1
|
Chen C, Lv M, Hu H, Huai L, Zhu B, Fan S, Wang Q, Zhang J. 5-Hydroxymethylfurfural and its Downstream Chemicals: A Review of Catalytic Routes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311464. [PMID: 38808666 DOI: 10.1002/adma.202311464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Biomass assumes an increasingly vital role in the realm of renewable energy and sustainable development due to its abundant availability, renewability, and minimal environmental impact. Within this context, 5-hydroxymethylfurfural (HMF), derived from sugar dehydration, stands out as a critical bio-derived product. It serves as a pivotal multifunctional platform compound, integral in synthesizing various vital chemicals, including furan-based polymers, fine chemicals, and biofuels. The high reactivity of HMF, attributed to its highly active aldehyde, hydroxyl, and furan ring, underscores the challenge of selectively regulating its conversion to obtain the desired products. This review highlights the research progress on efficient catalytic systems for HMF synthesis, oxidation, reduction, and etherification. Additionally, it outlines the techno-economic analysis (TEA) and prospective research directions for the production of furan-based chemicals. Despite significant progress in catalysis research, and certain process routes demonstrating substantial economics, with key indicators surpassing petroleum-based products, a gap persists between fundamental research and large-scale industrialization. This is due to the lack of comprehensive engineering research on bio-based chemicals, making the commercialization process a distant goal. These findings provide valuable insights for further development of this field.
Collapse
Affiliation(s)
- Chunlin Chen
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingxin Lv
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hualei Hu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyuan Huai
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilin Fan
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuge Wang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Deshan AK, Moghaddam L, Atanda L, Wang H, Bartley JP, Doherty WO, Rackemann DW. High Conversion of Concentrated Sugars to 5-Hydroxymethylfurfural over a Metal-free Carbon Catalyst: Role of Glucose-Fructose Dimers. ACS OMEGA 2023; 8:40442-40455. [PMID: 37929081 PMCID: PMC10620938 DOI: 10.1021/acsomega.3c05060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
To reduce the production cost of chemicals from renewable resources, the feedstock loading must be high and the catalyst must be of low cost and efficient. In this study, at a very short reaction time of 10 min at 125 °C, concentrated sugar solutions (20 wt %, 101 wt % on solvent) were converted to 5-hydroxymethylfurfural (HMF) over a cotton gin trash (CGT)-derived sulfonated carbon catalyst in a 1-butyl-3-methyl-imidazolium chloride ([BMIM]Cl) and 2-methyltetrahydrofuran (MeTHF) biphasic system. We report, for the first time, that the presence of glucose either as a covalently bonded monomer in sucrose or in a mixture with fructose achieved yields of HMF up to 62 mol % compared to a value of only 39 mol % obtained with fructose on its own. In the concentrated reaction medium, glucose, fructose, and sucrose molecules produce difructose anhydrides, dimers/reversion products, and sucrose isomers. The glucose-fructose dimers formed in sucrose and glucose/fructose reaction systems play a critical role in the transformation of the sugars to a higher-than-expected HMF yield. Thus, a strategy of using cellulosic glucose, where it is partially converted to fructose content and the high sugar concentration sugar mixture is then converted to HMF, should be exploited for future biorefineries.
Collapse
Affiliation(s)
- Athukoralalage
Don K. Deshan
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Lalehvash Moghaddam
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Luqman Atanda
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Hongxia Wang
- School
of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - John P. Bartley
- School
of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - William O.S. Doherty
- Faculty
of Science and Engineering, Southern Cross
University, Lismore, New South Wales 2480, Australia
- Doherty
Consulting Services, 3 Lillydale, Place, Calamvale, Brisbane, Queensland 4116, Australia
| | - Darryn W. Rackemann
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
3
|
Fulignati S, Antonetti C, Tabanelli T, Cavani F, Raspolli Galletti AM. Integrated Cascade Process for the Catalytic Conversion of 5-Hydroxymethylfurfural to Furanic and TetrahydrofuranicDiethers as Potential Biofuels. CHEMSUSCHEM 2022; 15:e202200241. [PMID: 35384331 PMCID: PMC9401012 DOI: 10.1002/cssc.202200241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The depletion of fossil resources is driving the research towards alternative renewable ones. Under this perspective, 5-hydroxymethylfurfural (HMF) represents a key molecule deriving from biomass characterized by remarkable potential as platform chemical. In this work, for the first time, the hydrogenation of HMF in ethanol was selectively addressed towards 2,5-bis(hydroxymethyl)furan (BHMF) or 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF) by properly tuning the reaction conditions in the presence of the same commercial catalyst (Ru/C), reaching the highest yields of 80 and 93 mol%, respectively. These diols represent not only interesting monomers but strategic precursors for two scarcely investigated ethoxylated biofuels, 2,5-bis(ethoxymethyl)furan (BEMF) and 2,5-bis(ethoxymethyl)tetrahydrofuran (BEMTHF). Therefore, the etherification with ethanol of pure BHMF and BHMTHF and of crude BHMF, as obtained from hydrogenation step, substrates scarcely investigated in the literature, was performed with several commercial heterogeneous acid catalysts. Among them, the zeolite HZSM-5 (Si/Al=25) was the most promising system, achieving the highest BEMF yield of 74 mol%. In particular, for the first time, the synthesis of the fully hydrogenated diether BEMTHF was thoroughly studied, and a novel cascade process for the tailored conversion of HMF to the diethyl ethers BEMF and BEMTHF was proposed.
Collapse
Affiliation(s)
- Sara Fulignati
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Giuseppe Moruzzi 1356124PisaItaly
| | - Claudia Antonetti
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Giuseppe Moruzzi 1356124PisaItaly
- Interuniversity Consortium for Chemical Reactivity and Catalysis (CIRCC)Via CelsoUlpiani 2770126BariItaly
| | - Tommaso Tabanelli
- Department of Industrial Chemsistry “TosoMontanari”Alma Mater Studiorum University of BolognaViale Risorgimento 440136BolognaItaly
| | - Fabrizio Cavani
- Department of Industrial Chemsistry “TosoMontanari”Alma Mater Studiorum University of BolognaViale Risorgimento 440136BolognaItaly
| | | |
Collapse
|
4
|
Chen L, Xue T, Hu H, Chen C, Wang D, Cai W, Yang Y, Zhang J. Efficient Etherification of 2,5-Bis(hydroxymethyl)furan to 2,5-Bis(propoxymethyl)furan by an Amorphous Silica-Alumina Catalyst in a Fixed-Bed Reactor. Chempluschem 2022; 87:e202100494. [PMID: 35112807 DOI: 10.1002/cplu.202100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/13/2022] [Indexed: 11/08/2022]
Abstract
The efficient etherification of 2,5-bis(hydroxymethyl)furan (BHMF) to 2,5-bis(propoxymethyl)furan (BPMF) was achieved by using low-cost amorphous silica-aluminas (ASA) catalysts in a fixed-bed reactor. A considerable yield of BPMF up to 85.1 % was obtained over ASA-30 catalyst under the reaction conditions of 140 °C, 2.0 MPa of N2 , and 0.015 h-1 of WHSV. The excellent performance of ASA-30 catalyst could be attributed to the relatively stronger acidity (>375 °C) and larger mesoporous size (6 nm), thereby facilitating the conversion of BHMF to BPMF. In addition, the lower ratio of Brønsted/Lewis acid sites for ASA catalyst was found to efficiently suppress the occurrence of side reactions.
Collapse
Affiliation(s)
- Liangqi Chen
- Dalian Polytechnic University, No. 1st Qinggongyuan, Ganjingzi, Dalian, 116034, P. R. China
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, P. R. China
| | - Tingting Xue
- Dalian Polytechnic University, No. 1st Qinggongyuan, Ganjingzi, Dalian, 116034, P. R. China
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, P. R. China
| | - Hualei Hu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, P. R. China
| | - Chunlin Chen
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Dazhi Wang
- Dalian Polytechnic University, No. 1st Qinggongyuan, Ganjingzi, Dalian, 116034, P. R. China
| | - Weijie Cai
- Dalian Polytechnic University, No. 1st Qinggongyuan, Ganjingzi, Dalian, 116034, P. R. China
| | - Yong Yang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, P. R. China
| | - Jian Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|