1
|
Chu X, Santos-Carballal D, de Leeuw NH. Water adsorption at the (010) and (101) surfaces of CuWO 4. Phys Chem Chem Phys 2024; 26:28628-28642. [PMID: 39526472 DOI: 10.1039/d4cp02699c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Copper tungstate (CuWO4) has attracted significant attention over the past two decades. However, the adsorption of water onto CuWO4, which plays a critical role in the photocatalytic water splitting process, has not been investigated in detail. In this study, we have employed density functional theory (DFT) calculations to investigate water adsorption onto the CuWO4 pristine (010) and reduced (101) surfaces. Surface phase diagrams as a function of temperature and partial pressure of H2O were also constructed to determine water coverage under particular environmental conditions. Our study provides a comprehensive understanding of the adsorption of water on the major CuWO4 surfaces, which is an important preliminary step in our investigation of photocatalytic water splitting over CuWO4.
Collapse
Affiliation(s)
- Xuan Chu
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.
| | | | - Nora H de Leeuw
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.
- Department of Earth Sciences, Utrecht University, Princetonplein 8A, 3584 CD Utrecht, The Netherlands.
| |
Collapse
|
2
|
Liu Z, Jia S, Hu Y, Fang Y, Feng Y, Li D, Bai S, Luo R, Chen A. Facile one-step synthesis of a WO 3/ZnWO 4 heterojunction modified using ZnFe LDH enhances the PEC water splitting efficiency. Dalton Trans 2024; 53:17059-17070. [PMID: 39359143 DOI: 10.1039/d4dt01883d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Photoelectrochemical water splitting represents a promising approach for directly converting solar energy into green hydrogen, offering a potential solution to the challenges of energy shortages and environmental pollution. In this work, a WO3/ZnWO4 binary heterojunction was synthesised by a simple and effective one-step drop casting method to enhance the charge separation efficiency; ZnFe LDH was deposited on the surface of the heterojunction with the aim of accelerating water oxidation and synergising with the heterojunction to enhance the photoelectrochemical performance of the photoanode. The photocurrent density of the WO3/ZnWO4/ZnFe LDH electrode can reach 2.1 mA cm-2 at 1.23 V (vs. RHE). This value is approximately 4 times greater than that observed for pure WO3 (0.53 mA cm-2). The IPCE and ABPE were able to improve by 3.1 times and 6 times, respectively.
Collapse
Affiliation(s)
- ZiYang Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shiyu Jia
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yiwen Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yanling Fang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shouli Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ruixian Luo
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Aifan Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Ma H, Li H, Wang J, Wang X, Wang G, Liu X. Developing Z-scheme Bi 2MoO 6@α-MnO 2 beaded core-shell heterostructure in photoelectrocatalytic treatment of organic wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121964. [PMID: 39067335 DOI: 10.1016/j.jenvman.2024.121964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Photoelectrocatalysis (PEC) oxidation technology with the combination of electrocatalysis and photocatalysis is an ideal candidate for treatment of dyeing wastewater containing multifarious intractable organic compounds with high chroma. Constructing high-quality heterojunction photoelectrodes can effectively suppress the recombination of photo-generated carriers, thereby achieving efficient removal of pollution. Herein, a beaded Bi2MoO6@α-MnO2 core-shell architecture with tunable hetero-interface was prepared by simple hydrothermal-solvothermal process. The as-synthesized Bi2MoO6@α-MnO2 had larger electrochemically active surface area, smaller charge transfer resistance and negative flat band potential, and higher separation efficiency of e-/h+ pairs than pure α-MnO2 or Bi2MoO6. It is noteworthy that the as-synthesized Bi2MoO6@α-MnO2 showed Z-scheme heterostructure as demonstrated by the free radical quenching experiments. The optimized Bi2MoO6@α-MnO2-2.5 exhibited the highest degradation rate of 88.64% in 120 min for reactive brilliant blue (KN-R) and accelerated stability with long-term(∼10000s) at the current density of 50 mA cm-2 in 1.0 mol L-1 H2SO4 solution. This study provides valuable insights into the straightforward preparation of heterogeneous electrodes, offering a promising approach for the treatment of wastewater in various industrial applications.
Collapse
Affiliation(s)
- Hongchao Ma
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian, 116034, PR China
| | - Huijun Li
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian, 116034, PR China
| | - Jiaxin Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian, 116034, PR China; Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, PR China
| | - Xinyue Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian, 116034, PR China.
| | - Guowen Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian, 116034, PR China
| | - Xinghui Liu
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, PR China.
| |
Collapse
|
4
|
Chu X, Santos-Carballal D, de Leeuw NH. Exploring the Redox Properties of the Low-Miller Index Surfaces of Copper Tungstate (CuWO 4): Evaluating the Impact of the Environmental Conditions on the Water Splitting and Carbon Dioxide Reduction Processes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:18944-18961. [PMID: 37791103 PMCID: PMC10544046 DOI: 10.1021/acs.jpcc.3c04413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/25/2023] [Indexed: 10/05/2023]
Abstract
Photocatalysis has gained significant attention and interest as an environmentally friendly and sustainable approach to the production of hydrogen through water splitting and the reduction and conversion of CO2. Copper tungstate (CuWO4) is a highly promising candidate for these applications owing to its appropriate bandgap and superior stability under different conditions. However, the redox behavior of the CuWO4 surfaces under different environments and their impact on the morphology of the material nanoparticles, as well as the electronic properties, remain poorly understood. In this study, we have employed density functional theory calculations to investigate the properties of the bulk and pristine surfaces of CuWO4 and how the latter are impacted by oxygen chemisorption under the conditions required for photocatalytic water splitting and carbon dioxide reduction processes. We have calculated the lattice parameters and electronic properties of the bulk phase, as well as the surface energies of all possible nonpolar, stoichiometric, and symmetric terminations of the seven low-Miller index surfaces and found that the (010) and (110) facets are the thermodynamically most stable. The surface-phase diagrams were used to derive the equilibrium crystal morphologies, which show that the pristine (010) surface is prominent under synthesis and room conditions. Our crystal morphologies suggest that the partially oxidized (110) surface and the partially reduced (011) surface may play an important role in the photocatalytic splitting of water and CO2 conversion, respectively. Our results provide a comprehensive understanding of the CuWO4 surfaces under the conditions of important photocatalytic applications.
Collapse
Affiliation(s)
- Xuan Chu
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | | | - Nora H. de Leeuw
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
- Department
of Earth Sciences, Utrecht University, Princetonplein 8A, Utrecht 3584 CD, The Netherlands
| |
Collapse
|
5
|
Zhao Y, Ding Y, Li W, Liu C, Li Y, Zhao Z, Shan Y, Li F, Sun L, Li F. Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu-W bimetallic C-N coupling sites. Nat Commun 2023; 14:4491. [PMID: 37495582 PMCID: PMC10372083 DOI: 10.1038/s41467-023-40273-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Electrocatalytic urea synthesis is an emerging alternative technology to the traditional energy-intensive industrial urea synthesis protocol. Novel strategies are urgently needed to promote the electrocatalytic C-N coupling process and inhibit the side reactions. Here, we report a CuWO4 catalyst with native bimetallic sites that achieves a high urea production rate (98.5 ± 3.2 μg h-1 mg-1cat) for the co-reduction of CO2 and NO3- with a high Faradaic efficiency (70.1 ± 2.4%) at -0.2 V versus the reversible hydrogen electrode. Mechanistic studies demonstrated that the combination of stable intermediates of *NO2 and *CO increases the probability of C-N coupling and reduces the potential barrier, resulting in high Faradaic efficiency and low overpotential. This study provides a new perspective on achieving efficient urea electrosynthesis by stabilizing the key reaction intermediates, which may guide the design of other electrochemical systems for high-value C-N bond-containing chemicals.
Collapse
Affiliation(s)
- Yilong Zhao
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116024, Dalian, China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310024, Hangzhou, China
| | - Wenlong Li
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116024, Dalian, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310024, Hangzhou, China
| | - Chang Liu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116024, Dalian, China
| | - Yingzheng Li
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116024, Dalian, China
| | - Ziqi Zhao
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116024, Dalian, China
| | - Yu Shan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116024, Dalian, China
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116024, Dalian, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116024, Dalian, China.
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310024, Hangzhou, China.
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044, Stockholm, Sweden.
| | - Fusheng Li
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116024, Dalian, China.
| |
Collapse
|
6
|
Liu J, Luo Z, Mao X, Dong Y, Peng L, Sun-Waterhouse D, Kennedy JV, Waterhouse GIN. Recent Advances in Self-Supported Semiconductor Heterojunction Nanoarrays as Efficient Photoanodes for Photoelectrochemical Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204553. [PMID: 36135974 DOI: 10.1002/smll.202204553] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Growth of semiconductor heterojunction nanoarrays directly on conductive substrates represents a promising strategy toward high-performance photoelectrodes for photoelectrochemical (PEC) water splitting. By controlling the growth conditions, heterojunction nanoarrays with different morphologies and semiconductor components can be fabricated, resulting in greatly enhanced light-absorption properties, stabilities, and PEC activities. Herein, recent progress in the development of self-supported heterostructured semiconductor nanoarrays as efficient photoanode catalysts for water oxidation is reviewed. Synthetic methods for the fabrication of heterojunction nanoarrays with specific compositions and structures are first discussed, including templating methods, wet chemical syntheses, electrochemical approaches and chemical vapor deposition (CVD) methods. Then, various heterojunction nanoarrays that have been reported in recent years based on particular core semiconductor scaffolds (e.g., TiO2 , ZnO, WO3 , Fe2 O3 , etc.) are summarized, placing strong emphasis on the synergies generated at the interface between the semiconductor components that can favorably boost PEC water oxidation. Whilst strong progress has been made in recent years to enhance the visible-light responsiveness, photon-to-O2 conversion efficiency and stability of photoanodes based on heterojunction nanoarrays, further advancements in all these areas are needed for PEC water splitting to gain any traction alongside photovoltaic-electrochemical (PV-EC) systems as a viable and cost-effective route toward the hydrogen economy.
Collapse
Affiliation(s)
- Jinlong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - Ziyu Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Xichen Mao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yusong Dong
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - Lishan Peng
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - Dongxiao Sun-Waterhouse
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - John V Kennedy
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
- National Isotope Centre, GNS Science, Lower Hutt, 5010, New Zealand
| | - Geoffrey I N Waterhouse
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| |
Collapse
|
7
|
Chen L, Li W, Qiu W, He G, Wang K, Liu Y, Wu Q, Li J. Oriented CuWO 4 Films for Improved Photoelectrochemical Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47737-47746. [PMID: 36228181 DOI: 10.1021/acsami.2c13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogen generation through photoelectrochemical (PEC) technology is one of the most appropriate ways for delivering sustainable fuel. Simultaneously, anisotropic properties will be exhibited by the materials with low crystal symmetry, allowing the tuning of the PEC properties by controlling the crystallographic orientation and exposed facets. Therefore, we synthesized copper tungstate films (CuWO4) with highly exposed (100) crystal facets by regulating anions in the precursor solution. According to experimental characterization and density functional theory calculations, the CuWO4 film with a high exposure ratio of the (100) crystal facet has promoted charge transport with trap-free mode and reduced recombination of electrons and holes. Meanwhile, the oxygen evolution reaction is promoted on the (100) facet because of the relatively low energy barrier. Compared to the CuWO4 with other mixed exposure facets, CuWO4 with a highly exposed (100) facet presents a twofold current density (0.38 mA/cm2) and one-fifteenth electron transit time (0.698 ms) and also has great stability (more than 6 h). These results provide an easy way to enhance the PEC performance by modulating the exposure facets of the film electrode.
Collapse
Affiliation(s)
- Long Chen
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, China
| | - Wenzhang Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, China
- Hunan Provincial Key Laboratory of Powder Supply, Central South University, Changsha410083, China
| | - Weixin Qiu
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, China
| | - Gaoshuang He
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, China
| | - Keke Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, China
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, China
| | - Qing Wu
- Information and Network Center, Central South University, Changsha410083, China
| | - Jie Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, China
| |
Collapse
|
8
|
Liu Y, Chen L, Zhu X, Qiu H, Wang K, Li W, Cao S, Zhang T, Cai Y, Wu Q, Li J. Effects of operating temperature on photoelectrochemical performance of CuWO4 film photoanode. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Selkirk A, Zeki Bas S, Cummins C, Aslan E, Patir IH, Zhussupbekova A, Prochukhan N, Borah D, Paiva A, Ozmen M, Morris MA. Block Copolymer Templated WO3 Surface Nanolines as Catalysts for Enhanced Epinephrine Sensing and the Oxygen Evolution Reaction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andrew Selkirk
- University of Dublin Trinity College 1 College GreenDublin 2 Dublin IRELAND
| | - Salih Zeki Bas
- Selçuk Üniversitesi: Selcuk Universitesi Chemistry TURKEY
| | - Cian Cummins
- Trinity College: The University of Dublin Trinity College Chemistry IRELAND
| | - Emre Aslan
- Selçuk Üniversitesi: Selcuk Universitesi Biochemistry TURKEY
| | | | | | - Nadezda Prochukhan
- Trinity College: The University of Dublin Trinity College Chemistry IRELAND
| | - Dipu Borah
- Trinity College: The University of Dublin Trinity College Chemistry IRELAND
| | - Aislan Paiva
- Trinity College: The University of Dublin Trinity College Chemistry IRELAND
| | - Mustafa Ozmen
- Selçuk Üniversitesi: Selcuk Universitesi Chemistry TURKEY
| | - Michael A. Morris
- Trinity College: The University of Dublin Trinity College Chemistry IRELAND
| |
Collapse
|
10
|
Wu T, Gan M, Ma L, Wei S, Fu Q, Yang Y, Li T, Xie F, Zhan W, Zhong X. Pt-based nanoparticles decorated by phosphorus-doped CuWO 4 to enhance methanol oxidation activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj01134k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DMFCs are promising power storage devices, while for methanol oxidation reaction, weak catalysis and carbon monoxide poisoning greatly limit their wide commercialization, so it's greatly necessary to exploit the anode catalysts with high performance.
Collapse
Affiliation(s)
- Taichun Wu
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Mengyu Gan
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Li Ma
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Shuang Wei
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Qinglan Fu
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Yanling Yang
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - TingTing Li
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Fei Xie
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Wang Zhan
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Xiujuan Zhong
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| |
Collapse
|