1
|
Chen YC, Chang LC, Liu YL, Chang MC, Liu YF, Chang PY, Manoharan D, Wang WJ, Chen JS, Wang HC, Chiu WT, Li WP, Sheu HS, Su WP, Yeh CS. Redox disruption using electroactive liposome coated gold nanoparticles for cancer therapy. Nat Commun 2025; 16:3253. [PMID: 40188189 PMCID: PMC11972414 DOI: 10.1038/s41467-025-58636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
Cancer remains a global health challenge necessitating innovative therapies. We introduce a strategy to disrupt cancer cell redox balance using gold nanoparticles (Au NPs) as electron sinks combined with electroactive membranes. Utilizing Shewanella oneidensis MR-1 membrane proteins, we develop liposomes enriched with c-type cytochromes. These, coupled with Au NPs, facilitate autonomous electron transfer from cancer cells, disrupting redox processes and inducing cell death. Effective across various cancer types, larger Au NPs show enhanced efficacy, especially under hypoxic conditions. Oxidative stress from Au@MIL (MIL: membrane-integrated liposome) treatments, including mitochondrial and endoplasmic reticulum lipid oxidation and mitochondrial membrane potential changes, triggers apoptosis, bypassing iron-mediated pathways. Surface plasmon band and X-ray absorption near-edge structure (XANES) analyses confirm electron transfer. A SiO2 insulator coating on Au NPs blocks this transfer, suppressing cancer cell damage. This approach highlights the potential of modulated electron transfer pathways in targeted cancer therapy, offering refined and effective treatments.
Collapse
Grants
- NSTC 113-2740-B-006-002 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 112-2113-M-037-014-MY2 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 113-2320-B-037-007- Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 113-2314-B-006 -014 - Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- NSTC 113-2321-B-006 -010 - Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- C.-S.Y. acknowledges the financial support from the National Science and Technology Council (NSTC), Taiwan (NSTC 113-2113-M-006-015). This research was also partially supported by the Higher Education Sprout Project, Ministry of Education, to the Headquarters of University Advancement at National Cheng Kung University. Additional financial support was provided by the Center of Applied Nanomedicine, National Cheng Kung University, under the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project of the Ministry of Education (MOE) in Taiwan. W.-T.C. acknowledges the financial support from NSTC, Taiwan (NSTC 113-2740-B-006-002). W.-P. L. acknowledges the financial support provided by NSTC, Taiwan (NSTC 112-2113-M-037-014-MY2 and 113-2320-B-037-007-) and the Yushan Young Scholar Program of the Ministry of Education of Taiwan. W.-P.S. thanks the financial support by the NSTC (NSTC 113-2314-B-006 -038 -MY3; 113-2314-B-006 -014 -; 113-2321-B-006 -010 -).
Collapse
Affiliation(s)
- Ying-Chi Chen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Li-Chan Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Yan-Ling Liu
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ming-Che Chang
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yin-Fen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Po-Ya Chang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Divinah Manoharan
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wen-Jyun Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jia-Sin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hsueh-Chun Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Wei-Peng Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Hwo-Shuenn Sheu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
| | - Wen-Pin Su
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan.
- Departments of Oncology and Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
2
|
Kneuer L, Wurst R, Gescher J. Shewanella oneidensis: Biotechnological Application of Metal-Reducing Bacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39579226 DOI: 10.1007/10_2024_272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
What is an unconventional organism in biotechnology? The γ-proteobacterium Shewanella oneidensis might fall into this category as it was initially established as a laboratory model organism for a process that was not seen as potentially interesting for biotechnology. The reduction of solid-state extracellular electron acceptors such as iron and manganese oxides is highly relevant for many biogeochemical cycles, although it turned out in recent years to be quite relevant for many potential biotechnological applications as well. Applications started with the production of nanoparticles and dramatically increased after understanding that electrodes in bioelectrochemical systems can also be used by these organisms. From the potential production of current and hydrogen in these systems and the development of biosensors, the field expanded to anode-assisted fermentations enabling fermentation reactions that were - so far - dependent on oxygen as an electron acceptor. Now the field expands further to cathode-dependent production routines. As a side product to all these application endeavors, S. oneidensis was understood more and more, and our understanding and genetic repertoire is at eye level to E. coli. Corresponding to this line of thought, this chapter will first summarize the available arsenal of tools in molecular biology that was established for working with the organism and thereafter describe so far established directions of application. Last but not least, we will highlight potential future directions of work with the unconventional model organism S. oneidensis.
Collapse
Affiliation(s)
- Lukas Kneuer
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - René Wurst
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - Johannes Gescher
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany.
| |
Collapse
|
3
|
Tu W, Thompson IP, Huang WE. Engineering bionanoreactor in bacteria for efficient hydrogen production. Proc Natl Acad Sci U S A 2024; 121:e2404958121. [PMID: 38985767 PMCID: PMC11260135 DOI: 10.1073/pnas.2404958121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
Hydrogen production through water splitting is a vital strategy for renewable and sustainable clean energy. In this study, we developed an approach integrating nanomaterial engineering and synthetic biology to establish a bionanoreactor system for efficient hydrogen production. The periplasmic space (20 to 30 nm) of an electroactive bacterium, Shewanella oneidensis MR-1, was engineered to serve as a bionanoreactor to enhance the interaction between electrons and protons, catalyzed by hydrogenases for hydrogen generation. To optimize electron transfer, we used the microbially reduced graphene oxide (rGO) to coat the electrode, which improved the electron transfer from the electrode to the cells. Native MtrCAB protein complex on S. oneidensis and self-assembled iron sulfide (FeS) nanoparticles acted in tandem to facilitate electron transfer from an electrode to the periplasm. To enhance proton transport, S. oneidensis MR-1 was engineered to express Gloeobacter rhodopsin (GR) and the light-harvesting antenna canthaxanthin. This led to efficient proton pumping when exposed to light, resulting in a 35.6% increase in the rate of hydrogen production. The overexpression of native [FeFe]-hydrogenase further improved the hydrogen production rate by 56.8%. The bionanoreactor engineered in S. oneidensis MR-1 achieved a hydrogen yield of 80.4 μmol/mg protein/day with a Faraday efficiency of 80% at a potential of -0.75 V. This periplasmic bionanoreactor combines the strengths of both nanomaterial and biological components, providing an efficient approach for microbial electrosynthesis.
Collapse
Affiliation(s)
- Weiming Tu
- Department of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Ian P. Thompson
- Department of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| |
Collapse
|
4
|
Wang H, Zhai P, Long X, Ma J, Li Y, Liu B, Xu Z. Research progress on using biological cathodes in microbial fuel cells for the treatment of wastewater containing heavy metals. Front Microbiol 2023; 14:1270431. [PMID: 37789847 PMCID: PMC10544973 DOI: 10.3389/fmicb.2023.1270431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Various types of electroactive microorganisms can be enriched to form biocathodes that reduce charge-transfer resistance, thereby accelerating electron transfer to heavy metal ions with high redox potentials in microbial fuel cells. Microorganisms acting as biocatalysts on a biocathode can reduce the energy required for heavy metal reduction, thereby enabling the biocathode to achieve a lower reduction onset potential. Thus, when such heavy metals replace oxygen as the electron acceptor, the valence state and morphology of the heavy metals change under the reduction effect of the biocathode, realizing the high-efficiency treatment of heavy metal wastewater. This study reviews the mechanisms, primary influencing factors (e.g., electrode material, initial concentration of heavy metals, pH, and electrode potential), and characteristics of the microbial community of biocathodes and discusses the electron distribution and competition between microbial electrodes and heavy metals (electron acceptors) in biocathodes. Biocathodes reduce the electrochemical overpotential in heavy metal reduction, permitting more electrons to be used. Our study will advance the scientific understanding of the electron transport mechanism of biocathodes and provide theoretical support for the use of biocathodes to purify heavy metal wastewater.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Pengxiang Zhai
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Xizi Long
- Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Jianghang Ma
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Yu Li
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Bo Liu
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Zhiqiang Xu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| |
Collapse
|
5
|
Quek G, Vázquez RJ, McCuskey SR, Lopez-Garcia F, Bazan GC. An n-Type Conjugated Oligoelectrolyte Mimics Transmembrane Electron Transport Proteins for Enhanced Microbial Electrosynthesis. Angew Chem Int Ed Engl 2023; 62:e202305189. [PMID: 37222113 DOI: 10.1002/anie.202305189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 05/25/2023]
Abstract
Interfacing bacteria as biocatalysts with an electrode provides the basis for emerging bioelectrochemical systems that enable sustainable energy interconversion between electrical and chemical energy. Electron transfer rates at the abiotic-biotic interface are, however, often limited by poor electrical contacts and the intrinsically insulating cell membranes. Herein, we report the first example of an n-type redox-active conjugated oligoelectrolyte, namely COE-NDI, which spontaneously intercalates into cell membranes and mimics the function of endogenous transmembrane electron transport proteins. The incorporation of COE-NDI into Shewanella oneidensis MR-1 cells amplifies current uptake from the electrode by 4-fold, resulting in the enhanced bio-electroreduction of fumarate to succinate. Moreover, COE-NDI can serve as a "protein prosthetic" to rescue current uptake in non-electrogenic knockout mutants.
Collapse
Affiliation(s)
- Glenn Quek
- Departments of Chemistry and Chemical & Biomolecular Engineering, Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, 119077, Singapore, Singapore
| | - Ricardo Javier Vázquez
- Departments of Chemistry and Chemical & Biomolecular Engineering, Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, 119077, Singapore, Singapore
| | - Samantha R McCuskey
- Departments of Chemistry and Chemical & Biomolecular Engineering, Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, 119077, Singapore, Singapore
| | - Fernando Lopez-Garcia
- Departments of Chemistry and Chemical & Biomolecular Engineering, Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, 119077, Singapore, Singapore
| | - Guillermo C Bazan
- Departments of Chemistry and Chemical & Biomolecular Engineering, Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, 119077, Singapore, Singapore
| |
Collapse
|