1
|
Hua Y, Li L, Zhang H, Guo GC. Advances in crystalline metal-organic photochromic materials. Chem Commun (Camb) 2025; 61:5422-5434. [PMID: 40114647 DOI: 10.1039/d4cc06570k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Metal-organic materials have undergone rapid advancements due to their unique structural properties and exceptional application potential. As a key branch, crystalline metal-organic photochromic materials (CMOPMs), have attracted significant attention for their ability to modulate physical properties in response to light stimulation, thereby expanding the research landscape of metal-organic materials in areas such as molecular switch, gas adsorption and separation, and sensing applications. Furthermore, light as a renewable and clean energy source significantly enhances its application potential. In this feature article, we review the design and synthesis strategies, classification, and applications of CMOPMs. Finally, we present the opportunities and challenges for the development of CMOPMs.
Collapse
Affiliation(s)
- Yang Hua
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Li Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Hong Zhang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| |
Collapse
|
2
|
Bhargava M, Ali S, Guleria M, Agarwal J. Phenolic -OH-Induced Fluorescence and Chemoselectivity in a Triptycene-Based trans-Azo Oligomer for Sensing Applications. J Phys Chem B 2024; 128:12227-12236. [PMID: 39601348 DOI: 10.1021/acs.jpcb.4c05081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A novel triptycene-based trans-azo fluorescent oligomer exhibiting phenolic groups has been designed. The presence of phenolic -OH in conjugation with the azo group rendered the oligomer fluorescence active by keto-enol tautomerism, which was evidenced by quenching the fluorescence intensity of TP1 in 1 M aq. NaOH. A green synthetic protocol was employed to synthesize this oligomer as a dark-brown solid, and it was characterized by using diverse analytical tools such as FTIR, 13C-CPMAS NMR, GPC, FESEM, EDS, TGA, and PXRD techniques. FESEM and PXRD confirmed its existence as amorphous nanoclusters. The oligomer displayed efficient chemosensing properties toward the detection of picric acid with the LOD value of 391 nM. The specific recognition of PA in the presence of other explosives and the results of real water sample analysis further indicated the high efficacy of the TP1 as a chemosensor.
Collapse
Affiliation(s)
- Meha Bhargava
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Sector-14, Chandigarh, India 160014
| | - Sonia Ali
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Sector-14, Chandigarh, India 160014
| | - Mamta Guleria
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Sector-14, Chandigarh, India 160014
| | - Jyoti Agarwal
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Sector-14, Chandigarh, India 160014
| |
Collapse
|
3
|
Choudhary P, Saini N, Yoon MH, Awasthi K, Pandey K. ZIF-8 @polycarbonate nanocomposite membranes for improved permeability and selectivity for hydrogen gas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105387-105397. [PMID: 37713078 DOI: 10.1007/s11356-023-29650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Through this work, we are reporting high-performance ZIF-8 @polycarbonate nanocomposite membranes with satisfactory structural stability for improving the gas separation performance. ZIF-8 nanoparticles were synthesised using the wet chemical route with cubic morphology and controlled size using CTAB as a surfactant. The membranes were prepared using the solution casting method by adding ZIF-8 filler at various concentrations. The synthesised filler material and MMMs were characterised through X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and RAMAN spectroscopy techniques. The gas separation measurements were taken using H2, CO2, and N2 gas in the purest form. The SEM results confirm the formation of spherulite-like morphology with the addition of ZIF-8 due to the crystallisation of the polymer, which increased the membrane's free volume and opened up additional pathways for the transportation of the gas molecules. The gas separation results confirmed that the 15 wt% ZIF-8/PC nanocomposite membrane showed the maximum H2 permeability of 180,970 barrer with an increment of 316.03%, while H2/CO2 and H2/N2 selectivity showed the increments of 89.43% and 103.64%, respectively. Therefore, this PC/ZIF-8 system seems to be a promising approach to developing new H2 selective membranes with high gas permeability and gas selectivity values.
Collapse
Affiliation(s)
- Prashant Choudhary
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| | - Nishel Saini
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| | - Myung Han Yoon
- Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712, Republic of Korea
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| | - Kamakshi Pandey
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
| |
Collapse
|
4
|
Zhao JL, Li MH, Cheng YM, Zhao XW, Xu Y, Cao ZY, You MH, Lin MJ. Photochromic crystalline hybrid materials with switchable properties: Recent advances and potential applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Zhang H, Jung Oh Y, Tsegay Tikue E, Il Lee H, Kyung Kang S, Soo Lee P. Enrichment of spent SF6 gas by zeolite membranes for direct reuse in gas-insulated switchgear units. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Pebax-based membrane filled with photo-responsive Azo@NH2-MIL-53 nanoparticles for efficient SO2/N2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Liu P, Tian Z, Chen L. Rational Design of Smart Metal-Organic Frameworks for Light-Modulated Gas Transport. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32009-32017. [PMID: 35797237 DOI: 10.1021/acsami.2c07124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Smart metal-organic frameworks (MOFs) are constructed by introducing stimuli-responsive functional groups into MOF platforms. Through membrane systems containing smart MOFs, external field-modulated gas transport can be achieved, which finds potential applications in chemical engineering. In this work, we design a series of Mg-MOF-74-III-based frameworks functionalized by arylazopyrazole groups. Methyleneamine chains with various lengths are attached to the photoresponsive azopyrazole moiety. Molecular dynamics simulations show that CO2 diffusion can be remarkably changed by controlling the cis-to-trans isomerization of the functional unit due to the tunable adsorbate-adsorbent and adsorbate-adsorbate interactions of the two states. With the optimal length of the functional chain, the spatial hindrance and adsorbate-adsorbent interaction exhibit a synergetic effect to maximize the stimuli-responsive kinetic separation of N2 over CO2. This work provides a promising strategy for elevating smart MOFs' potential in gas separation.
Collapse
Affiliation(s)
- Pingying Liu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| |
Collapse
|
8
|
Li Y, Wang Y, Fan W, Sun D. Flexible metal-organic frameworks for gas storage and separation. Dalton Trans 2022; 51:4608-4618. [PMID: 35225319 DOI: 10.1039/d1dt03842g] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flexible metal-organic frameworks (MOFs) have gradually attracted much attention due to their reversible structural changes and flexible structural responses. The basic research of flexible MOFs is to study their dynamic responses under different external stimuli and translate the responses into applications. Most research studies on flexible MOFs focus on gas storage and separation, but lack a systematic summary. Here, we review the development of flexible MOFs, the structural transformation under the external effects of temperature, pressure, and guest molecules, and their applications in gas storage and separation. Microporous MOFs with flexible structures provide unique opportunities for fine-tuning their performance because the pore shape and size can be controlled by external stimuli. The characteristics of breathing phenomena and large specific surface area make flexible MOFs suitable candidates for gas storage and separation. Finally, the application prospects of flexible MOFs are reported.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Yutong Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Weidong Fan
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Daofeng Sun
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| |
Collapse
|
9
|
Sun Y, Shu T, Ma J, Dai Q, Peng P, Zhou Z, Zhou X, Su L, Zhang X. Rational Design of ZIF-8 for Constructing Luminescent Biosensors with Glucose Oxidase and AIE-Type Gold Nanoclusters. Anal Chem 2022; 94:3408-3417. [PMID: 35137578 DOI: 10.1021/acs.analchem.1c05599] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of modern technologies has acclimatized biosensors to complicated applicable scenarios with integrated properties as a whole instead of the pursuit of a single-point breakthrough. Here, we targeted a few concerns in the development of enzyme-based biosensors, including stability, analyte enrichment, and signal transduction, and developed a general biosensing model utilizing enzymes, aggregation-induced emission (AIE) luminogens, and stimuli-responsive framework materials as the units. We propose such proof-of-concept of glucose biosensors by coencapsulating glucose oxidase and AIE-type gold nanoclusters into acid-sensitive zeolite imidazolate framework (ZIF)-8 nanocrystals. The acid-activated degradation of ZIF-8 bridges the molecular signals produced by the enzyme-catalytic reaction of glucose and the photon signals generated by ZIF-8-induced AIE effects of gold nanoclusters, resulting in the "turn-off" model nanoprobes for glucose detection with high selectivity. After embedding the nanoprobes into hollow-out tapes, the formed paper biosensors can conveniently detect glucose with the help of a smartphone.
Collapse
Affiliation(s)
- Yanping Sun
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, International Health Science Innovation Center, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China.,Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Tong Shu
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, International Health Science Innovation Center, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China
| | - Jianxin Ma
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, International Health Science Innovation Center, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China.,Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Qiong Dai
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, International Health Science Innovation Center, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China
| | - Peiwen Peng
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, International Health Science Innovation Center, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China
| | - Ziping Zhou
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, International Health Science Innovation Center, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China.,Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiang Zhou
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, International Health Science Innovation Center, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China
| | - Lei Su
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, International Health Science Innovation Center, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China
| | - Xueji Zhang
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, International Health Science Innovation Center, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China
| |
Collapse
|
10
|
Xin Q, Zhao M, Guo J, Huang D, Zeng Y, Zhao Y, Zhang T, Zhang L, Wang S, Zhang Y. Light-responsive metal-organic framework sheets constructed smart membranes with tunable transport channels for efficient gas separation. RSC Adv 2021; 12:517-527. [PMID: 35424524 PMCID: PMC8694204 DOI: 10.1039/d1ra06814h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/11/2021] [Indexed: 01/21/2023] Open
Abstract
Exploring a new type of smart membrane with tunable separation performance is a promising area of research. In this study, new light-responsive metal-organic framework [Co(azpy)] sheets were prepared by a facile microwave method for the first time, and were then incorporated into a polymer matrix to fabricate smart mixed matrix membranes (MMMs) applied for flue gas desulfurization and decarburization. The smart MMMs exhibited significantly elevated SO2(CO2)/N2 selectivity by 184(166)% in comparison with an unfilled polymer membrane. The light-responsive characteristic of the smart MMMs was investigated, and the permeability and selectivity of the Co(azpy) sheets-loaded smart MMMs were able to respond to external light stimuli. In particular, the selectivity of the smart MMM at the Co(azpy) content of 20% for the SO2/N2 system could be switched between 341 and 211 in situ irradiated with Vis and UV light, while the SO2 permeability switched between 58 Barrer and 36 Barrer, respectively. This switching influence was mainly ascribed to the increased SO2 adsorption capacity in the visible light condition, as verified by adsorption test. The CO2 permeability and CO2/N2 selectivity of MMMs in the humidified state could achieve 248 Barrer and 103.2, surpassing the Robeson's upper bound reported in 2019.
Collapse
Affiliation(s)
- Qingping Xin
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University Tianjin 300387 P. R. China
| | - Meixue Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University Tianjin 300387 P. R. China
| | - Jianping Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University Tianjin 300387 P. R. China
| | - Dandan Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University Tianjin 300387 P. R. China
| | - Yinan Zeng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University Tianjin 300387 P. R. China
| | - Yuhang Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University Tianjin 300387 P. R. China
| | - Teng Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University Tianjin 300387 P. R. China
| | - Lei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University Tianjin 300387 P. R. China
| | - Shaofei Wang
- College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University Tianjin 300387 P. R. China
| |
Collapse
|
11
|
Kolesnikov AL, Budkov YA, Gor GY. Models of adsorption-induced deformation: ordered materials and beyond. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:063002. [PMID: 34666316 DOI: 10.1088/1361-648x/ac3101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Adsorption-induced deformation is a change in geometrical dimensions of an adsorbent material caused by gas or liquid adsorption on its surface. This phenomenon is universal and sensitive to adsorbent properties, which makes its prediction a challenging task. However, the pure academic interest is complemented by its importance in a number of engineering applications with porous materials characterization among them. Similar to classical adsorption-based characterization methods, the deformation-based ones rely on the quality of the underlying theoretical framework. This fact stimulates the recent development of qualitative and quantitative models toward the more detailed description of a solid material, e.g. account of non-convex and corrugated pores, calculations of adsorption stress in realistic three-dimension solid structures, the extension of the existing models to new geometries, etc. The present review focuses on the theoretical description of adsorption-induced deformation in micro and mesoporous materials. We are aiming to cover recent theoretical works describing the deformation of both ordered and disordered porous bodies.
Collapse
Affiliation(s)
- A L Kolesnikov
- Institut für Nichtklassische Chemie e.V., Permoserstr. 15, 04318 Leipzig, Germany
| | - Yu A Budkov
- School of Applied Mathematics, Tikhonov Moscow Institute of Electronics and Mathematics, HSE University, Tallinskaya St. 34, 123458 Moscow, Russia
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Academicheskaya St. 1, 153045 Ivanovo, Russia
| | - G Y Gor
- Otto H. York Department Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, United States of America
| |
Collapse
|
12
|
Hosseini Monjezi B, Kutonova K, Tsotsalas M, Henke S, Knebel A. Aktuelle Trends zu Metall‐organischen und kovalenten organischen Netzwerken als Membranmaterialien. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Bahram Hosseini Monjezi
- Institut für Funktionelle Grenzflächen (IFG) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Ksenia Kutonova
- Institut für Organische Chemie (IOC) Karlsruher Institut für Technologie (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| | - Manuel Tsotsalas
- Institut für Funktionelle Grenzflächen (IFG) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Sebastian Henke
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Alexander Knebel
- Institut für Funktionelle Grenzflächen (IFG) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| |
Collapse
|
13
|
Hosseini Monjezi B, Kutonova K, Tsotsalas M, Henke S, Knebel A. Current Trends in Metal-Organic and Covalent Organic Framework Membrane Materials. Angew Chem Int Ed Engl 2021; 60:15153-15164. [PMID: 33332695 PMCID: PMC8359388 DOI: 10.1002/anie.202015790] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 12/18/2022]
Abstract
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have been thoroughly investigated with regards to applications in gas separation membranes in the past years. More recently, new preparation methods for MOFs and COFs as particles and thin-film membranes, as well as for mixed-matrix membranes (MMMs) have been developed. We will highlight novel processes and highly functional materials: Zeolitic imidazolate frameworks (ZIFs) can be transformed into glasses and we will give an insight into their use for membranes. In addition, liquids with permanent porosity offer solution processability for the manufacture of extremely potent MMMs. Also, MOF materials influenced by external stimuli give new directions for the enhancement of performance by in situ techniques. Presently, COFs with their large pores are useful in quantum sieving applications, and by exploiting the stacking behavior also molecular sieving COF membranes are possible. Similarly, porous polymers can be constructed using MOF templates, which then find use in gas separation membranes.
Collapse
Affiliation(s)
- Bahram Hosseini Monjezi
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Ksenia Kutonova
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Manuel Tsotsalas
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Sebastian Henke
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Str. 644227DortmundGermany
| | - Alexander Knebel
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
14
|
Shi D, Yu X, Fan W, Wee V, Zhao D. Polycrystalline zeolite and metal-organic framework membranes for molecular separations. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213794] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Liu G, Tu J, Wu C, Fu Y, Chu C, Zhu Z, Wang X, Yan M. High-Yield Two-Dimensional Metal-Organic Framework Derivatives for Wideband Electromagnetic Wave Absorption. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20459-20466. [PMID: 33890473 DOI: 10.1021/acsami.1c00281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two-dimensional metal-organic frameworks (2D-MOFs) and their derivatives are promising for catalysis, energy storage, gas separation, etc. due to their unique microstructure and physicochemical properties. Many efforts have been devoted to fabricating 2D-MOFs with challenges remaining in yield and fine control of their thickness and lateral size. Here a versatile strategy has been used involving epitaxial, anisotropic, and confined growth of CoNi-MOF-71 nanosheet arrays, giving rise to excellent quantity and controllability of the 2D-MOFs. Electromagnetic (EM) wave absorption performance has been investigated for the resultant 2D Co/Ni/C derivatives. Compared with the bulk counterpart, significantly increased surface area, conductivity, and shape anisotropy for the 2D derivatives result in enhanced interfacial polarization, conductive loss, and magnetic resonance. As such, optimum EM wave absorption of minimum reflection loss RLmin = -49.8 dB and an ultrawide effective adsorption bandwidth EAB = 7.6 GHz can be achieved at a thickness of 2.6 mm. This work not only sheds light on the performance enhancement for 2D absorbers via synergistic effects of multiple attenuation mechanisms but also provides an effective fabrication route of ultrathin MOFs with high yield and uniform size for extended applications in catalysis, electrochemistry, and optoelectronics fields.
Collapse
Affiliation(s)
- Guang Liu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiaqi Tu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chen Wu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yujie Fu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chenghao Chu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zihao Zhu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xinhua Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Mi Yan
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
16
|
Wang B, Xu J, Wang J, Zhao S, Liu X, Wang Z. High-performance membrane with angstrom-scale manipulation of gas transport channels via polymeric decorated MOF cavities. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Metal-Organic Framework-Based Stimuli-Responsive Polymers. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5040101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal-organic framework (MOF) based stimuli-responsive polymers (coordination polymers) exhibit reversible phase-transition behavior and demonstrate attractive properties that are capable of altering physical and/or chemical properties upon exposure to external stimuli, including pH, temperature, ions, etc., in a dynamic fashion. Thus, their conformational change can be imitated by the adsorption/desorption of target analytes (guest molecules), temperature or pressure changes, and electromagnetic field manipulation. MOF-based stimuli responsive polymers have received great attention due to their advanced optical properties and variety of applications. Herein, we summarized some recent progress on MOF-based stimuli-responsive polymers (SRPs) classified by physical and chemical responsiveness, including temperature, pressure, electricity, pH, metal ions, gases, alcohol and multi-targets.
Collapse
|
18
|
Schneemann A, Dong R, Schwotzer F, Zhong H, Senkovska I, Feng X, Kaskel S. 2D framework materials for energy applications. Chem Sci 2020; 12:1600-1619. [PMID: 34163921 PMCID: PMC8179301 DOI: 10.1039/d0sc05889k] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
In recent years a massive increase in publications on conventional 2D materials (graphene, h-BN, MoS2) is documented, accompanied by the transfer of the 2D concept to porous (crystalline) materials, such as ordered 2D layered polymers, covalent-organic frameworks, and metal-organic frameworks. Over the years, the 3D frameworks have gained a lot of attention for use in applications, ranging from electronic devices to catalysis, and from information to separation technologies, mostly due to the modular construction concept and exceptionally high porosity. A key challenge lies in the implementation of these materials into devices arising from the deliberate manipulation of properties upon delamination of their layered counterparts, including an increase in surface area, higher diffusivity, better access to surface sites and a change in the band structure. Within this minireview, we would like to highlight recent achievements in the synthesis of 2D framework materials and their advantages for certain applications, and give some future perspectives.
Collapse
Affiliation(s)
- Andreas Schneemann
- Department of Inorganic Chemistry, Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (CFAED), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
| | - Friedrich Schwotzer
- Department of Inorganic Chemistry, Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Haixia Zhong
- Center for Advancing Electronics Dresden (CFAED), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
| | - Irena Senkovska
- Department of Inorganic Chemistry, Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (CFAED), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
| | - Stefan Kaskel
- Department of Inorganic Chemistry, Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| |
Collapse
|
19
|
Liu Q, Li Z, Wang D, Li Z, Peng X, Liu C, Zheng P. Metal Organic Frameworks Modified Proton Exchange Membranes for Fuel Cells. Front Chem 2020; 8:694. [PMID: 32850683 PMCID: PMC7432281 DOI: 10.3389/fchem.2020.00694] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/06/2020] [Indexed: 01/04/2023] Open
Abstract
Proton exchange membrane fuel cells (PEMFCs) have received considerable interest due to their low operating temperature and high energy conversion rate. However, their practical implement suffers from significant performance challenge. In particular, proton exchange membrane (PEM) as the core component of PEMFCs, have shown a strong correlation between its properties (e.g., proton conductivity, dimensional stability) and the performance of fuel cells. Metal-organic frameworks (MOFs) as porous inorganic-organic hybrid materials have attracted extensive attention in gas storage, gas separation and reaction catalysis. Recently, the MOFs-modified PEMs have shown outstanding performance, which have great merit in commercial application. This manuscript presents an overview of the recent progress in the modification of PEMs with MOFs, with a special focus on the modification mechanism of MOFs on the properties of composite membranes. The characteristics of different types of MOFs in modified application were summarized.
Collapse
Affiliation(s)
- Quanyi Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Zekun Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Donghui Wang
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Zhifa Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Xiaoliang Peng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Chuanbang Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Penglun Zheng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| |
Collapse
|
20
|
Polyukhov D, Krause S, Bon V, Poryvaev AS, Kaskel S, Fedin MV. Structural Transitions of the Metal-Organic Framework DUT-49(Cu) upon Physi- and Chemisorption Studied by in Situ Electron Paramagnetic Resonance Spectroscopy. J Phys Chem Lett 2020; 11:5856-5862. [PMID: 32615766 PMCID: PMC9115751 DOI: 10.1021/acs.jpclett.0c01705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/03/2020] [Indexed: 05/31/2023]
Abstract
Flexible metal-organic frameworks (MOFs) exhibit a variety of phenomena attractive for basic and applied science. DUT-49(Cu) is one of the remarkable representatives of such MOFs, where phase transitions are coupled to pressure amplification and "negative gas adsorption". In this work we report important insights into structural transitions of DUT-49(Cu) upon physi- and chemisorption of gases and volatile liquids obtained by in situ electron paramagnetic resonance (EPR) spectroscopy. In this method, phase transitions are detected via the zero-field splitting in dimeric copper(II) units. First, a new approach was validated upon physisorption of n-butane. Then, using diethyl ether, we for the first time demonstrated that chemisorption can also trigger phase transition in DUT-49(Cu). On the basis of the EPR results, the transition appears completely reversible. The developed EPR-based approach can also be extended to other flexible MOFs containing paramagnetic metal paddlewheels, where high sensitivity and spectral resolution allow in situ studies of stimuli-induced structural variability.
Collapse
Affiliation(s)
| | - Simon Krause
- Chair
of Inorganic Chemistry I, Technische Universität
Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Volodymyr Bon
- Chair
of Inorganic Chemistry I, Technische Universität
Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Artem S. Poryvaev
- International
Tomography Center SB RAS, Novosibirsk 630090, Russia
- Novosibirsk
State University, Novosibirsk 630090, Russia
- N.
N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Novosibirsk 630090, Russia
| | - Stefan Kaskel
- Chair
of Inorganic Chemistry I, Technische Universität
Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Matvey V. Fedin
- International
Tomography Center SB RAS, Novosibirsk 630090, Russia
- Novosibirsk
State University, Novosibirsk 630090, Russia
| |
Collapse
|
21
|
Abstract
ConspectusLiquids under confinement differ in behavior from their bulk counterparts and can acquire properties that are specific to the confined phase and linked to the nature and structure of the host matrix. While confined liquid water is not a new topic of research, the past few years have seen a series of intriguing novel features for water inside nanoscale pores. These unusual properties arise from the very specific nature of nanoporous materials, termed "soft porous crystals"; they combine large-scale flexibility with a heterogeneous internal surface. This creates a rich diversity of behavior for the adsorbed water, and the combination of different experimental characterization techniques along with computational chemistry at various scales is necessary to understand the phenomena observed and their microscopic origins. The range of systems of interest span the whole chemical range, from the inorganic (zeolites, imogolites) to the organic (microporous carbons, graphene, and its derivatives), and even encompass the hybrid organic-inorganic systems (such as metal-organic frameworks).The combination of large scale flexibility with the strong physisorption (or even chemisorption) of water can lead to unusual properties (belonging to the "metamaterials" category) and to novel phenomena. One striking example is the recent elucidation of the mechanism of negative hydration expansion in ZrW2O8, by which adsorption of ∼10 wt % water in the inorganic nonporous framework leads to large shrinkage of its volume. Another eye-catching case is the occurrence of multiple water adsorption-driven structural transitions in the MIL-53 family of materials: the specific interactions between water guest molecules and the host framework create behavior that has not been observed with any other adsorbate. Both are counterintuitive phenomena that have been elucidated by a combination of experimental in situ techniques and molecular simulation.Another important direction of research is the shift in the systems and phenomena studied, from physical adsorption toward studies of reactivity, hydrothermal stability, and the effect of confinement on aqueous phases more complex than pure water. There have been examples of water adsorption in highly flexible metal-organic frameworks being able to compete with the materials' coordination bonds, thereby limiting its hydrothermal stability, while tweaking the functional groups of the same framework can lead to increased stability while retaining the flexibility of the material. However, this additional complexity and tunability in the macroscopic behavior can occur from changes in the confined fluid rather than the material. Very recent studies have shown that aqueous solutions of high concentration (such as LiCl up to 20 mol L-1) confined in flexible nanoporous materials can have specific properties different from pure water and not entirely explained by osmotic effects. There, the strong ordering of the confined electrolyte competes with the structural flexibility of the framework to create an entirely new behavior for the {host, guest} system.
Collapse
Affiliation(s)
- François-Xavier Coudert
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| |
Collapse
|
22
|
Abstract
This review is devoted to discussion of the latest advances in design and applications of boron imidazolate frameworks (BIFs) that are a particular sub-family of zeolite-like metal–organic frameworks family. A special emphasis is made on nanostructured hybrid materials based on BIF matrices and their modern applications, especially in environment remediation and energy conversion.
Collapse
|
23
|
Qian Q, Asinger PA, Lee MJ, Han G, Mizrahi Rodriguez K, Lin S, Benedetti FM, Wu AX, Chi WS, Smith ZP. MOF-Based Membranes for Gas Separations. Chem Rev 2020; 120:8161-8266. [PMID: 32608973 DOI: 10.1021/acs.chemrev.0c00119] [Citation(s) in RCA: 545] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metal-organic frameworks (MOFs) represent the largest known class of porous crystalline materials ever synthesized. Their narrow pore windows and nearly unlimited structural and chemical features have made these materials of significant interest for membrane-based gas separations. In this comprehensive review, we discuss opportunities and challenges related to the formation of pure MOF films and mixed-matrix membranes (MMMs). Common and emerging separation applications are identified, and membrane transport theory for MOFs is described and contextualized relative to the governing principles that describe transport in polymers. Additionally, cross-cutting research opportunities using advanced metrologies and computational techniques are reviewed. To quantify membrane performance, we introduce a simple membrane performance score that has been tabulated for all of the literature data compiled in this review. These data are reported on upper bound plots, revealing classes of MOF materials that consistently demonstrate promising separation performance. Recommendations are provided with the intent of identifying the most promising materials and directions for the field in terms of fundamental science and eventual deployment of MOF materials for commercial membrane-based gas separations.
Collapse
Affiliation(s)
- Qihui Qian
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Patrick A Asinger
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Moon Joo Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gang Han
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Katherine Mizrahi Rodriguez
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sharon Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Francesco M Benedetti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Albert X Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Won Seok Chi
- School of Polymer Science and Engineering, Chonnam National University, Buk-gu, Gwangju 61186, Korea
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Impact of the Preparation Procedure on the Performance of the Microporous HKUST-1 Metal-Organic Framework in the Liquid-Phase Separation of Aromatic Compounds. Molecules 2020; 25:molecules25112648. [PMID: 32517274 PMCID: PMC7321157 DOI: 10.3390/molecules25112648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022] Open
Abstract
To date, metal-organic frameworks (MOFs) have been recognized as promising solid phases in high-performance liquid chromatography (HPLC). This research aimed to elucidate the role of the physico-chemical characteristics of the microporous HKUST-1 metal-organic framework in its operation as a selective adsorbent in HPLC. For this, the HKUST-1 samples were prepared by microwave-assisted synthesis and a solvothermal procedure. According to the chromatographic examinations, the HKUST-1 material synthesized in the microwave fields shows an efficient performance in the selective adsorption of aromatic compounds with different functionalities. This study revealed a significant impact of the preparation procedure on the mechanism of the liquid-phase adsorption on the HKUST adsorbents under conditions of the HPLC. An effect of the elution solvent with the different coordination ability to the Cu2+ sites in the HKUST-1 structure on the adsorption selectivity was observed.
Collapse
|
25
|
Wang B, Qiao Z, Xu J, Wang J, Liu X, Zhao S, Wang Z, Guiver MD. Unobstructed Ultrathin Gas Transport Channels in Composite Membranes by Interfacial Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907701. [PMID: 32329145 DOI: 10.1002/adma.201907701] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/24/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Ultrathin unobstructed gas transport channels through the membrane selective layer are constructed in mixed matrix membranes (MMMs) by using gravity-induced interface self-assembly of poly(vinylamine) and polymer-modified MIL-101(Cr). For CO2 /N2 (15/85 by volume) mixed gas, the MMMs achieve a high CO2 permeance of 823 gas permeation units and CO2 /N2 selectivity of 242 at 0.5 MPa. Based on economic analyses, a two-stage membrane process can achieve gas separation and economic targets.
Collapse
Affiliation(s)
- Bo Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Jiayou Xu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Jixiao Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinlei Liu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Song Zhao
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhi Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Michael D Guiver
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- State Key Laboratory of Engines, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
26
|
Haldar R, Heinke L, Wöll C. Advanced Photoresponsive Materials Using the Metal-Organic Framework Approach. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905227. [PMID: 31763731 DOI: 10.1002/adma.201905227] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/03/2019] [Indexed: 05/18/2023]
Abstract
When fabricating macroscopic devices exploiting the properties of organic chromophores, the corresponding molecules need to be condensed into a solid material. Since optical absorption properties are often strongly affected by interchromophore interactions, solids with a well-defined structure carry substantial advantages over amorphous materials. Here, the metal-organic framework (MOF)-based approach is presented. By appropriate functionalization, most organic chromophores can be converted to function as linkers, which can coordinate to metal or metal-oxo centers so as to yield stable, crystalline frameworks. Photoexcitations in such chromophore-based MOFs are surveyed, with a special emphasis on light-switchable MOFs from photochromic molecules. The conventional powder form of MOFs obtained using solvothermal approaches carries certain disadvantages for optical applications, such as limited efficiency resulting from absorption and light scattering caused by the (micrometer-sized) powder particles. How these problems can be avoided by using MOF thin films is demonstrated.
Collapse
Affiliation(s)
- Ritesh Haldar
- Karlsruher Institut für Technologie (KIT), Institut für Funktionelle Grenzflächen (IFG), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Lars Heinke
- Karlsruher Institut für Technologie (KIT), Institut für Funktionelle Grenzflächen (IFG), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof Wöll
- Karlsruher Institut für Technologie (KIT), Institut für Funktionelle Grenzflächen (IFG), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
27
|
Yu B, Ye G, Chen J, Ma S. Membrane-supported 1D MOF hollow superstructure array prepared by polydopamine-regulated contra-diffusion synthesis for uranium entrapment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:39-48. [PMID: 31302401 DOI: 10.1016/j.envpol.2019.06.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
This work reports the architecture of a novel class of membrane-supported 1D MOF hollow superstructures, by using the bio-inspired polydopamine (PDA) mediated contra-diffusion synthetic strategy, for facile and efficient separation of uranium in a flow-through mode. PDA chemistry was firstly employed to modify the inner surfaces of the cylindrical pore channels of polycarbonate track-etched membrane (PCTM), thereby regulating the heterogeneous nucleation and interfacial growth of ZIF-8 crystals. ZIF-8 hollow superstructures embedded in membrane matrix with well-defined 1D channels were obtained. These membrane-supported MOF hollow superstructures then, for the first time, served as integrated chromatographic micro-column arrays for effective entrapment of uranium from aqueous solutions. It is highlighted that the PCTM supported ZIF-8 superstructures exhibited outstanding uranium entrapment ability in both traditional batch mode (capacity 62.3 mg/g) and fast flow-through mode (removal rate over 90% for 3 level). Moreover, new insights into the interaction between ZIF-8 and uranyl ions were obtained, suggesting that an ion-exchange mechanism involved synergistic effect was responsible for uranium binding, especially in a long-term exposure. The membrane-supported 1D MOF hollow superstructures developed in this work represent a new category of organic-inorganic composite membrane. And, it is envisioned that the methodology established in this work would be versatile for preparing more MOF superstructures with deployable form for separation applications. In summary, a novel class of membrane-supported ZIF-8 hollow superstructure was fabricated for effective separation of uranyl ions.
Collapse
Affiliation(s)
- Boxuan Yu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China; Beijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, China.
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China; Beijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, China.
| | - Shengqian Ma
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, United States
| |
Collapse
|
28
|
Koteja A, Matusik J, Luberda-Durnaś K, Szczerba M. The Nature of Interactions and UV-Induced Response within α-Zirconium Phosphate Intercalation Compounds with Azobenzenes. MATERIALS 2019; 12:ma12091436. [PMID: 31052552 PMCID: PMC6539894 DOI: 10.3390/ma12091436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 11/16/2022]
Abstract
Azobenzenes immobilization on a solid support enables the usage of their trans-cis isomerization ability for preparation of functional materials. The behavior of azobenzenes in the interlayer space of α-zirconium phosphate (ZrP) upon the UV-Vis irradiation was investigated. Two experimental approaches were performed: (1) co-intercalation of benzylalkylammonium surfactants and azobenzene in the interlayers of ZrP (ZBCnA), and (2) intercalation of p-aminoazobenzene (ZpA). The materials were characterized with XRD, FTIR, UV-Vis, CHN analysis, and the molecular modeling. The molecules in ZBCnA samples were sparsely packed and held by weak hydrophobic interactions. Conversely, the molecules in ZpA sample were strongly H-bonded to the ZrP, well-ordered, and densely packed. These structural features determined the samples' photoresponsive behavior. Low density of molecules in the ZBCnA samples, allowed the effective, fast, and reversible isomerization of azobenzene. Whereas the ZpA sample did not react to the UV irradiation because of the steric hindrance of tightly packed molecules.
Collapse
Affiliation(s)
- Anna Koteja
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland.
| | - Jakub Matusik
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland.
| | - Katarzyna Luberda-Durnaś
- Polish Academy of Sciences, Institute of Geological Sciences, ul. Senacka 1, 30-063 Kraków, Poland.
| | - Marek Szczerba
- Polish Academy of Sciences, Institute of Geological Sciences, ul. Senacka 1, 30-063 Kraków, Poland.
| |
Collapse
|
29
|
Isaeva VI, Vedenyapina MD, Kulaishin SA, Lobova AA, Chernyshev VV, Kapustin GI, Tkachenko OP, Vergun VV, Arkhipov DA, Nissenbaum VD, Kustov LM. Adsorption of 2,4-dichlorophenoxyacetic acid in an aqueous medium on nanoscale MIL-53(Al) type materials. Dalton Trans 2019; 48:15091-15104. [DOI: 10.1039/c9dt03037a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MIL-53(Al) type materials were prepared using MW-activation. They show high adsorption capacities in the adsorption of 2,4-dichlorophenoxyacetic acid in an aqueous medium and demonstrate faster adsorption rates as compared to an activated carbon.
Collapse
|
30
|
Isaeva VI, Chernyshev VV, Tarasov AL, Lobova AA, Kapustin GI, Davshan NA. Conditions for the Formation of Microporous Metal–Organic Framework Mil-53(Al). RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418120166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Naseri M, Pitzalis F, Carucci C, Medda L, Fotouhi L, Magner E, Salis A. Lipase and Laccase Encapsulated on Zeolite Imidazolate Framework: Enzyme Activity and Stability from Voltammetric Measurements. ChemCatChem 2018. [DOI: 10.1002/cctc.201801293] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Maryam Naseri
- Department of Chemical and Geological SciencesUniversity of Cagliari-CSGI and CNBS Cittadella Universitaria Monserrato 09042 Italy
- Department of ChemistryUniversity of Alzahra Teheran 1993891176 Iran
| | - Federica Pitzalis
- Department of Chemical and Geological SciencesUniversity of Cagliari-CSGI and CNBS Cittadella Universitaria Monserrato 09042 Italy
| | - Cristina Carucci
- Department of Chemical Sciences Bernal InstituteUniversity of Limerick Limerick V94 T9PX Ireland
| | - Luca Medda
- Department of Chemical and Geological SciencesUniversity of Cagliari-CSGI and CNBS Cittadella Universitaria Monserrato 09042 Italy
| | - Lida Fotouhi
- Department of ChemistryUniversity of Alzahra Teheran 1993891176 Iran
| | - Edmond Magner
- Department of Chemical Sciences Bernal InstituteUniversity of Limerick Limerick V94 T9PX Ireland
| | - Andrea Salis
- Department of Chemical and Geological SciencesUniversity of Cagliari-CSGI and CNBS Cittadella Universitaria Monserrato 09042 Italy
| |
Collapse
|
32
|
Wang Z, Liu T, Yu Y, Asif M, Xu N, Xiao F, Liu H. Coffee Ring-Inspired Approach toward Oriented Self-Assembly of Biomimetic Murray MOFs as Sweat Biosensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802670. [PMID: 30335218 DOI: 10.1002/smll.201802670] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/06/2018] [Indexed: 06/08/2023]
Abstract
The emergence of metal-organic frameworks (MOFs) has sparked intensive attention and opened up the possibility of "crystal engineering." However, low conductivity, slow diffusion of guest molecules, as well as powder forms always hinder the development of MOF application, especially for biosensors and bioelectronics. Herein, a coffee ring-inspired strategy toward oriented self-assembly of a biomimetic MOF film following Murray's law is proposed, which can effectively reduce the transfer resistance. The approach includes two types of self-assembly, evaporation-driven and heteroepitaxy self-assembly, and endows the centimeter-expanded MOF film with oriented macropores, mesopores, and micropores. The Murray MOF network enables greatly enhanced electrons and mass transfer efficiency for electrochemical sensing. Also, the newly discovered lactate and glucose sensing abilities in a wide pH hold striking potential in new generation of wearable sweat biosensors, miniature bioelectronics, and lab-on-a-chip devices.
Collapse
Affiliation(s)
- Zhengyun Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ting Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yang Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Muhammad Asif
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ning Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
33
|
Wang Z, Liu T, Asif M, Yu Y, Wang W, Wang H, Xiao F, Liu H. Rimelike Structure-Inspired Approach toward in Situ-Oriented Self-Assembly of Hierarchical Porous MOF Films as a Sweat Biosensor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27936-27946. [PMID: 30058799 DOI: 10.1021/acsami.8b07868] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface-supported metal-organic framework (MOF) films hold fantastic promises for viable scientific applications, particularly in sensors and electronic devices. However, slow diffusion, limited mass transfer, and low conductivity hinder the industrial application of MOFs. Herein, we propose a rime-inspired MOF film based on a kind of beautiful natural landscape. To mimic rime architecture, we compare and conclude the intrinsic similarity between natural biomineralization and electrochemical self-assembly of MOFs and used an anodic-induced approach to producing rime-structured MOF architecture. Interestingly, the MOF film with space-filling macro-meso-micropores exhibits remarkable electrochemical sensing performances for simultaneous determination of lactate and glucose, including high sensitivity, excellent selectivity, and a wide linear range in a wide range of pH values. Moreover, this rime-inspired system is able to be applied as a biofunctional human perspiration sensing platform. Our work opens a new horizon for poring on biomimetic rime concept to explore specifically structured MOFs with more diverse functionalities.
Collapse
Affiliation(s)
- Zhengyun Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , 1037 Luoyu Road , Wuhan 430074 , P. R. China
| | - Ting Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , 1037 Luoyu Road , Wuhan 430074 , P. R. China
| | - Muhammad Asif
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , 1037 Luoyu Road , Wuhan 430074 , P. R. China
| | - Yang Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , 1037 Luoyu Road , Wuhan 430074 , P. R. China
| | - Wei Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , 1037 Luoyu Road , Wuhan 430074 , P. R. China
| | - Haitao Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , 1037 Luoyu Road , Wuhan 430074 , P. R. China
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , 1037 Luoyu Road , Wuhan 430074 , P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , 1037 Luoyu Road , Wuhan 430074 , P. R. China
| |
Collapse
|