Science, University of Kerbala Kerbala Iraq
| | - Abbas H Abo Nasria
- Department of Physics, Faculty of Science, University of Kufa Najaf Iraq
| |
Collapse
|
2
|
Bashir SM, Gyenge EL. Improving the Stability of Gas Diffusion Electrodes for CO 2 Electroreduction to Formate with Sn and In-Based Catalysts at 500 mA cm -2: Effect of Electrode Design and Operation Mode. ACS OMEGA 2025; 10:1493-1509. [PMID: 39829475 PMCID: PMC11740123 DOI: 10.1021/acsomega.4c09202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2RR) using renewable electricity sources could provide a sustainable solution for generating valuable chemicals, such as formate salt or formic acid. However, an efficient, stable, and scalable electrode generating formate at industrially viable current densities (>100 mA cm-2) is yet to be developed. Sn or In-based catalysts in gas diffusion electrodes (GDE) can efficiently produce formate. However, their long-term durability is limited owing to catalyst deactivation, carbonate deposition, and electrode flooding. Herein, a systematic study of 20 cm2 GDEs with SnO2 and In2O3 catalyst layers is presented in conjunction with various electrode operation strategies (i.e., flow-by vs flow through, dry vs humidified CO2, continuous vs reverse polarity pulse electrolysis). It is demonstrated that the incorporation of CeO2 nanoparticles as a promoter in either SnO2 or In2O3 catalyst layers coupled with intermittent reverse polarity pulse operation dramatically improves the GDE stability during 12 h of tests at 500 mA cm-2 with over 90% formate Faradaic efficiency. Due to its strong oxidizing capacity, CeO2 helps Sn and In regain their valence state of + IV and + III, respectively, which are in situ reduced during CO2RR, as shown by the surface characterization of the electrodes. The effect of the initial particle size of SnO2 and reverse polarity pulse on the catalytic activity, durability, and carbonate salt precipitation in the GDE have also been addressed. Regarding two-phase flow dynamics, the quasi-convective gas flow through the GDE was more beneficial than the gas flow-by mode for enabling stable operation at high current densities (up to 500 mA cm-2). The synergistic approach of catalyst layer engineering coupled with diverse GDE operation modes explored here is promising for the scale-up of efficient and durable reactors for the CO2RR to formate and CO2 redox flow batteries.
Collapse
Affiliation(s)
- Shahid M Bashir
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver V6T 1Z3, Canada
- Clean Energy Research Centre, the University of British Columbia, 2360 East Mall, Vancouver V6T 1Z3, Canada
| | - Előd L Gyenge
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver V6T 1Z3, Canada
- Clean Energy Research Centre, the University of British Columbia, 2360 East Mall, Vancouver V6T 1Z3, Canada
| |
Collapse
|
3
|
Jeon J, Bang HS, Ko YJ, Kang J, Zhang X, Oh C, Kim H, Choi KH, Woo C, Dong X, Lee WH, Yu HK, Choi JY, Oh HS. Strategy for Enhancing Catalytic Active Site: Introduction of 1D material InSeI for Electrochemical CO 2 Reduction to Formate. SMALL METHODS 2024:e2401157. [PMID: 39530603 DOI: 10.1002/smtd.202401157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The presence of oxygen vacancies (Vo) in electrocatalysts plays a significant role in improving the selectivity and activity of CO2 reduction reaction (CO2RR). In this study, 1D material with large surface area is utilized to enable uniform Vo formation on the catalyst. 1D structured indium selenoiodide (InSeI) is synthesized and used as an electrocatalyst for the conversion of CO2 to formate. The electrochemical treatment of InSeI leads to the leaching of Se and I from the catalyst surface and the formation of Vo. The resulting Vo promotes the activity of the CO2RR, which increases the local pH of the catalyst surface and chemically maintains the oxidized metal sites on the catalyst. Owing to these characteristics, activated In wire exhibited remarkable CO2RR activity, thereby surpassing 93% FEformate at 500 mA cm-2, with a maximum of 97.3% FEformate at 100 mA cm-2. Moreover, the catalytic activity remained consistent for over 50 h at 100 mA cm-2 (FEformate >88%). Thus, the findings imply that using 1D materials can facilitate the formation of oxygen vacancies on the catalyst surface and improve the selectivity and durability of CO2RR. This indicates the potential for further research on 1D materials as electrocatalysts.
Collapse
Affiliation(s)
- Jiho Jeon
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University Suwon, Suwon, 16419, Republic of Korea
| | - Hyeon-Seok Bang
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Young-Jin Ko
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jinsu Kang
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Xiaojie Zhang
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Cheoulwoo Oh
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hyunchul Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Kyung Hwan Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University Suwon, Suwon, 16419, Republic of Korea
| | - Chaeheon Woo
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Xue Dong
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University Suwon, Suwon, 16419, Republic of Korea
| | - Woong Hee Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hak Ki Yu
- Department of Materials Science and Engineering & Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Jae-Young Choi
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University Suwon, Suwon, 16419, Republic of Korea
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyung-Suk Oh
- Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
4
|
Huang H, Yue K, Liu C, Zhan K, Dong H, Yan Y. CuO (111) Microcrystalline Evoked Indium-Organic Framework for Efficient Electroreduction of CO 2 to Formate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400441. [PMID: 38593335 DOI: 10.1002/smll.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Electrochemical reduction of carbon dioxide (CO2RR) to formate is economically beneficial but suffers from poor selectivity and high overpotential. Herein, enriched microcrystalline copper oxide is introduced on the surface of indium-based metal-organic frameworks. Benefiting from the CuO (111) microcrystalline shell and formed catalytic active In-Cu interfaces, the obtained MIL-68(In)/CuO heterostructure display excellent CO2RR to formate with a Faradaic efficiency (FE) as high as 89.7% at low potential of only -0.7 V vs. RHE in a flow cell. Significantly, the membrane electrode assembly (MEA) cell based on MIL-68(In)/CuO exhibit a remarkable current density of 640.3 mA cm-2 at 3.1 V and can be stably operated for 180 h at 2.7 V with a current density of 200 mA cm-2. The ex/in situ electrochemical investigations reveal that the introduction of CuO increases the formation rate of the carbon dioxide reduction intermediate *HCOO- and inhibits the competitive hydrogen evolution reaction. This work not only provides an in-depth study of the mechanism of the CO2RR pathways on In/Cu composite catalyst but also offers an effective strategy for the interface design of electrocatalytic carbon dioxide reduction reaction.
Collapse
Affiliation(s)
- Honghao Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 585 Heshuo Road, Shanghai, 200050, China
| | - Kaihang Yue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 585 Heshuo Road, Shanghai, 200050, China
| | - Chaofan Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ke Zhan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Ya Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 585 Heshuo Road, Shanghai, 200050, China
| |
Collapse
|
5
|
Liu T, Jing Y, Li Y. First-Principles Insights into the Selectivity of CO 2 Electroreduction over Heterogeneous Single-Atom Catalysts. J Phys Chem Lett 2024; 15:6216-6221. [PMID: 38838259 DOI: 10.1021/acs.jpclett.4c01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Heterogeneous metal-nitrogen-carbon (M-N-C) single-atom catalysts (SACs) have garnered considerable attention in the two-electron CO2 reduction reaction (2e-CO2RR). Interestingly, almost M-N-C SACs mainly produce CO, while Sb is one of the few SACs reported so far that can produce HCOOH. Nevertheless, the underlying factors for different selectivities on Sb-N-C SAC remain controversial, and the lack of in-depth understanding of limiting factors hampers further regulations. Here, by using constant-potential first-principles calculations, we revealed that the high HCOOH selectivity of Sb-N-C SAC is mainly attributed to their weak charge accumulation ability. Remarkably, considering the highly tunable geometric structure of M-N-C SACs, we provide that Sb-N-C SAC with the SbN3S1 center is a promising candidate for CO production. Our work provides the mechanism insight into 2e-CO2RR selectivity and further paves the way toward electrocatalyst regulation and design.
Collapse
Affiliation(s)
- Tianyang Liu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Jing
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
6
|
Ruan C, Zhao Z, Wu H, Liu J, Shi Y, Zeng L, Li Z. Promotional effects of In(PO 3) 3 on the high catalytic activity of CuO-In(PO 3) 3/C for the CO 2 reduction reaction. Dalton Trans 2024; 53:9540-9546. [PMID: 38768259 DOI: 10.1039/d4dt00645c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The construction of Cu-In bi-component catalysts is an effective strategy to enhance the electrocatalytic properties towards the CO2 reduction reaction (CO2RR). However, realizing the co-promotion of In and heteroatom P on the electrocatalytic performance is still a challenge due to the poor selectivity of metal phosphides. Herein, a novel bi-component catalyst (CuO-In(PO3)3/C) was successfully synthesized via a facile one-pot reaction to realize the integration of Cu, In, and P species for the enhancement of electrocatalysis. In particular, the as-obtained nanorod-like Cu-In(PO3)3/C exhibits superior electrocatalysis towards the CO2RR, with the highest Faraday efficiency of CO (FECO) of 88.5% at -0.586 V. Furthermore, Cu-In(PO3)3/C shows better activity, selectivity, and stability in the CO2RR; in particular, the total current density can reach 178.09 mA cm-2 at -0.886 V in 2.0 M KOH solution when a flow cell is employed. This work provides a reliable method for simplifying the synthesis of novel Cu-based catalysts and exploits the application of heteroatom P in the field of efficient CO2RR.
Collapse
Affiliation(s)
- Chengtao Ruan
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
| | - Zhihui Zhao
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
| | - Hui Wu
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
| | - Jiaqian Liu
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
| | - Yuande Shi
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fuqing 350300, China
| | - Lingxing Zeng
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
- College of Environmental and Resource Sciences, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Zhongshui Li
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fuqing 350300, China
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, China
| |
Collapse
|
7
|
Wang J, Wang G, Wu H, Liu F, Ren X, Wang Y, Cao Y, Lu Q, Zheng X, Han X, Deng Y, Hu W. Correlating the crystal structure and facet of indium oxides with their activities for CO 2 electroreduction. FUNDAMENTAL RESEARCH 2024; 4:635-641. [PMID: 38933190 PMCID: PMC11197480 DOI: 10.1016/j.fmre.2022.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Constructing structure-function relationships is critical for the rational design and development of efficient catalysts for CO2 electroreduction reaction (CO2RR). In2O3 is well-known for its specific ability to produce formic acid. However, how the crystal phase and surface affect the CO2RR activity is still unclear, making it difficult to further improve the intrinsic activity and screen for the most active structure. In this work, cubic and hexagonal In2O3 with different stable surfaces ((111) and (110) for cubic, (120) and (104) for hexagonal) are investigated for CO2RR. Theoretical results demonstrate that the adsorption of reactants on cubic In2O3 is stronger than that on hexagonal In2O3, with the cubic (111) surface being the most active for CO2RR. In experiments, synthesized cubic In2O3 nanosheets with predominantly exposed (111) surfaces exhibited a high HCOO- Faradaic efficiency (87.5%) and HCOO- current density (-16.7 mA cm-2) at -0.9 V vs RHE. In addition, an aqueous Zn-CO2 battery based on a cubic In2O3 cathode was assembled. Our work correlates the phases and surfaces with the CO2RR activity, and provides a fundamental understanding of the structure-function relationship of In2O3, thereby contributing to further improvements in its CO2RR activity. Moreover, the results provide a principle for the directional preparation of materials with optimal phases and surfaces for efficient electrocatalysis.
Collapse
Affiliation(s)
- Jiajun Wang
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Guangjin Wang
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China
| | - Han Wu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Fei Liu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Xixi Ren
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yidu Wang
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yanhui Cao
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Qi Lu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Xuerong Zheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yida Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Wenbin Hu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
8
|
Wu W, Tong Y, Chen P. Regulation Strategy of Nanostructured Engineering on Indium-Based Materials for Electrocatalytic Conversion of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305562. [PMID: 37845037 DOI: 10.1002/smll.202305562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Indexed: 10/18/2023]
Abstract
Electrochemical carbon dioxide reduction (CO2 RR), as an emerging technology, can combine with sustainable energies to convert CO2 into high value-added products, providing an effective pathway to realize carbon neutrality. However, the high activation energy of CO2 , low mass transfer, and competitive hydrogen evolution reaction (HER) leads to the unsatisfied catalytic activity. Recently, Indium (In)-based materials have attracted significant attention in CO2 RR and a series of regulation strategies of nanostructured engineering are exploited to rationally design various advanced In-based electrocatalysts, which forces the necessary of a comprehensive and fundamental summary, but there is still a scarcity. Herein, this review provides a systematic discussion of the nanostructure engineering of In-based materials for the efficient electrocatalytic conversion of CO2 to fuels. These efficient regulation strategies including morphology, size, composition, defects, surface modification, interfacial structure, alloying, and single-atom structure, are summarized for exploring the internal relationship between the CO2 RR performance and the physicochemical properties of In-based catalysts. The correlation of electronic structure and adsorption behavior of reaction intermediates are highlighted to gain in-depth understanding of catalytic reaction kinetics for CO2 RR. Moreover, the challenges and opportunities of In-based materials are proposed, which is expected to inspire the development of other effective catalysts for CO2 RR.
Collapse
Affiliation(s)
- Wenbo Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yun Tong
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Pengzuo Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
9
|
Zhu X, Xu Y, Ran L, Chen S, Qiu X. Three-Dimensional Porous Indium Single-Atom Catalysts with Improved Accessibility for CO 2 Reduction to Formate. Inorg Chem 2024; 63:3893-3900. [PMID: 38349182 DOI: 10.1021/acs.inorgchem.3c04273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Single-atom catalysts (SACs) present substantial potential in electrocatalytic CO2 reduction reactions; however, inferior accessibility of single-atom sites to CO2 limits the overall CO2RR performances. Herein, we propose to improve the accessibility between In sites and CO2 through the construction of a three-dimensional (3D) porous indium single-atom catalyst (In1/NC-3D). The NaCl template-mediated synthesis strategy generates the unique 3D porous nanostructure of In1/NC-3D. Multiple characterizations validate that In1/NC-3D exhibits increased exposure of active sites and enhanced CO2 transport/adsorption capacity compared to the bulk In1/NC, thus improving accessibility of active sites to CO2. As a result, the In1/NC-3D presents superior CO2RR performance to the bulk In1/NC, with a partial current density of formate of 67.24 mA cm-2 at -1.41 V, relative to a reversible hydrogen electrode (vs RHE). The CO2RR performances with high formate selectivity at a large current density also outperform most reported In-based SACs. Importantly, the In1/NC-3D is demonstrated to maintain an FEformate of >82% at -66.83 mA·cm-2 over 21 h. This work highlights the design of a 3D porous single-atom catalyst for efficient CO2RR, promoting the development of advanced catalysts toward advanced energy conversion.
Collapse
Affiliation(s)
- Xinwang Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Yan Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Lan Ran
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Shanyong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, Guangdong 511443, P. R. China
| | - Xiaoqing Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
10
|
Li H, Yan Y, Yan S, Yu Z, Zou Z. Native frustrated Lewis pairs on core-shell In@InO xH y enhances CO 2-to-formate conversion. Dalton Trans 2023; 52:12543-12551. [PMID: 37609689 DOI: 10.1039/d3dt01960h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Strategies to efficiently activate CO2 by strongly inhibiting the competitive hydrogen evolution reaction process are highly desired for practical applications of the electrochemical CO2 reduction technique. Here, we assembled a core-shell In@InOxHy architecture on carbon black by one-step reduction of NaBH4 as a CO2-to-formate catalyst with high selectivity. The stable CO2-to-formate reaction originates from the creation of steritic frustrated Lewis pairs (FLPs) on the InOxHy shell with In-OVs (OVs, oxygen vacancies) Lewis acid, and In-OH Lewis base. During CO2 reduction, the electrochemically stable FLPs are capable of first capturing and stabilizing protons to protonate FLPs to In-H Lewis acid and In-OH2 Lewis base due to its strong steric electrostatic field; then, CO2 is captured and activated by the protonated FLPs to selectively produce formate. Our results demonstrated that FLPs can be created on the surface of oxyphilic single-metal catalysts efficient in accelerating CO2 reduction with high selectivity.
Collapse
Affiliation(s)
- Hu Li
- Collaborative Innovation Center of Advanced Microstructures, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, PR China.
| | - Yuandong Yan
- Collaborative Innovation Center of Advanced Microstructures, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, PR China.
| | - Shicheng Yan
- Collaborative Innovation Center of Advanced Microstructures, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, PR China.
| | - Zhentao Yu
- Collaborative Innovation Center of Advanced Microstructures, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, PR China.
| | - Zhigang Zou
- Collaborative Innovation Center of Advanced Microstructures, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, PR China.
- Jiangsu Key Laboratory For Nano Technology, Department of Physics, Nanjing University, Nanjing, 210093, PR China
| |
Collapse
|
11
|
Matsuda S, Yamanaka S, Umeda M. Influence of Water Molecules on CO 2 Reduction at the Pt Electrocatalyst in the Membrane Electrode Assembly System. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42676-42684. [PMID: 37642425 DOI: 10.1021/acsami.3c09131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
CO2 electroreduction using a Pt catalyst in an aqueous solution system is known to produce only H2. Recently, a remarkable result has been reported that CH4 can be obtained by reducing CO2 using a membrane electrode assembly (MEA) containing a Pt catalyst. A big difference that exists between the two systems is the number of water molecules. Therefore, this study investigated the influence of water molecules on the CO2-reduction process at the Pt electrocatalyst in the MEA system. As a result, cyclic voltammetry indicated that adsorbed CO (COads) was formed by CO2 reduction in the MEA system more preferably than the aqueous solution system. In detail, the ratio of COads at the atop sites (linear CO, COL) on Pt, which participates in the CH4 generation reaction, to the total COads formed by the CO2 reduction became higher as the lower relative humidity (RH) at 50 °C in the MEA system. Cyclic voltammetry combined with in-line mass spectrometry revealed that the amount of COL and CH4 generated by the CO2 reduction reached their maximums at 63.1% RH. CH4 production by the extremely low-overpotential CO2 reduction was significantly achieved under all the RH conditions. Consequently, the Faradaic efficiency of the CH4 production at 63.1% RH was improved by 1.35 times compared to that at 100% RH. These results would be mainly obtained based on the H2O-involved chemical equilibrium of the reactions for the COads and CH4 formation. Overall, the present study experimentally clarified that the formation of COads (particularly COL) and the following CH4 from the CO2 reduction at the Pt electrocatalyst in the MEA system was facilitated by appropriately controlling the water-molecule content.
Collapse
Affiliation(s)
- Shofu Matsuda
- Department of Materials Science and Technology, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Shota Yamanaka
- Department of Materials Science and Technology, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Minoru Umeda
- Department of Materials Science and Technology, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
12
|
Yang R, Huang Q, Sha X, Gao B, Peng J. Regulation of Bimetallic Coordination Centers in MOF Catalyst for Electrochemical CO 2 Reduction to Formate. Int J Mol Sci 2023; 24:13838. [PMID: 37762141 PMCID: PMC10530794 DOI: 10.3390/ijms241813838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Electrocatalytic reduction of CO2 to valuable chemicals can alleviate the energy crisis, and solve the greenhouse effect. The key is to develop non-noble metal electrocatalysts with high activity, selectivity, and stability. Herein, bimetallic metal organic frameworks (MOFs) materials (BiZn-MOF, BiSn-MOF, and BiIn-MOF) were constructed by coordinating the metals Zn, In, Sn, and Bi with the organic ligand 3-amino-1H-1,2,4-triazole-5-carboxylic acid (H2atzc) through a rapid microwave synthesis approach. The coordination centers in bimetallic MOF catalyst were regulated to optimize the catalytic performance for electrochemical CO2 reduction reaction (CO2RR). The optimized catalyst BiZn-MOF exhibited higher catalytic activity than those of Bi-MOF, BiSn-MOF, and BiIn-MOF. BiZn-MOF exhibited a higher selectivity for formate production with a Faradic efficiency (FE = 92%) at a potential of -0.9 V (vs. RHE, reversible hydrogen electrode) with a current density of 13 mA cm-2. The current density maintained continuous electrolysis for 13 h. The electrochemical conversion of CO2 to formate mainly follows the *OCHO pathway. The good catalytic performance of BiZn-MOF may be attributed to the Bi-Zn bimetallic coordination centers in the MOF, which can reduce the binding energies of the reaction intermediates by tuning the electronic structure and atomic arrangement. This study provides a feasible strategy for performance optimization of bismuth-based catalysts.
Collapse
Affiliation(s)
| | | | | | | | - Juan Peng
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
13
|
Pérez-Sequera AC, Diaz-Perez MA, Lara Angulo MA, Holgado JP, Serrano-Ruiz JC. Facile Synthesis of Heterogeneous Indium Nanoparticles for Formate Production via CO 2 Electroreduction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1304. [PMID: 37110888 PMCID: PMC10142922 DOI: 10.3390/nano13081304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
In this study, a simple and scalable method to obtain heterogeneous indium nanoparticles and carbon-supported indium nanoparticles under mild conditions is described. Physicochemical characterization by X-ray diffraction (XRD), X-ray photoelectron microscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed heterogeneous morphologies for the In nanoparticles in all cases. Apart from In0, XPS revealed the presence of oxidized In species on the carbon-supported samples, whereas these species were not observed for the unsupported samples. The best-in-class catalyst (In50/C50) exhibited a high formate Faradaic efficiency (FE) near the unit (above 97%) at -1.6 V vs. Ag/AgCl, achieving a stable current density around -10 mA·cmgeo-2, in a common H-cell. While In0 sites are the main active sites for the reaction, the presence of oxidized In species could play a role in the improved performance of the supported samples.
Collapse
Affiliation(s)
- Ana Cristina Pérez-Sequera
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avda. de las Universidades s/n, 41704 Dos Hermanas, Spain
| | - Manuel Antonio Diaz-Perez
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avda. de las Universidades s/n, 41704 Dos Hermanas, Spain
| | - Mayra Anabel Lara Angulo
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avda. de las Universidades s/n, 41704 Dos Hermanas, Spain
| | - Juan P. Holgado
- Instituto de Ciencia de Materiales de Sevilla and Departamento de Química Inorgánica, CSIC-Univ de Sevilla, Av. Américo Vespucio, 49, 41092 Seville, Spain
| | - Juan Carlos Serrano-Ruiz
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avda. de las Universidades s/n, 41704 Dos Hermanas, Spain
| |
Collapse
|
14
|
Wang G, Ma Y, Wang J, Lu P, Wang Y, Fan Z. Metal functionalization of two-dimensional nanomaterials for electrochemical carbon dioxide reduction. NANOSCALE 2023; 15:6456-6475. [PMID: 36951476 DOI: 10.1039/d3nr00484h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With the mechanical exfoliation of graphene in 2004, researchers around the world have devoted significant efforts to the study of two-dimensional (2D) nanomaterials. Nowadays, 2D nanomaterials are being developed into a large family with varieties of structures and derivatives. Due to their fascinating electronic, chemical, and physical properties, 2D nanomaterials are becoming an important type of catalyst for the electrochemical carbon dioxide reduction reaction (CO2RR). Here, we review the recent progress in electrochemical CO2RR using 2D nanomaterial-based catalysts. First, we briefly describe the reaction mechanism of electrochemical CO2 reduction to single-carbon (C1) and multi-carbon (C2+) products. Then, we discuss the strategies and principles for applying metal materials to functionalize 2D nanomaterials, such as graphene-based materials, metal-organic frameworks (MOFs), and transition metal dichalcogenides (TMDs), as well as applications of resultant materials in the electrocatalytic CO2RR. Finally, we summarize the present research advances and highlight the current challenges and future opportunities of using metal-functionalized 2D nanomaterials in the electrochemical CO2RR.
Collapse
Affiliation(s)
- Guozhi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Juan Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
15
|
Li J, Zhu M, Han YF. Elucidating the structure evolution and reaction mechanism of the Cu-In bimetallic catalysts during CO2RR. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Zelocualtecatl Montiel I, Dutta A, Kiran K, Rieder A, Iarchuk A, Vesztergom S, Mirolo M, Martens I, Drnec J, Broekmann P. CO 2 Conversion at High Current Densities: Stabilization of Bi(III)-Containing Electrocatalysts under CO 2 Gas Flow Conditions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Iván Zelocualtecatl Montiel
- Department of Chemistry, Biochemistry and Pharmaceutical Science, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Abhijit Dutta
- Department of Chemistry, Biochemistry and Pharmaceutical Science, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Kiran Kiran
- Department of Chemistry, Biochemistry and Pharmaceutical Science, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Alain Rieder
- Department of Chemistry, Biochemistry and Pharmaceutical Science, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Anna Iarchuk
- Department of Chemistry, Biochemistry and Pharmaceutical Science, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Soma Vesztergom
- Department of Chemistry, Biochemistry and Pharmaceutical Science, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- Department of Physical Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Marta Mirolo
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Isaac Martens
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Jakub Drnec
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Peter Broekmann
- Department of Chemistry, Biochemistry and Pharmaceutical Science, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
17
|
Qiu C, Qian K, Yu J, Sun M, Cao S, Gao J, Yu R, Fang L, Yao Y, Lu X, Li T, Huang B, Yang S. MOF-Transformed In 2O 3-x@C Nanocorn Electrocatalyst for Efficient CO 2 Reduction to HCOOH. NANO-MICRO LETTERS 2022; 14:167. [PMID: 35976472 PMCID: PMC9385936 DOI: 10.1007/s40820-022-00913-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/13/2022] [Indexed: 05/05/2023]
Abstract
For electrochemical CO2 reduction to HCOOH, an ongoing challenge is to design energy efficient electrocatalysts that can deliver a high HCOOH current density (JHCOOH) at a low overpotential. Indium oxide is good HCOOH production catalyst but with low conductivity. In this work, we report a unique corn design of In2O3-x@C nanocatalyst, wherein In2O3-x nanocube as the fine grains dispersed uniformly on the carbon nanorod cob, resulting in the enhanced conductivity. Excellent performance is achieved with 84% Faradaic efficiency (FE) and 11 mA cm-2 JHCOOH at a low potential of - 0.4 V versus RHE. At the current density of 100 mA cm-2, the applied potential remained stable for more than 120 h with the FE above 90%. Density functional theory calculations reveal that the abundant oxygen vacancy in In2O3-x has exposed more In3+ sites with activated electroactivity, which facilitates the formation of HCOO* intermediate. Operando X-ray absorption spectroscopy also confirms In3+ as the active site and the key intermediate of HCOO* during the process of CO2 reduction to HCOOH.
Collapse
Affiliation(s)
- Chen Qiu
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Kun Qian
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Jun Yu
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China.
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, People's Republic of China
| | - Jinqiang Gao
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Rongxing Yu
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
| | - Lingzhe Fang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Youwei Yao
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, People's Republic of China
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA.
- X-Ray Science Division and Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, IL, 60439, USA.
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China.
| | - Shihe Yang
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China.
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, 518107, People's Republic of China.
| |
Collapse
|
18
|
Zhang W, Pu T, Wang Z, Shen L, Zhu M. Combined In Situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Kinetic Studies on CO 2 Methanation Reaction over Ni/Al 2O 3. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenhao Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Tiancheng Pu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhen Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liang Shen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
19
|
Ma L, Liu N, Mei B, Yang K, Liu B, Deng K, Zhang Y, Feng H, Liu D, Duan J, Jiang Z, Yang H, Li Q. In Situ-Activated Indium Nanoelectrocatalysts for Highly Active and Selective CO 2 Electroreduction around the Thermodynamic Potential. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lushan Ma
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ning Liu
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bingbao Mei
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Kang Yang
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bingxin Liu
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kai Deng
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Zhang
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hao Feng
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dong Liu
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jingjing Duan
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zheng Jiang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Qiang Li
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
20
|
Liu Z, Zhang J, Yu L, Wang H, Huang X. Thermal derived bismuth nanoparticles on nitrogen-doped carbon aerogel enable selective electrochemical production of formate from CO2. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Tan D, Lee W, Kim YE, Ko YN, Youn MH, Jeon YE, Hong J, Park JE, Seo J, Jeong SK, Choi Y, Choi H, Kim HY, Park KT. In-Bi Electrocatalyst for the Reduction of CO 2 to Formate in a Wide Potential Window. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28890-28899. [PMID: 35714281 DOI: 10.1021/acsami.2c05596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The CO2 atmospheric concentration level hit the record at more than 400 ppm and is predicted to keep increasing as the dependence on fossil fuels is inevitable. The CO2 electrocatalytic conversion becomes an alternative due to its environmental and energy-friendly properties and benign operation condition. Lately, bimetallic materials have drawn significant interest as electrocatalysts due to their distinct properties, which the parents' metal cannot mimic. Herein, the indium-bismuth nanosphere (In16Bi84 NS) was fabricated via the facile liquid-polyol technique. The In16Bi84 NS exhibits exceptional performance for CO2 reduction to formate, with the faradaic efficiency (FE) approaching ∼100% and a corresponding partial current density of 14.1 mA cm-2 at -0.94 V [vs the reversible hydrogen electrode (RHE)]. Furthermore, the FE could be maintained above 90% in a wide potential window (-0.84 to -1.54 V vs the RHE). This superior performance is attributed to the tuned electronic properties induced by the synergistic interaction between In and Bi, enabling the intermediates to be stably adsorbed on the catalyst surface to generate more formate ions.
Collapse
Affiliation(s)
- Daniel Tan
- Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
- University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Wonhee Lee
- Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Young Eun Kim
- Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - You Na Ko
- Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Min Hye Youn
- Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Ye Eun Jeon
- Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Jumi Hong
- Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Jeong Eun Park
- Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Jaeho Seo
- Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Soon Kwan Jeong
- Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
- University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Yejung Choi
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hyuk Choi
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hyun You Kim
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Ki Tae Park
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Yuseong-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
22
|
Zhang Y, Lan J, Xie F, Peng M, Liu J, Chan TS, Tan Y. Aligned InS Nanorods for Efficient Electrocatalytic Carbon Dioxide Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25257-25266. [PMID: 35609249 DOI: 10.1021/acsami.2c01152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical CO2 reduction technology can combine renewable energy sources with carbon capture and storage to convert CO2 into industrial chemicals. However, the catalytic activity under high current density and long-term electrocatalysis process may deteriorate due to agglomeration, catalytic polymerization, element dissolution, and phase change of active substances. Here, we report a scalable and facile method to fabricate aligned InS nanorods by chemical dealloying. The resulting aligned InS nanorods exhibit a remarkable CO2RR activity for selective formate production at a wide potential window, achieving over 90% faradic efficiencies from -0.5 to -1.0 V vs reversible hydrogen electrode (RHE) under gas diffusion cell, as well as continuously long-term operation without deterioration. In situ electrochemical Raman spectroscopy measurements reveal that the *OCHO* species (Bidentate adsorption) are the intermediates that occurred in the reaction of CO2 reduction to formate. Meanwhile, the presence of sulfur can accelerate the activation of H2O to react with CO2, promoting the formation of *OCHO* intermediates on the catalyst surface. Significantly, through additional coupling anodic methanol oxidation reaction (MOR), the unusual two-electrode electrolytic system allows highly energy-efficient and value-added formate manufacturing, thereby reducing energy consumption.
Collapse
Affiliation(s)
- Yanlong Zhang
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
| | - Jiao Lan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
| | - Feng Xie
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
| | - Ming Peng
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
| | - Jilei Liu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan 410082, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Yongwen Tan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
23
|
Wang Y, Liu T, Li Y. Why heterogeneous single-atom catalysts preferentially produce CO in the electrochemical CO 2 reduction reaction. Chem Sci 2022; 13:6366-6372. [PMID: 35733893 PMCID: PMC9159077 DOI: 10.1039/d2sc01593e] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
Formate and CO are competing products in the two-electron CO2 reduction reaction (2e CO2RR), and they are produced via *OCHO and *COOH intermediates, respectively. However, the factors governing CO/formate selectivity remain elusive, especially for metal-carbon-nitrogen (M-N-C) single-atom catalysts (SACs), most of which produce CO as their main product. Herein, we show computationally that the selectivity of M-N-C SACs is intrinsically associated with the CO2 adsorption mode by using bismuth (Bi) nanosheets and the Bi-N-C SAC as model catalysts. According to our results, the Bi-N-C SAC exhibits a strong thermodynamic preference toward *OCHO, but under working potentials, CO2 is preferentially chemisorbed first due to a charge accumulation effect, and subsequent protonation of chemisorbed CO2 to *COOH is kinetically much more favorable than formation of *OCHO. Consequently, the Bi-N-C SAC preferentially produces CO rather than formate. In contrast, the physisorption preference of CO2 on Bi nanosheets contributes to high formate selectivity. Remarkably, this CO2 adsorption-based mechanism also applies to other typical M-N-C SACs. This work not only resolves a long-standing puzzle in M-N-C SACs, but also presents simple, solid criteria (i.e., CO2 adsorption modes) for indicating CO/formate selectivity, which help strategic development of high-performance CO2RR catalysts.
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Tianyang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
24
|
Xu D, Xu Y, Wang H, Qiu X. Highly efficient and stable indium single-atom catalysts for electrocatalytic reduction of CO 2 to formate. Chem Commun (Camb) 2022; 58:3007-3010. [PMID: 35147618 DOI: 10.1039/d1cc07079g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Indium single-atom catalysts display a large total current density (38.94 to 81.08 mA cm-2) over an extensive potential window (-0.91 to -1.41 V vs. RHE) for electrocatalytic CO2 reduction to formate with high selectivity (85.2% faradaic efficiency at -1.31 V).
Collapse
Affiliation(s)
- Dafu Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Yan Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Haixia Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Xiaoqing Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| |
Collapse
|
25
|
Jang HJ, Yang JH, Maeng JY, Joo MH, Kim YJ, Rhee CK, Sohn Y. Photoelectrochemical CO2 Reduction Products Over Sandwiched Hybrid Ga2O3:ZnO/Indium/ZnO Nanorods. Front Chem 2022; 10:814766. [PMID: 35223770 PMCID: PMC8863927 DOI: 10.3389/fchem.2022.814766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
Recycled valuable energy production by the electrochemical CO2 reduction method has explosively researched using countless amounts of developed electrocatalysts. Herein, we have developed hybrid sandwiched Ga2O3:ZnO/indium/ZnO nanorods (GZO/In/ZnONR) and tested their photoelectrocatalytic CO2 reduction performances. Gas chromatography and nuclear magnetic spectroscopy were employed to examine gas and liquid CO2 reduction products, respectively. Major products were observed to be CO, H2, and formate whose Faradaic efficiencies were highly dependent on the relative amounts of overlayer GZO and In spacer, as well as applied potential and light irradiation. Overall, the present study provides a new strategy of controlling CO2 reduction products by developing a sandwiched hybrid catalyst system for energy and environment.
Collapse
Affiliation(s)
- Hye Ji Jang
- Department of Chemistry, Chungnam National University, Daejeon, South Korea
| | - Ju Hyun Yang
- Department of Chemistry, Chungnam National University, Daejeon, South Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| | - Ju Young Maeng
- Department of Chemistry, Chungnam National University, Daejeon, South Korea
| | - Min Hee Joo
- Department of Chemistry, Chungnam National University, Daejeon, South Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| | - Young Jun Kim
- Department of Chemistry, Chungnam National University, Daejeon, South Korea
| | - Choong Kyun Rhee
- Department of Chemistry, Chungnam National University, Daejeon, South Korea
| | - Youngku Sohn
- Department of Chemistry, Chungnam National University, Daejeon, South Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
- *Correspondence: Youngku Sohn,
| |
Collapse
|
26
|
Pu T, Shen L, Xu J, Peng C, Zhu M. Revealing the dependence of CO
2
activation on hydrogen dissociation ability over supported nickel catalysts. AIChE J 2021. [DOI: 10.1002/aic.17458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tiancheng Pu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Liang Shen
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Jing Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Chong Peng
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC Dalian China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|