1
|
Helmbrecht V, Reichelt R, Grohmann D, Orsi WD. Simulated early Earth geochemistry fuels a hydrogen-dependent primordial metabolism. Nat Ecol Evol 2025; 9:769-778. [PMID: 40307408 PMCID: PMC12066356 DOI: 10.1038/s41559-025-02676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/07/2025] [Indexed: 05/02/2025]
Abstract
Molecular hydrogen is the electron donor for the ancient exergonic reductive acetyl-coenzyme A pathway (acetyl-CoA pathway), which is used by hydrogenotrophic methanogenic archaea. How the presence of iron-sulfides influenced the acetyl-CoA pathway under primordial early Earth geochemistry is still poorly understood. Here we show that the iron-sulfides mackinawite (FeS) and greigite (Fe3S4), which formed in chemical garden experiments simulating geochemical conditions of the early Archaean eon (4.0-3.6 billion years ago), produce abiotic H2 in sufficient quantities to support hydrogenotrophic growth of the hyperthermophilic methanogen Methanocaldococcus jannaschii. Abiotic H2 from iron-sulfide formation promoted CO2 fixation and methanogenesis and induced overexpression of genes encoding the acetyl-CoA pathway. We demonstrate that H2 from iron-sulfide precipitation under simulated early Earth hydrothermal geochemistry fuels a H2-dependent primordial metabolism.
Collapse
Affiliation(s)
- Vanessa Helmbrecht
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Robert Reichelt
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Dina Grohmann
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - William D Orsi
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, Germany.
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
2
|
Gaudu N, Truong C, Farr O, Clouet A, Grauby O, Ferry D, Parent P, Laffon C, Ona-Nguema G, Guyot F, Nitschke W, Duval S. Nanometric and Hydrophobic Green Rust Minerals upon Exposure to Amino Acids and Nickel as Prerequisites for a Primitive Chemiosmosis. Life (Basel) 2025; 15:671. [PMID: 40283225 PMCID: PMC12028411 DOI: 10.3390/life15040671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Geological structures known as alkaline hydrothermal vents (AHVs) likely displayed dynamic energy characteristics analogous to cellular chemiosmosis and contained iron-oxyhydroxide green rusts in the early Earth. Under specific conditions, those minerals could have acted as non-enzymatic catalysts in the development of early bioenergetic chemiosmotic energy systems while being integrated into the membrane of AHV-produced organic vesicles. Here, we show that the simultaneous addition of two probable AHV components, namely nickel and amino acids, impacts green rust's physico-chemical properties, especially those required for its incorporation in lipid vesicle's membranes, such as decreasing the mineral size to the nanometer scale and increasing its hydrophobicity. These results suggest that such hydrophobic nano green rusts could fit into lipid vesicle membranes and could have functioned as a primitive, inorganic precursor to modern chemiosmotic metalloenzymes, facilitating both electron and proton transport in early life-like systems.
Collapse
Affiliation(s)
- Nil Gaudu
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Aix-Marseille Université, UMR 7281 IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille, France; (C.T.); (O.F.); (A.C.); (W.N.); (S.D.)
| | - Chloé Truong
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Aix-Marseille Université, UMR 7281 IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille, France; (C.T.); (O.F.); (A.C.); (W.N.); (S.D.)
| | - Orion Farr
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Aix-Marseille Université, UMR 7281 IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille, France; (C.T.); (O.F.); (A.C.); (W.N.); (S.D.)
- Centre Interdisciplinaire des Nanosciences de Marseille (CINaM), Aix-Marseille Université, UMR 7325 CNRS, Campus de Luminy, 13288 Marseille, France; (O.G.); (D.F.); (P.P.); (C.L.)
| | - Adriana Clouet
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Aix-Marseille Université, UMR 7281 IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille, France; (C.T.); (O.F.); (A.C.); (W.N.); (S.D.)
| | - Olivier Grauby
- Centre Interdisciplinaire des Nanosciences de Marseille (CINaM), Aix-Marseille Université, UMR 7325 CNRS, Campus de Luminy, 13288 Marseille, France; (O.G.); (D.F.); (P.P.); (C.L.)
| | - Daniel Ferry
- Centre Interdisciplinaire des Nanosciences de Marseille (CINaM), Aix-Marseille Université, UMR 7325 CNRS, Campus de Luminy, 13288 Marseille, France; (O.G.); (D.F.); (P.P.); (C.L.)
| | - Philippe Parent
- Centre Interdisciplinaire des Nanosciences de Marseille (CINaM), Aix-Marseille Université, UMR 7325 CNRS, Campus de Luminy, 13288 Marseille, France; (O.G.); (D.F.); (P.P.); (C.L.)
| | - Carine Laffon
- Centre Interdisciplinaire des Nanosciences de Marseille (CINaM), Aix-Marseille Université, UMR 7325 CNRS, Campus de Luminy, 13288 Marseille, France; (O.G.); (D.F.); (P.P.); (C.L.)
| | - Georges Ona-Nguema
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, UMR 7590 CNRS, 4 Place Jussieu, 75005 Paris, France; (G.O.-N.)
| | - François Guyot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, UMR 7590 CNRS, 4 Place Jussieu, 75005 Paris, France; (G.O.-N.)
| | - Wolfgang Nitschke
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Aix-Marseille Université, UMR 7281 IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille, France; (C.T.); (O.F.); (A.C.); (W.N.); (S.D.)
| | - Simon Duval
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Aix-Marseille Université, UMR 7281 IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille, France; (C.T.); (O.F.); (A.C.); (W.N.); (S.D.)
| |
Collapse
|
3
|
Carissimo A, Comes V, Heussner A, Prime AH, Price RE, Erauso G, Liebgott PP, Kerzenmacher S, Pillot G. Enrichment of electrotrophic microorganisms from contrasting shallow-sea hydrothermal environments in bioelectrochemical reactors. Front Microbiol 2025; 16:1539608. [PMID: 39963491 PMCID: PMC11830809 DOI: 10.3389/fmicb.2025.1539608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Hydrothermal vents are inhabited by electrotrophic microorganisms, which are capable of oxidizing extracellular compounds, such as metals, to power their metabolisms. However, their diversity is poorly known, especially in shallow-sea hydrothermal vents where it has not been extensively studied. Bioelectrochemical reactors can be used to investigate such electrotrophic diversity by providing an electrode as an electron donor. Methods Here, a total of 60 different reactors were set up and inoculated with either a microbial community coming from the shallow, acidic (ca. pH 5.5) and hot (ca. 120°C) hydrothermal system of Panarea, Aeolian islands, Italy, or the shallow, alkaline (pH 11) and mild (40°C) hydrothermal system of Prony Bay, New Caledonia. Results With the alkaline sample, no electrical current increase was seen in any of the 15 reactors operated for 6 days under Prony hydrothermal conditions (pH 10, 30-75°C). By contrast, a 6-fold increase on average was observed in reactors operated under the Panarea hydrothermal fluid conditions (pH 4.5-7, 75°C). A Multi-Factor Analysis revealed that the overall bioelectrochemical performances of these reactors set them apart from all the other Panarea and Prony conditions, not only due to their higher current production but also archaeal abundances (measured through qPCR). Most reactors produced organic acids (up to 2.9 mM in 6 days). Still, coulombic efficiencies indicated that this might have been due to the (electro) fermentation of traces of yeast extract in the medium rather than CO2 fixation. Finally, microbial communities were described by 16S metabarcoding and ordination methods, and potential electrotrophic taxa were identified. In Panarea reactors, higher growth was correlated with a few bacterial genera, mainly Bacillus and Pseudoalteromonas, including, for the former, at higher temperatures (55°C and 75°C). In reactors reproducing the Prony Bay hydrothermal conditions, known facultative methylotrophs, such as Sphingomonas and Methylobacterium, were dominant and appeared to consume formate (provided as carbon source) but no electrons from the cathode. Conclusion These results provide new insights into the distribution and diversity of electrotrophs in shallow-sea hydrothermal vents and allow the identification of potential novel biocatalysts for Microbial Electrosynthesis whereby electricity and carbon dioxide are converted into value-added products.
Collapse
Affiliation(s)
- Antoine Carissimo
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany
| | - Victoria Comes
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany
| | - Alenica Heussner
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany
| | - Anne-Hélène Prime
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Roy E. Price
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Gaël Erauso
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | | | - Sven Kerzenmacher
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany
| | - Guillaume Pillot
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany
| |
Collapse
|
4
|
van der Graaf CM, Sánchez-España J, Ilin AM, Yusta I, Stams AJM, Sánchez-Andrea I. Micrometric pyrite catalyzes abiotic sulfidogenesis from elemental sulfur and hydrogen. Sci Rep 2024; 14:17702. [PMID: 39085257 PMCID: PMC11291890 DOI: 10.1038/s41598-024-66006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Hydrogen sulfide (H2S) in environments with temperatures below 100 °C is generally assumed to be of microbial origin, while abiotic H2S production is typically restricted to higher temperatures (T). In this study, we report an abiotic process for sulfidogenesis through the reduction of elemental sulfur (S0) by hydrogen (H2), mediated by pyrite (FeS2). The process was investigated in detail at pH 4 and 80 °C, but experimental conditions ranged between 40 and 80 °C and pH 4-6. The experiments were conducted with H2 as reducing molecule, and µm-sized spherical (but not framboidal) pyrite particles that formed in situ from the H2S, S0 and Fe2+ present in the experiments. Fe monosulfides, likely mackinawite, were identified as potential pyrite precursors. The absence of H2 production in controls, combined with geochemical modelling, suggests that pyrite formation occurred through the polysulfide pathway, which is unexpected under acidic conditions. Most spherical aggregates of authigenic pyrite were composed of nanometric, acicular crystals oriented in diverse directions, displaying varying degrees of organization. Although it was initially hypothesized that the catalytic properties were related to the surface structure, commercially sourced, milled pyrite particles (< 50 μm) mediated H2S production at comparable rates. This suggests that the catalytic properties of pyrite depend on particle size rather than surface structure, requiring pyrite surfaces to act as electron shuttles between S0 and H2.
Collapse
Affiliation(s)
- Charlotte M van der Graaf
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
- Faculty of Civil Engineering and Geoscience, Department of Geoscience and Engineering, Delft University of Technology, Stevinweg 1, 2628CN, Delft, The Netherlands.
| | - Javier Sánchez-España
- Planetary Geology Research Group, Department of Planetology and Habitability, Centro de Astrobiología (CAB, CSIC-INTA), 28850, Torrejón de Ardoz, Madrid, Spain.
| | - Andrey M Ilin
- Department of Geology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080, Bilbao, Spain
| | - Iñaki Yusta
- Department of Geology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080, Bilbao, Spain
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
- Department of Environmental Sciences for Sustainability, IE University, C. Cardenal Zúñiga, 12, 40003, Segovia, Spain.
| |
Collapse
|
5
|
Li G, Wong TW, Shih B, Guo C, Wang L, Liu J, Wang T, Liu X, Yan J, Wu B, Yu F, Chen Y, Liang Y, Xue Y, Wang C, He S, Wen L, Tolley MT, Zhang AM, Laschi C, Li T. Bioinspired soft robots for deep-sea exploration. Nat Commun 2023; 14:7097. [PMID: 37925504 PMCID: PMC10625581 DOI: 10.1038/s41467-023-42882-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
The deep ocean, Earth's untouched expanse, presents immense challenges for exploration due to its extreme pressure, temperature, and darkness. Unlike traditional marine robots that require specialized metallic vessels for protection, deep-sea species thrive without such cumbersome pressure-resistant designs. Their pressure-adaptive forms, unique propulsion methods, and advanced senses have inspired innovation in designing lightweight, compact soft machines. This perspective addresses challenges, recent strides, and design strategies for bioinspired deep-sea soft robots. Drawing from abyssal life, it explores the actuation, sensing, power, and pressure resilience of multifunctional deep-sea soft robots, offering game-changing solutions for profound exploration and operation in harsh conditions.
Collapse
Affiliation(s)
- Guorui Li
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China.
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China.
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China.
| | - Tuck-Whye Wong
- Center for X-Mechanics, Zhejiang University, Hangzhou, China
- Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Benjamin Shih
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Chunyu Guo
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Luwen Wang
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, China
| | - Jiaqi Liu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Tao Wang
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Xiaobo Liu
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Jiayao Yan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, MA, USA
| | - Baosheng Wu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Fajun Yu
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
| | - Yunsai Chen
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
| | | | - Yaoting Xue
- Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Chengjun Wang
- Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Shunping He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Li Wen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Michael T Tolley
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, MA, USA
| | - A-Man Zhang
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Cecilia Laschi
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Tiefeng Li
- Center for X-Mechanics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
In situ electrosynthetic bacterial growth using electricity generated by a deep-sea hydrothermal vent. THE ISME JOURNAL 2023; 17:12-20. [PMID: 36151459 PMCID: PMC9751133 DOI: 10.1038/s41396-022-01316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022]
Abstract
Electroautotrophic microorganisms have attracted great attention since they exhibit a new type of primary production. Here, in situ electrochemical cultivation was conducted using the naturally occurring electromotive forces at a deep-sea hydrothermal vent. The voltage and current generation originating from the resulting microbial activity was observed for 12 days of deployment, with fluctuation in response to tidal cycles. A novel bacterium belonging to the genus Thiomicrorhabdus dominated the microbial community specifically enriched on the cathode. Metagenomic analysis provided the draft genome of the bacterium and the gene repertoire indicated that the bacterium has the potential for thio-autotrophic growth, which is a typical physiological feature of the members of the genus, while the bacterium had a unique gene cluster encoding multi-heme cytochrome c proteins responsible for extracellular electron transfer. Herein, we propose this bacterium as a new species, specifically enriched during electricity generation, as 'Candidatus Thiomicrorhabdus electrophagus'. This finding suggests the natural occurrence of electrosynthetic microbial populations using the geoelectricity in deep-sea hydrothermal environments.
Collapse
|
7
|
Portehault D, Gómez-Recio I, Baron MA, Musumeci V, Aymonier C, Rouchon V, Le Godec Y. Geoinspired syntheses of materials and nanomaterials. Chem Soc Rev 2022; 51:4828-4866. [PMID: 35603716 DOI: 10.1039/d0cs01283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The search for new materials is intimately linked to the development of synthesis methods. In the current urge for the sustainable synthesis of materials, taking inspiration from Nature's ways to process matter appears as a virtuous approach. In this review, we address the concept of geoinspiration for the design of new materials and the exploration of new synthesis pathways. In geoinspiration, materials scientists take inspiration from the key features of various geological systems and processes occurring in nature, to trigger the formation of artificial materials and nanomaterials. We discuss several case studies of materials and nanomaterials to highlight the basic geoinspiration concepts underlying some synthesis methods: syntheses in water and supercritical water, thermal shock syntheses, molten salt synthesis and high pressure synthesis. We show that the materials emerging from geoinspiration exhibit properties differing from materials obtained by other pathways, thus demonstrating that the field opens up avenues to new families of materials and nanomaterials. This review focuses on synthesis methodologies, by drawing connections between geosciences and materials chemistry, nanosciences, green chemistry, and environmental sciences.
Collapse
Affiliation(s)
- David Portehault
- Sorbonne Université, CNRS, Laboratoire Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, 75005 Paris, France.
| | - Isabel Gómez-Recio
- Sorbonne Université, CNRS, Laboratoire Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, 75005 Paris, France.
| | - Marzena A Baron
- Sorbonne Université, CNRS, Laboratoire Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, 75005 Paris, France.
| | - Valentina Musumeci
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Cyril Aymonier
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Virgile Rouchon
- IFP Energies nouvelles (IFPEN), Rond point de l'échangeur de Solaize - BP 3, 69360 Solaize, France
| | - Yann Le Godec
- Sorbonne Université, CNRS, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 place Jussieu, F-75005, Paris, France
| |
Collapse
|
8
|
Dong Y, Zhang S, Zhao L. Unraveling the Structural Development of
Peptide‐Coordinated Iron‐Sulfur
Clusters: Prebiotic Evolution and Biosynthetic Strategies. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yijun Dong
- School of Life Sciences, Tsinghua University Beijing 100084 China
| | - Siqi Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
9
|
Altair T, Borges LGF, Galante D, Varela H. Experimental Approaches for Testing the Hypothesis of the Emergence of Life at Submarine Alkaline Vents. Life (Basel) 2021; 11:777. [PMID: 34440521 PMCID: PMC8401828 DOI: 10.3390/life11080777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Since the pioneering experimental work performed by Urey and Miller around 70 years ago, several experimental works have been developed for approaching the question of the origin of life based on very few well-constructed hypotheses. In recent years, attention has been drawn to the so-called alkaline hydrothermal vents model (AHV model) for the emergence of life. Since the first works, perspectives from complexity sciences, bioenergetics and thermodynamics have been incorporated into the model. Consequently, a high number of experimental works from the model using several tools have been developed. In this review, we present the key concepts that provide a background for the AHV model and then analyze the experimental approaches that were motivated by it. Experimental tools based on hydrothermal reactors, microfluidics and chemical gardens were used for simulating the environments of early AHVs on the Hadean Earth (~4.0 Ga). In addition, it is noteworthy that several works used techniques from electrochemistry to investigate phenomena in the vent-ocean interface for early AHVs. Their results provided important parameters and details that are used for the evaluation of the plausibility of the AHV model, and for the enhancement of it.
Collapse
Affiliation(s)
- Thiago Altair
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| | - Luiz G. F. Borges
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (L.G.F.B.); (D.G.)
| | - Douglas Galante
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (L.G.F.B.); (D.G.)
| | - Hamilton Varela
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| |
Collapse
|
10
|
Pillot G, Amin Ali O, Davidson S, Shintu L, Godfroy A, Combet-Blanc Y, Bonin P, Liebgott PP. Identification of enriched hyperthermophilic microbial communities from a deep-sea hydrothermal vent chimney under electrolithoautotrophic culture conditions. Sci Rep 2021; 11:14782. [PMID: 34285254 PMCID: PMC8292307 DOI: 10.1038/s41598-021-94135-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Deep-sea hydrothermal vents are extreme and complex ecosystems based on a trophic chain. We are still unsure of the identities of the first colonizers of these environments and their metabolism, but they are thought to be (hyper)thermophilic autotrophs. Here we investigate whether the electric potential observed across hydrothermal chimneys could serve as an energy source for these first colonizers. Experiments were performed in a two-chamber microbial electrochemical system inoculated with deep-sea hydrothermal chimney samples, with a cathode as sole electron donor, CO2 as sole carbon source, and nitrate, sulfate, or oxygen as electron acceptors. After a few days of culturing, all three experiments showed growth of electrotrophic biofilms consuming the electrons (directly or indirectly) and producing organic compounds including acetate, glycerol, and pyruvate. Within the biofilms, the only known autotroph species retrieved were members of Archaeoglobales. Various heterotrophic phyla also grew through trophic interactions, with Thermococcales growing in all three experiments as well as other bacterial groups specific to each electron acceptor. This electrotrophic metabolism as energy source driving initial microbial colonization of conductive hydrothermal chimneys is discussed.
Collapse
Affiliation(s)
- Guillaume Pillot
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Oulfat Amin Ali
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Sylvain Davidson
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Laetitia Shintu
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Anne Godfroy
- IFREMER, CNRS, Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes-UMR6197, Ifremer, Centre de Brest CS10070, Plouzané, France
| | - Yannick Combet-Blanc
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Patricia Bonin
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Pierre-Pol Liebgott
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France.
| |
Collapse
|
11
|
Chin K, Pasalic J, Hermis N, Barge LM. Chemical Gardens as Electrochemical Systems: In Situ Characterization of Simulated Prebiotic Hydrothermal Vents by Impedance Spectroscopy. Chempluschem 2021; 85:2619-2628. [PMID: 33270995 DOI: 10.1002/cplu.202000600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/17/2020] [Indexed: 11/05/2022]
Abstract
In an early earth or planetary chimney systems, hydrothermal fluid chemistry and flow durations play a large role in the chimney's ability to drive electrochemical reactions for the origin of life. We performed continuous electrochemical impedance spectroscopy (EIS) characterization on inorganic membranes representing prebiotic hydrothermal chimney vents in natural seafloor systems, by incorporating an electrode array into a chimney growth experiment. Localized potential and capacitances profiles in the chimney reveal a dynamic system where redox processes are driven by transport phenomena, increasing rapidly due to disequilibrium until achieving equilibrium at about 100 mV and 1000 μF/cm2 . The impedance in the chimney interior is three orders of magnitude lower (100 Ohms/cm2 vs 100 KOhms/cm2 ) than at the ocean or the ocean/chimney interface. The calculated peak dissipation factor (DF) values are more than ten times higher (40.0 vs 3.0) and also confirm the elevated chemical reactivity in the chimney interior.
Collapse
Affiliation(s)
- Keith Chin
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Jasmina Pasalic
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Ninos Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| |
Collapse
|
12
|
Ooka H, McGlynn SE, Nakamura R. Electrochemistry at Deep‐Sea Hydrothermal Vents: Utilization of the Thermodynamic Driving Force towards the Autotrophic Origin of Life. ChemElectroChem 2019. [DOI: 10.1002/celc.201801432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hideshi Ooka
- Biofunctional Catalyst Research TeamRIKEN Center for Sustainable Resource Science (CSRS) 2-1, Hirosawa, Wako Saitama 351-0198 Japan
| | - Shawn E. McGlynn
- Biofunctional Catalyst Research TeamRIKEN Center for Sustainable Resource Science (CSRS) 2-1, Hirosawa, Wako Saitama 351-0198 Japan
- Earth-Life Science Institute (ELSI)Tokyo Institute of Technology 2-12-1-1E-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
- Blue Marble Space Institute of Science Seattle, WA USA
| | - Ryuhei Nakamura
- Biofunctional Catalyst Research TeamRIKEN Center for Sustainable Resource Science (CSRS) 2-1, Hirosawa, Wako Saitama 351-0198 Japan
- Earth-Life Science Institute (ELSI)Tokyo Institute of Technology 2-12-1-1E-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
13
|
Li Y, Kitadai N, Nakamura R. Chemical Diversity of Metal Sulfide Minerals and Its Implications for the Origin of Life. Life (Basel) 2018; 8:life8040046. [PMID: 30308967 PMCID: PMC6316247 DOI: 10.3390/life8040046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/29/2018] [Accepted: 10/03/2018] [Indexed: 12/31/2022] Open
Abstract
Prebiotic organic synthesis catalyzed by Earth-abundant metal sulfides is a key process for understanding the evolution of biochemistry from inorganic molecules, yet the catalytic functions of sulfides have remained poorly explored in the context of the origin of life. Past studies on prebiotic chemistry have mostly focused on a few types of metal sulfide catalysts, such as FeS or NiS, which form limited types of products with inferior activity and selectivity. To explore the potential of metal sulfides on catalyzing prebiotic chemical reactions, here, the chemical diversity (variations in chemical composition and phase structure) of 304 natural metal sulfide minerals in a mineralogy database was surveyed. Approaches to rationally predict the catalytic functions of metal sulfides are discussed based on advanced theories and analytical tools of electrocatalysis such as proton-coupled electron transfer, structural comparisons between enzymes and minerals, and in situ spectroscopy. To this end, we introduce a model of geoelectrochemistry driven prebiotic synthesis for chemical evolution, as it helps us to predict kinetics and selectivity of targeted prebiotic chemistry under “chemically messy conditions”. We expect that combining the data-mining of mineral databases with experimental methods, theories, and machine-learning approaches developed in the field of electrocatalysis will facilitate the prediction and verification of catalytic performance under a wide range of pH and Eh conditions, and will aid in the rational screening of mineral catalysts involved in the origin of life.
Collapse
Affiliation(s)
- Yamei Li
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Norio Kitadai
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Ryuhei Nakamura
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|