1
|
Parvin N, Kumar V, Joo SW, Mandal TK. Emerging Trends in Nanomedicine: Carbon-Based Nanomaterials for Healthcare. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1085. [PMID: 38998691 PMCID: PMC11243447 DOI: 10.3390/nano14131085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
Carbon-based nanomaterials, such as carbon quantum dots (CQDs) and carbon 2D nanosheets (graphene, graphene oxide, and graphdiyne), have shown remarkable potential in various biological applications. CQDs offer tunable photoluminescence and excellent biocompatibility, making them suitable for bioimaging, drug delivery, biosensing, and photodynamic therapy. Additionally, CQDs' unique properties enable bioimaging-guided therapy and targeted imaging of biomolecules. On the other hand, carbon 2D nanosheets exhibit exceptional physicochemical attributes, with graphene excelling in biosensing and bioimaging, also in drug delivery and antimicrobial applications, and graphdiyne in tissue engineering. Their properties, such as tunable porosity and high surface area, contribute to controlled drug release and enhanced tissue regeneration. However, challenges, including long-term biocompatibility and large-scale synthesis, necessitate further research. Potential future directions encompass theranostics, immunomodulation, neural interfaces, bioelectronic medicine, and expanding bioimaging capabilities. In summary, both CQDs and carbon 2D nanosheets hold promise to revolutionize biomedical sciences, offering innovative solutions and improved therapies in diverse biological contexts. Addressing current challenges will unlock their full potential and can shape the future of medicine and biotechnology.
Collapse
Affiliation(s)
| | | | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| |
Collapse
|
2
|
Li G, Guo F, Liang J, Wan B, Liang J, Zhou Z. Sandwich-type supersensitive electrochemical aptasensor of glypican-3 based on PrGO-Hemin-PdNP and AuNP@PoPD. Mikrochim Acta 2024; 191:340. [PMID: 38787447 DOI: 10.1007/s00604-024-06419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
A new sandwich-type electrochemical biosensing platform was developed by gold @polyphthalenediamine nanohybrids (AuNP@PoPD) as the sensing platform and phosphorus doped reduced graphene oxide-hemin-palladium nanoparticles (PrGO-Hemin-PdNP) as the signal amplifier for phosphatidylinositol proteoglycan 3 (GPC3). AuNP@PoPD, co-electrodeposited into the screen printed electrode with high conductivity and stability, is dedicated to assembling the primary GPC3 aptamer (GPC3Apt). The second GPC3Apt immobilized on the high conductivity and large surface area of PrGO-Hemin-PdNP was utilized as an electrochemical signal reporter by hemin oxidation (PrGO-Hemin-PdNP-GPC3Apt). In the range 0.001-10.0 ng/mL, the hemin oxidation current signal of the electrochemical aptasensor increased log-linearly with the concentration of GPC3, the lowest detection limit was 0.13 pg/mL, and the sensitivity was 2.073 μA/μM/cm2. The aptasensor exhibited good sensing performance in a human serum sample with the relative error of 4.31-8.07%. The sandwich sensor showed good selectivity and stability for detection GPC3 in human serum samples, providing a new efficient and sensitive method for detecting HCC markers.
Collapse
Affiliation(s)
- Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Fei Guo
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Jianlu Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Bingbing Wan
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Jintao Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
| | - Zhide Zhou
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
| |
Collapse
|
3
|
Karimi F, Karimi-Maleh H, Rouhi J, Zare N, Karaman C, Baghayeri M, Fu L, Rostamnia S, Dragoi EN, Ayati A, Krivoshapkin P. Revolutionizing cancer monitoring with carbon-based electrochemical biosensors. ENVIRONMENTAL RESEARCH 2023; 239:117368. [PMID: 37827366 DOI: 10.1016/j.envres.2023.117368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Cancer monitoring plays a critical role in improving patient outcomes by providing early detection, personalized treatment options, and treatment response tracking. Carbon-based electrochemical biosensors have emerged in recent years as a revolutionary technology with the potential to revolutionize cancer monitoring. These sensors are useful for clinical applications because of their high sensitivity, selectivity, rapid response, and compatibility with miniaturized equipment. This review paper gives an in-depth look at the latest developments and the possibilities of carbon-based electrochemical sensors in cancer surveillance. The essential principles of carbon-based electrochemical sensors are discussed, including their structure, operating mechanisms, and critical qualities that make them suited for cancer surveillance. Furthermore, we investigate their applicability in detecting specific cancer biomarkers, evaluating therapy responses, and detecting cancer recurrence early. Additionally, a comparison of carbon-based electrochemical sensor performance measures, including sensitivity, selectivity, accuracy, and limit of detection, is presented in contrast to existing monitoring methods and upcoming technologies. Finally, we discuss prospective tactics, future initiatives, and commercialization opportunities for improving the capabilities of these sensors and integrating them into normal clinical practice. The review highlights the potential impact of carbon-based electrochemical sensors on cancer diagnosis, treatment, and patient outcomes, as well as the importance of ongoing research, collaboration, and validation studies to fully realize their potential in revolutionizing cancer monitoring.
Collapse
Affiliation(s)
- Fatemeh Karimi
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Jalal Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, 51566, Iran.
| | - Najmeh Zare
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China
| | - Ceren Karaman
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey
| | - Mehdi Baghayeri
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. B 397, Sabzevar, Iran
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld Mangeron No 73, Iasi, 700050, Romania
| | - Ali Ayati
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Pavel Krivoshapkin
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
4
|
Ouedraogo B, Baachaoui S, Tall A, Tapsoba I, Raouafi N. Laser-induced graphene electrodes on polyimide membranes modified with gold nanoparticles for the simultaneous detection of dopamine and uric acid in human serum. Mikrochim Acta 2023; 190:316. [PMID: 37480385 DOI: 10.1007/s00604-023-05909-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
The level control of biological active molecules in human body fluids is important for the surveillance of several human diseases. Dopamine (DA) and uric acid (UA) are two important biomarkers of neurological and bone diseases, respectively. Design of sensitive and cost-effective sensors for their detection is an effervescent research field. We report on the straightforward design of laser-induced graphene electrodes (LIGEs) from the laser ablation of a polyimide substrate and their modification by electrochemical deposition of gold nanoparticles (AuNPs/LIGE) and their uses as chemosensors. Electrochemical investigations showed that the presence of gold nanoclusters onto the electrode surface improved the electrochemical surface area (ECSA) and the heterogenous electron transfer (HET) rate. Furthermore, the AuNPs/LIGEs can be used to detect simultaneously low concentrations of DA and UA in presence of ascorbic acid (AA) as an potentially interfering substance at redox potentials of 300 mV, 230 mV and 450 mV and 91 mV, respectively, compared with the Ag/AgCl (3 M KCl) reference electrode in cyclic voltametric. The method displayed linear ranges varying from 2 to 20 μM and 5 to 50 μM, led to limits of detection of 0.37 μM and 0.71 μM for DA and UA, respectively. The AuNPs/LIGE was applied to simultaneously detect both analytes in scarcely diluted human serum with good recoveries. The data show that the recovery percentages ranged from 94% ± 2.1 to 102 % ± 0.5 and from 94% ±0.3 to 112% ± 1.4 for dopamine and uric acid, respectively. Thus, the AuNPs/LIGEs are promising candidates for the detection of other biologically active molecules such as drugs, pesticides, and metabolites.
Collapse
Affiliation(s)
- Bibata Ouedraogo
- Université Joseph KI-ZERBO, UFR-SEA, Laboratoire de Chimie Analytique, Environnementale et Biorganique (LCAEBiO), 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Sabrine Baachaoui
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie (LR99ES15), Sensors and Biosensors Group, 2092, Tunis, El Manar, Tunisia
| | - Amidou Tall
- Université Joseph KI-ZERBO, UFR-SEA, Laboratoire de Chimie Analytique, Environnementale et Biorganique (LCAEBiO), 03 BP 7021, Ouagadougou 03, Burkina Faso
- Laboratoire de Sciences et Technologies (LaST), Université Thomas SANKARA, 12 BP 417, Ouagadougou, Burkina Faso
| | - Issa Tapsoba
- Université Joseph KI-ZERBO, UFR-SEA, Laboratoire de Chimie Analytique, Environnementale et Biorganique (LCAEBiO), 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Noureddine Raouafi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie (LR99ES15), Sensors and Biosensors Group, 2092, Tunis, El Manar, Tunisia.
| |
Collapse
|
5
|
Silva RM, Sperandio GH, da Silva AD, Okumura LL, da Silva RC, Moreira RPL, Silva TA. Electrochemically reduced graphene oxide films from Zn-C battery waste for the electrochemical determination of paracetamol and hydroquinone. Mikrochim Acta 2023; 190:273. [PMID: 37351644 DOI: 10.1007/s00604-023-05858-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/03/2023] [Indexed: 06/24/2023]
Abstract
Contributing to the development of sustainable electroanalytical chemistry, electrochemically reduced graphene oxide (ERGO) films obtained from residual graphite of discharged Zn-C batteries are proposed in this work. Graphite from the cathode of discarded Zn-C batteries was recovered and used in the synthesis of graphene oxide (GO) by the modified Hummer's method. The quality of the synthesized GO was verified using different characterization methods (FT-IR, XRD, SEM, and TEM). GO films were deposited on a glassy carbon electrode (GCE) by the drop coating method and then electrochemically reduced by cathodic potential scanning using cyclic voltammetry. The electrochemical features of the ERGO films were investigated using the ferricyanide redox probe, as well as paracetamol (PAR) and hydroquinone (HQ) molecules as model analytes. From the cyclic voltammetry assays, enhanced heterogeneous electron transfer rate constants (k0) were observed for all redox systems studied. In analytical terms, the ERGO-based electrode showed higher analytical sensitivity than the bare and GO-modified GCE. Using differential pulse voltammetry, wide linear response ranges and limits of detection of 0.14 μmol L-1 and 0.65 μmol L-1 were achieved for PAR and HQ, respectively. Furthermore, the proposed sensor was successfully applied to the determination of PAR and HQ in synthetic urine and tap water samples (recoveries close to 100%). The outstanding electrochemical and analytical properties of the proposed ERGO films are added to the very low cost of the raw material, being presented as a green-based alternative for the development of electrochemical (bio)sensors with unsophisticated resources.
Collapse
Affiliation(s)
- Rafael Matias Silva
- Department of Chemistry, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | | - Leonardo Luiz Okumura
- Department of Chemistry, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Renê Chagas da Silva
- Department of Physics, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | - Tiago Almeida Silva
- Department of Chemistry, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
6
|
Jafari B, Lacerda CMR, Botte GG. Facile Electrochemical Preparation of Hydrophobic Antibacterial Fabrics Using Reduced Graphene Oxide/Silver Nanoparticles. ChemElectroChem 2023. [DOI: 10.1002/celc.202201111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Behnaz Jafari
- Chemical and Electrochemical Technology and Innovation Laboratory Department of Chemical Engineering Texas Tech University Lubbock TX 79401 USA
| | - Carla M. R. Lacerda
- Jasper Department of Chemical Engineering University of Texas at Tyler Tyler TX 75799 USA
| | - Gerardine G. Botte
- Chemical and Electrochemical Technology and Innovation Laboratory Department of Chemical Engineering Texas Tech University Lubbock TX 79401 USA
| |
Collapse
|
7
|
Damasceno JPV, Kubota LT. The Electronic Origin of the Zeta Potential is Supported by the Redox Mechanism on an Aqueous Dispersion of Exfoliated Graphite. Angew Chem Int Ed Engl 2022; 61:e202214995. [PMID: 36315162 DOI: 10.1002/anie.202214995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Herein we have proposed that a redox mechanism can produce surface charges and negative zeta potential on an aqueous graphite dispersion. Graphite was kept in contact with a concentrated ammonia aqueous solution, washed, and exfoliated in water, resulting in a dispersion with lyophobic nature. Ammonia treatment did not provide functional groups or nitrogen doping to graphite. Moreover, this material was washed twice before sonication to remove most hydroxide. Therefore, neither functional groups, nitrogen atoms, nor hydroxide excess is responsible for the zeta potential. Kelvin probe force microscopy has shown that the ammonia-treated and exfoliated graphite has higher Fermi level than the water-treated material, indicating that the contact between ammonia and graphite promotes redox reactions that provide electrons to graphite. These electrons raise the Fermi level of graphite and generate the negative zeta potential, consequently, they account for the colloidal stability.
Collapse
Affiliation(s)
- João Paulo Vita Damasceno
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, São Paulo, 13084-971, Brazil
| | - Lauro Tatsuo Kubota
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, São Paulo, 13084-971, Brazil
| |
Collapse
|
8
|
Damasceno JPV, Kubota LT. The Electronic Origin of the Zeta Potential is Supported by the Redox Mechanism on an Aqueous Dispersion of Exfoliated Graphite. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202214995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- João Paulo Vita Damasceno
- Department of Analytical Chemistry Institute of Chemistry University of Campinas P.O. Box 6154 Campinas São Paulo 13084-971 Brazil
| | - Lauro Tatsuo Kubota
- Department of Analytical Chemistry Institute of Chemistry University of Campinas P.O. Box 6154 Campinas São Paulo 13084-971 Brazil
| |
Collapse
|
9
|
Wachholz Junior D, Deroco PB, Kubota LT. A copper-based metal-organic framework/reduced graphene oxide-modified electrode for electrochemical detection of paraquat. Mikrochim Acta 2022; 189:278. [PMID: 35829918 DOI: 10.1007/s00604-022-05358-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/25/2022] [Indexed: 01/16/2023]
Abstract
An electrochemical device using copper-based metalorganic franmeworks (MOF) associated with reduced graphene oxide to improve the charge transfer, stability, and adherence of the structures on the surface of the electrodes was developed. The syntheses of these materials were confirmed using scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, Fourier transform infrared and Raman spectroscopy. For the first time, this type of sensor was applied to a systematic study to understand the action mechanism of MOFs and reduced graphene oxide in the electrochemical detection of paraquat pesticide. Under optimized conditions, paraquat was detected in standard solutions by differential pulse voltammetry (- 0.8 to - 0.3 V vs Ag/AgCl), achieving a linear response range between 0.30 and 5.00 μmol L-1. The limits of detection and quantification were 50.0 nmol L-1 and 150.0 nmol L-1, respectively. We assessed the accuracy of the proposed device to determine paraquat in water and human blood serum samples by recovery study, obtaining recovery values ranging from 98 to 104%. Furthermore, the selectivity of the proposed electrode for paraquat detection was evaluated against various interferences, demonstrating their promising application in environmental analysis.
Collapse
Affiliation(s)
- Dagwin Wachholz Junior
- Institute of Chemistry, University of Campinas - UNICAMP, Campinas, 13083-970, Brazil.,National Institute of Science and Technology in Bioanalytic (INCTBio), Campinas, Brazil
| | - Patrícia Batista Deroco
- Institute of Chemistry, University of Campinas - UNICAMP, Campinas, 13083-970, Brazil.,National Institute of Science and Technology in Bioanalytic (INCTBio), Campinas, Brazil
| | - Lauro Tatsuo Kubota
- Institute of Chemistry, University of Campinas - UNICAMP, Campinas, 13083-970, Brazil. .,National Institute of Science and Technology in Bioanalytic (INCTBio), Campinas, Brazil.
| |
Collapse
|
10
|
Yue X, Xu X, Liu C, Zhao S. Simultaneous determination of cefotaxime and nimesulide using poly(L-cysteine) and graphene composite modified glassy carbon electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Investigation of the Morphology and Electrical Properties of Graphene Used in the Development of Biosensors for Detection of Influenza Viruses. BIOSENSORS 2021; 12:bios12010008. [PMID: 35049636 PMCID: PMC8774066 DOI: 10.3390/bios12010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
In this study, we discuss the mechanisms behind changes in the conductivity, low-frequency noise, and surface morphology of biosensor chips based on graphene films on SiC substrates during the main stages of the creation of biosensors for detecting influenza viruses. The formation of phenylamine groups and a change in graphene nano-arrangement during functionalization causes an increase in defectiveness and conductivity. Functionalization leads to the formation of large hexagonal honeycomb-like defects up to 500 nm, the concentration of which is affected by the number of bilayer or multilayer inclusions in graphene. The chips fabricated allowed us to detect the influenza viruses in a concentration range of 10−16 g/mL to 10−10 g/mL in PBS (phosphate buffered saline). Atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed that these defects are responsible for the inhomogeneous aggregation of antibodies and influenza viruses over the functionalized graphene surface. Non-uniform aggregation is responsible for a weak non-linear logarithmic dependence of the biosensor response versus the virus concentration in PBS. This feature of graphene nano-arrangement affects the reliability of detection of extremely low virus concentrations at the early stages of disease.
Collapse
|
12
|
Vilian ATE, Hwang SK, Lee MJ, Bagavathi M, Huh YS, Han YK. Facile synthesis of petal-like VS 2 anchored onto graphene nanosheets for the rapid sensing of toxic pesticide in polluted water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113021. [PMID: 34856486 DOI: 10.1016/j.ecoenv.2021.113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Fenitrothion (FT) is a toxic phosphorothioate insecticide that can easily contaminate aquatic environments, leading to a detrimental effect on the aquatic species and harmful endocrine disrupter effects on human health. Therefore, it is vital to develop a reliable methodology for the accurate and precise real-time sensing of carcinogenic FT in water samples at trace concentration to ensure environmental safety. We aim to fabricate the low-cost VS2-attached reduced graphene oxide (RGO) sheets via a simple hydrothermal approach. It was further applied for the rapid and accurate sensing of toxic FT. The VS2/RGO-composite delivers a more favorable microenvironment for the rapid electrocatalytic sensing performance towards toxic FT reduction than the VS2 and RGO modified electrodes. The electron transfer rate constant (ks) and the saturating absorption capacity (Γ) value of FT was evaluated to be 1.52 s-1 and 2.18 × 10-10 mol cm-2, respectively. The constructed sensor exhibits a wide linear relationship after amperometry between the cathodic current densities and the concentrations of FT in the range of 5-90 nM and high sensitivity (5.569 μA nM-1 cm-2); moreover, the detection limit was 0.07 nM (S/N = 3). The fabricated sensor has excellent anti-interference ability and reproducibility for the direct sensing of FT in river water, seawater, and lake water samples with acceptable recoveries. It is a promising sensing device for in-situ quantification of FT in agricultural products and ecological systems.
Collapse
Affiliation(s)
- A T Ezhil Vilian
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea
| | - Seung-Kyu Hwang
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea
| | - Min Ji Lee
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea
| | | | - Yun Suk Huh
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea.
| |
Collapse
|
13
|
Wei M, Rao H, Niu Z, Xue X, Luo M, Zhang X, Huang H, Xue Z, Lu X. Breaking the time and space limitation of point-of-care testing strategies: Photothermometric sensors based on different photothermal agents and materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Liendo F, de la Vega AP, Jesus Aguirre M, Godoy F, Martí AA, Flores E, Pizarro J, Segura R. A simple graphene modified electrode for the determination of antimony(III) in edible plants and beverage. Food Chem 2021; 367:130676. [PMID: 34365250 DOI: 10.1016/j.foodchem.2021.130676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023]
Abstract
Antimony(III) is a rare electroactive specie present on Earth, whose concentration is not typically determined. The presence of high concentrations of antimony is responsible for a variety of diseases, which makes it desirable to find convenient and reliable methods for its determination. We have developed a convenient glassy carbon modified electrode with electroreduced graphene oxide GC/rGO for the first time determination of Sb(III) in commercial lettuce, celery, and beverages. The surface of the electrode was characterized by scanning electron microscopy (SEM) and cyclic voltammetry, indicating a heterogeneous and rough surface with a real area of 0.28 cm2, which is ~2.5 times the area of GC. The optimal chemical and electrochemical parameters used were: sodium acetate buffer (pH = 4.3), an accumulation potential of -1.0 V and an accumulation time of 150 s. The analytical validation was developed evaluating the linear range (10-60 µg L-1), limit of detection (2.5 µg L-1), accuracy, repetibility and reproducibility with satisfactory results (relative standard deviation (RSD) values lower than 10%). All the analyzes performed in real samples by stripping voltammetry were compared with GF-AAS, showing statistically similar values, demonstrating that GC/rGO could be effectively applied in the analysis of food samples.
Collapse
Affiliation(s)
- Fabiana Liendo
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Amaya Paz de la Vega
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Maria Jesus Aguirre
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Fernando Godoy
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Angel A Martí
- Department of Chemistry, Materials Science and Nanoengineering, Bioengineering, Smalley-Curl Institute for Nanoscale Science and Technology, Rice University, Houston, TX 77005, United States
| | - Erick Flores
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile.
| | - Jaime Pizarro
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile.
| | - Rodrigo Segura
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile.
| |
Collapse
|
15
|
Li J, Chen J, Wang H, Xiao X. All‐MXene Cotton‐Based Supercapacitor‐Powered Human Body Thermal Management System. ChemElectroChem 2021. [DOI: 10.1002/celc.202001536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jianmin Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices School of Electronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
| | - Jianmei Chen
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou 215123 China
| | - Hao Wang
- Research Institute of Superconductor Electronics Nanjing University Nanjing 210093 China
| | - Xu Xiao
- State Key Laboratory of Electronic Thin Film and Integrated Devices School of Electronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
| |
Collapse
|