1
|
Mori K, Golding BT, Toraya T. The action of coenzyme B12-dependent diol dehydratase on 3,3,3-trifluoro-1,2-propanediol results in elimination of all the fluorides with formation of acetaldehyde. J Biochem 2024; 176:245-254. [PMID: 38987935 DOI: 10.1093/jb/mvae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024] Open
Abstract
3,3,3-Trifluoro-1,2-propanediol undergoes complete defluorination in two distinct steps: first, the conversion into 3,3,3-trifluoropropionaldehyde catalyzed by adenosylcobalamin (coenzyme B12)-dependent diol dehydratase; second, non-enzymatic elimination of all three fluorides from this aldehyde to afford malonic semialdehyde (3-oxopropanoic acid), which is decarboxylated to acetaldehyde. Diol dehydratase accepts 3,3,3-trifluoro-1,2-propanediol as a relatively poor substrate, albeit without significant mechanism-based inactivation of the enzyme during catalysis. Optical and electron paramagnetic resonance (EPR) spectra revealed the steady-state formation of cob(II)alamin and a substrate-derived intermediate organic radical (3,3,3-trifluoro-1,2-dihydroxyprop-1-yl). The coenzyme undergoes Co-C bond homolysis initiating a sequence of reaction by the generally accepted pathway via intermediate radicals. However, the greater steric size of trifluoromethyl and especially its negative impact on the stability of an adjacent radical centre compared to a methyl group has implications for the mechanism of the diol dehydratase reaction. Nevertheless, 3,3,3-trifluoropropionaldehyde is formed by the normal diol dehydratase pathway, but then undergoes non-enzymatic conversion into acetaldehyde, probably via 3,3-difluoropropenal and malonic semialdehyde.
Collapse
Affiliation(s)
- Koichi Mori
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Bernard T Golding
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Tetsuo Toraya
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
2
|
Watson WP, Munter T, Golding BT. The effect of vitamin B 12 on DNA adduction by styrene oxide, a genotoxic xenobiotic. Chem Biol Interact 2023; 382:110591. [PMID: 37302460 DOI: 10.1016/j.cbi.2023.110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Vitamin B12 (cyano- or hydroxo-cobalamin) acts, via its coenzymes, methyl- and adenosyl-cobalamin, as a partner for enzymatic reactions in humans catalysed by methionine synthase and methylmalonyl-CoA mutase. As well as its association with pernicious anaemia, human B12 deficiency may also be a risk factor for neurological illnesses, heart disease and cancer. In the present work the effect of vitamin B12 (hydroxocobalamin) on the formation of DNA adducts by the epoxide phenyloxirane (styrene oxide), a genotoxic metabolite of phenylethene (styrene), has been studied using an in vitro model system. Styrene was converted to its major metabolite styrene oxide as a mixture of enantiomers using a microsomal fraction from the livers of Sprague-Dawley rats with concomitant inhibition of epoxide hydrolase. However, microsomal oxidation of styrene in the presence of vitamin B12 gave diastereoisomeric 2-hydroxy-2-phenylcobalamins. The quantitative formation of styrene oxide-DNA adducts was investigated using 2-deoxyguanosine or calf thymus DNA in the presence or absence of vitamin B12. Microsomal incubations containing either deoxyguanosine or DNA in the absence of vitamin B12 gave 2-amino-7-(2-hydroxy-1-phenylethyl)-1,7-dihydro-6H-purin-6-one [N7-(2-hydroxy-1-phenylethyl)-guanine], and 2-amino-7-(2-hydroxy-2-phenylethyl)-1,7-dihydro-6H-purin-6-one [N7-(2-hydroxy-2-phenylethyl)guanine] as the principal adducts. With deoxyguanosine the level of formation of guanine adducts was ca. 150 adducts/106 unmodified nucleoside. With DNA the adduct level was 36 pmol/mg DNA (ca. 1 adduct/0.83 × 105 nucleotides). Styrene oxide adducts from deoxyguanosine or DNA were not detected in microsomal incubations of styrene in the presence of vitamin B12. These results suggest that vitamin B12 could protect DNA against genotoxicity due to styrene oxide and other xenobiotic metabolites. However, this potential defence mechanism requires that the 2-hydroxyalkylcobalamins derived from epoxides are not 'anti-vitamins' and ideally liberate, and therefore, recycle vitamin B12. Otherwise, depletion of vitamin B12 leading to human deficiency could increase the risk of carcinogenesis initiated by genotoxic epoxides.
Collapse
Affiliation(s)
- William P Watson
- Syngenta Central Toxicology Laboratory, Alderley Park, Cheshire, SK10 4TJ, UK
| | - Tony Munter
- Syngenta Central Toxicology Laboratory, Alderley Park, Cheshire, SK10 4TJ, UK
| | - Bernard T Golding
- School of Natural and Environmental Sciences - Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
3
|
Gruber K, Csitkovits V, Łyskowski A, Kratky C, Kräutler B. Structure-Based Demystification of Radical Catalysis by a Coenzyme B 12 Dependent Enzyme-Crystallographic Study of Glutamate Mutase with Cofactor Homologues. Angew Chem Int Ed Engl 2022; 61:e202208295. [PMID: 35793207 PMCID: PMC9545868 DOI: 10.1002/anie.202208295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 12/04/2022]
Abstract
Catalysis by radical enzymes dependent on coenzyme B12 (AdoCbl) relies on the reactive primary 5'-deoxy-5'adenosyl radical, which originates from reversible Co-C bond homolysis of AdoCbl. This bond homolysis is accelerated roughly 1012 -fold upon binding the enzyme substrate. The structural basis for this activation is still strikingly enigmatic. As revealed here, a displaced firm adenosine binding cavity in substrate-loaded glutamate mutase (GM) causes a structural misfit for intact AdoCbl that is relieved by the homolytic Co-C bond cleavage. Strategically interacting adjacent adenosine- and substrate-binding protein cavities provide a tight caged radical reaction space, controlling the entire radical path. The GM active site is perfectly structured for promoting radical catalysis, including "negative catalysis", a paradigm for AdoCbl-dependent mutases.
Collapse
Affiliation(s)
- Karl Gruber
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
- BioTechMed-Graz8010GrazAustria
- Field of Excellence “BioHealth”University of Graz8010GrazAustria
| | - Vanessa Csitkovits
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
| | - Andrzej Łyskowski
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
- Present address: Department of Biotechnology and BioinformaticsRzeszów University of Technologyal. Powstańców Warszawy 1235-959RzeszówPoland
| | - Christoph Kratky
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
| | - Bernhard Kräutler
- Institute of Organic ChemistryUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
- Center of Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| |
Collapse
|
4
|
Gruber K, Csitkovits V, Łyskowski A, Kratky C, Kräutler B. Structure-Based Demystification of Radical Catalysis by a Coenzyme B 12 Dependent Enzyme-Crystallographic Study of Glutamate Mutase with Cofactor Homologues. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202208295. [PMID: 38505740 PMCID: PMC10947579 DOI: 10.1002/ange.202208295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 03/21/2024]
Abstract
Catalysis by radical enzymes dependent on coenzyme B12 (AdoCbl) relies on the reactive primary 5'-deoxy-5'adenosyl radical, which originates from reversible Co-C bond homolysis of AdoCbl. This bond homolysis is accelerated roughly 1012-fold upon binding the enzyme substrate. The structural basis for this activation is still strikingly enigmatic. As revealed here, a displaced firm adenosine binding cavity in substrate-loaded glutamate mutase (GM) causes a structural misfit for intact AdoCbl that is relieved by the homolytic Co-C bond cleavage. Strategically interacting adjacent adenosine- and substrate-binding protein cavities provide a tight caged radical reaction space, controlling the entire radical path. The GM active site is perfectly structured for promoting radical catalysis, including "negative catalysis", a paradigm for AdoCbl-dependent mutases.
Collapse
Affiliation(s)
- Karl Gruber
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
- BioTechMed-Graz8010GrazAustria
- Field of Excellence “BioHealth”University of Graz8010GrazAustria
| | - Vanessa Csitkovits
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
| | - Andrzej Łyskowski
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
- Present address: Department of Biotechnology and BioinformaticsRzeszów University of Technologyal. Powstańców Warszawy 1235-959RzeszówPoland
| | - Christoph Kratky
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
| | - Bernhard Kräutler
- Institute of Organic ChemistryUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
- Center of Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| |
Collapse
|
5
|
Jacoby C, Ebenau-Jehle C, Saum K, Jehmlich N, von Bergen M, Brüls T, Boll M. Genes and enzymes involved in the biodegradation of the quaternary carbon compound pivalate in the denitrifying Thauera humireducens strain PIV-1. Environ Microbiol 2022; 24:3181-3194. [PMID: 35437936 DOI: 10.1111/1462-2920.16021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
Abstract
Quaternary carbon containing compounds exist in natural and fossil oil derived products and are used in chemical and pharmaceutical applications up to industrial scale. Due to the inaccessibility of the quaternary carbon atom for a direct oxidative or reductive attack, they are considered as persistent in the environment. Here, we investigated the unknown degradation of the quaternary carbon-containing model compound pivalate (2,2-dimethyl-propionate) in the denitrifying bacterium Thauera humireducens strain PIV-1 (formerly T. pivalivorans). We provide multiple evidence for a pathway comprising the activation to pivalyl-CoA and the carbon skeleton rearrangement to isovaleryl-CoA. Subsequent reactions proceed similar to the catabolic leucine degradation pathway such as the carboxylation to 3-methylglutaconyl-CoA and the cleavage of 3-methyl-3-hydroxyglutaryl-CoA to acetyl-CoA and acetoacetate. The completed genome of Thauera humireducens strain PIV-1 together with proteomic data was used to identify pivalate-upregulated gene clusters including genes putatively encoding pivalate CoA ligase and adenosylcobalamin-dependent pivalyl-CoA mutase. A pivalate-induced gene encoding a putative carboxylic acid CoA ligase was heterologously expressed, and its highly enriched product exhibited pivalate CoA ligase activity. The results provide first experimental insights into the biodegradation pathway of a quaternary carbon-containing model compound that serves as a blueprint for the degradation of related quaternary carbon-containing compounds. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Christian Jacoby
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Christa Ebenau-Jehle
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Katharina Saum
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Nico Jehmlich
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.,Department of Molecular Systems Biology, Helmholtz,Centre for Environmental Research -.UFZ, 04318, Leipzig, Germany
| | - Martin von Bergen
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.,Department of Molecular Systems Biology, Helmholtz,Centre for Environmental Research -.UFZ, 04318, Leipzig, Germany.,Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Brüderstr. 34, 04103, Leipzig, Germany
| | - Thomas Brüls
- Génomique métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Matthias Boll
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
6
|
Ghosh AP, Toda MJ, Kozlowski PM. What Triggers the Cleavage of the Co–C 5′ Bond in Coenzyme B 12-Dependent Itaconyl-CoA Methylmalonyl-CoA Mutase? ACS Catal 2021. [DOI: 10.1021/acscatal.1c00291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Arghya Pratim Ghosh
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Megan J. Toda
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
7
|
Kumar N, Bucher D, Kozlowski PM. Mechanistic Implications of Reductive Co–C Bond Cleavage in B12-Dependent Methylmalonyl CoA Mutase. J Phys Chem B 2019; 123:2210-2216. [PMID: 30735049 DOI: 10.1021/acs.jpcb.8b10820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Neeraj Kumar
- Computational Biology and Bioinformatics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Denis Bucher
- Molecular Modeling & Design at leadXpro Villigen, Canton of Aargau, Switzerland
| | - Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
8
|
Singh P, Sinha R, Tyagi G, Sharma NK, Saini NK, Chandolia A, Prasad AK, Varma-Basil M, Bose M. PDIM and SL1 accumulation in Mycobacterium tuberculosis is associated with mce4A expression. Gene 2017; 642:178-187. [PMID: 28988960 DOI: 10.1016/j.gene.2017.09.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 08/30/2017] [Accepted: 09/26/2017] [Indexed: 02/05/2023]
Abstract
Lipid metabolism forms the heart and soul of Mycobacterium tuberculosis life cycle. Starting from macrophage invasion at cholesterol rich micro-domains to a sustainable survival for infection by utilizing cholesterol, Mycobacterium displays the nexus of metabolic pathways around host derived lipids. mce4 operon acts as cholesterol import system in M. tuberculosis and here we demonstrate role of mce4A gene of this operon in cholesterol catabolism. Here M. tuberculosis H37Rv overexpressing Rv3499c (mce4A) recombinant was used as a model to decipher the metabolic flux during intake and utilization of host lipids by mycobacteria. We analysed the impact of mce4A expression on carbon shift initiated during cholesterol utilization necessary for long term survival of mycobacterium. Through transcriptional analysis, upregulation in methylcitrate cycle (MCC) and methylmalonyl pathway (MMP) genes was observed in Rv3499c overexpressing recombinants of M. tuberculosis H37Rv. Up-regulation of methylmalonyl pathway associated enzyme encoding genes increased accumulation of virulence associated mycobacterial lipids phthiocerol dimycocerates (PDIM) and sulfolipid (SL1). We demonstrate that MCC and MMP associated enzyme encoding genes are upregulated upon mce4A overexpression and lead to enhanced accumulation of PDIM and SL1 which are responsible for pathogenicity of M. tuberculosis.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Microbiology, V. P. Chest Institute, University of Delhi, Chatra Marg, Delhi, India; Public Health research Institute, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Rajesh Sinha
- Department of Microbiology, V. P. Chest Institute, University of Delhi, Chatra Marg, Delhi, India; Department of Biochemistry, V. P. Chest Institute, University of Delhi, Chatra Marg, Delhi, India
| | - Gaurav Tyagi
- Department of Microbiology, V. P. Chest Institute, University of Delhi, Chatra Marg, Delhi, India
| | - Naresh Kumar Sharma
- Department of Microbiology, V. P. Chest Institute, University of Delhi, Chatra Marg, Delhi, India
| | - Neeraj K Saini
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Amita Chandolia
- Department of Microbiology, V. P. Chest Institute, University of Delhi, Chatra Marg, Delhi, India
| | - Ashok Kumar Prasad
- Department of Chemistry, Bioorganic Laboratory, University of Delhi, Delhi 110007, India
| | - Mandira Varma-Basil
- Department of Microbiology, V. P. Chest Institute, University of Delhi, Chatra Marg, Delhi, India
| | - Mridula Bose
- Department of Microbiology, V. P. Chest Institute, University of Delhi, Chatra Marg, Delhi, India.
| |
Collapse
|
9
|
Horitani M, Byer AS, Shisler KA, Chandra T, Broderick JB, Hoffman BM. Why Nature Uses Radical SAM Enzymes so Widely: Electron Nuclear Double Resonance Studies of Lysine 2,3-Aminomutase Show the 5'-dAdo• "Free Radical" Is Never Free. J Am Chem Soc 2015; 137:7111-21. [PMID: 25923449 PMCID: PMC4612528 DOI: 10.1021/jacs.5b00498] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lysine 2,3-aminomutase (LAM) is a radical S-adenosyl-L-methionine (SAM) enzyme and, like other members of this superfamily, LAM utilizes radical-generating machinery comprising SAM anchored to the unique Fe of a [4Fe-4S] cluster via a classical five-membered N,O chelate ring. Catalysis is initiated by reductive cleavage of the SAM S-C5' bond, which creates the highly reactive 5'-deoxyadenosyl radical (5'-dAdo•), the same radical generated by homolytic Co-C bond cleavage in B12 radical enzymes. The SAM surrogate S-3',4'-anhydroadenosyl-L-methionine (anSAM) can replace SAM as a cofactor in the isomerization of L-α-lysine to L-β-lysine by LAM, via the stable allylic anhydroadenosyl radical (anAdo•). Here electron nuclear double resonance (ENDOR) spectroscopy of the anAdo• radical in the presence of (13)C, (2)H, and (15)N-labeled lysine completes the picture of how the active site of LAM from Clostridium subterminale SB4 "tames" the 5'-dAdo• radical, preventing it from carrying out harmful side reactions: this "free radical" in LAM is never free. The low steric demands of the radical-generating [4Fe-4S]/SAM construct allow the substrate target to bind adjacent to the S-C5' bond, thereby enabling the 5'-dAdo• radical created by cleavage of this bond to react with its partners by undergoing small motions, ∼0.6 Å toward the target and ∼1.5 Å overall, that are controlled by tight van der Waals contact with its partners. We suggest that the accessibility to substrate and ready control of the reactive C5' radical, with "van der Waals control" of small motions throughout the catalytic cycle, is common within the radical SAM enzyme superfamily and is a major reason why these enzymes are the preferred means of initiating radical reactions in nature.
Collapse
Affiliation(s)
- Masaki Horitani
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Amanda S. Byer
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Krista A. Shisler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Tilak Chandra
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Joan B. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Brunk E, Kellett W, Richards NGJ, Rothlisberger U. A mechanochemical switch to control radical intermediates. Biochemistry 2014; 53:3830-8. [PMID: 24846280 PMCID: PMC4067147 DOI: 10.1021/bi500050k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/17/2014] [Indexed: 12/24/2022]
Abstract
B₁₂-dependent enzymes employ radical species with exceptional prowess to catalyze some of the most chemically challenging, thermodynamically unfavorable reactions. However, dealing with highly reactive intermediates is an extremely demanding task, requiring sophisticated control strategies to prevent unwanted side reactions. Using hybrid quantum mechanical/molecular mechanical simulations, we follow the full catalytic cycle of an AdoB₁₂-dependent enzyme and present the details of a mechanism that utilizes a highly effective mechanochemical switch. When the switch is "off", the 5'-deoxyadenosyl radical moiety is stabilized by releasing the internal strain of an enzyme-imposed conformation. Turning the switch "on," the enzyme environment becomes the driving force to impose a distinct conformation of the 5'-deoxyadenosyl radical to avoid deleterious radical transfer. This mechanochemical switch illustrates the elaborate way in which enzymes attain selectivity of extremely chemically challenging reactions.
Collapse
Affiliation(s)
- Elizabeth Brunk
- Laboratory
of Computational Chemistry and Biochemistry, EPFL, Lausanne, Switzerland 1015
| | - Whitney
F. Kellett
- Indiana
University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Nigel G. J. Richards
- Indiana
University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry, EPFL, Lausanne, Switzerland 1015
| |
Collapse
|
11
|
Broderick JB, Duffus B, Duschene KS, Shepard EM. Radical S-adenosylmethionine enzymes. Chem Rev 2014; 114:4229-317. [PMID: 24476342 PMCID: PMC4002137 DOI: 10.1021/cr4004709] [Citation(s) in RCA: 615] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Joan B. Broderick
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Benjamin
R. Duffus
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Kaitlin S. Duschene
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Eric M. Shepard
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
12
|
|
13
|
Krzycki JA. The path of lysine to pyrrolysine. Curr Opin Chem Biol 2013; 17:619-25. [PMID: 23856058 DOI: 10.1016/j.cbpa.2013.06.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 01/05/2023]
Abstract
Pyrrolysine is the 22nd genetically encoded amino acid. For many years, its biosynthesis has been primarily a matter for conjecture. Recently, a pathway for the synthesis of pyrrolysine from two molecules of lysine was outlined in which a radical SAM enzyme acts as a lysine mutase to generate a methylated ornithine from lysine, which is then ligated to form an amide with the ɛ-amine of a second lysine. Oxidation of the isopeptide gives rise to pyrrolysine. Mechanisms have been proposed for both the mutase and the ligase, and structures now exist for each, setting the stage for a more detailed understanding of how pyrrolysine is synthesized and functions in bacteria and archaea.
Collapse
Affiliation(s)
- Joseph A Krzycki
- Department of Microbiology, 484 West 12th Avenue, Columbus, OH 43210, United States.
| |
Collapse
|
14
|
Zelder F, Zhou K, Sonnay M. Peptide B12: emerging trends at the interface of inorganic chemistry, chemical biology and medicine. Dalton Trans 2013; 42:854-62. [PMID: 23160417 DOI: 10.1039/c2dt32005c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The sophisticated and efficient delivery of vitamin B(12) ("B(12)") into cells offers promise for B(12)-bioconjugates in medicinal diagnosis and therapy. It is therefore surprising that rather little attention is presently paid to an alternative strategy in drug design: the development of structurally perfect, but catalytically inactive semi-artificial B(12) surrogates. Vitamin B(12) cofactors catalyse important biological transformations and are indispensible for humans and most other forms of life. This strong metabolic dependency exhibits enormous medicinal opportunities. Inhibitors of B(12) dependent enzymes are potential suppressors of fast proliferating cancer cells. This perspective article focuses on the design and study of backbone modified B(12) derivatives, particularly on peptide B(12) derivatives. Peptide B(12) is a recently introduced class of biomimetic cobalamins bearing an artificial peptide backbone with adjustable coordination and redox-properties. Pioneering biological studies demonstrated reduced catalytic activity, combined with inhibitory potential that is encouraging for future efforts in turning natural cofactors into new anti-proliferative agents.
Collapse
Affiliation(s)
- Felix Zelder
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | | | | |
Collapse
|
15
|
Doitomi K, Kamachi T, Toraya T, Yoshizawa K. Inactivation Mechanism of Glycerol Dehydration by Diol Dehydratase from Combined Quantum Mechanical/Molecular Mechanical Calculations. Biochemistry 2012; 51:9202-10. [DOI: 10.1021/bi300488u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuki Doitomi
- Institute for Materials Chemistry and Engineering
and International Research Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan
| | - Takashi Kamachi
- Institute for Materials Chemistry and Engineering
and International Research Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan
| | - Tetsuo Toraya
- Graduate School of Natural Science
and Technology, Okayama University, Okayama
700-8530, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering
and International Research Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
16
|
Friedrich P, Baisch U, Harrington RW, Lyatuu F, Zhou K, Zelder F, McFarlane W, Buckel W, Golding BT. Experimental study of hydrogen bonding potentially stabilizing the 5'-deoxyadenosyl radical from coenzyme B12. Chemistry 2012; 18:16114-22. [PMID: 23080006 DOI: 10.1002/chem.201201840] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/21/2012] [Indexed: 01/28/2023]
Abstract
Coenzyme B(12) can assist radical enzymes that accomplish the vicinal interchange of a hydrogen atom with a functional group. It has been proposed that the Co-C bond homolysis of coenzyme B(12) to cob(II)alamin and the 5'-deoxyadenosyl radical is aided by hydrogen bonding of the corrin C19-H to the 3'-O of the ribose moiety of the incipient 5'-deoxyadenosyl radical, which is stabilized by 30 kJ mol(-1) (B. Durbeej et al., Chem. Eur. J. 2009, 15, 8578-8585). The diastereoisomers (R)- and (S)-2,3-dihydroxypropylcobalamin were used as models for coenzyme B(12). A downfield shift of the NMR signal for the C19-H proton was observed for the (R)-isomer (δ=4.45 versus 4.01 ppm for the (S)-isomer) and can be ascribed to an intramolecular hydrogen bond between the C19-H and the oxygen of CHOH. Crystal structures of (R)- and (S)-2,3-dihydroxypropylcobalamin showed C19-H⋅⋅⋅O distances of 3.214(7) Å (R-isomer) and 3.281(11) Å (S-isomer), which suggest weak hydrogen-bond interactions (-ΔG<6 kJ mol(-1)) between the CHOH of the dihydroxypropyl ligand and the C19-H. Exchange of the C19-H, which is dependent on the cobalt redox state, was investigated with cob(I)alamin, cob(II)alamin, and cob(III)alamin by using NMR spectroscopy to monitor the uptake of deuterium from deuterated water in the pH range 3-11. No exchange was found for any of the cobalt oxidation states. 3',5'-Dideoxyadenosylcobalamin, but not the 2',5'-isomer, was found to act as a coenzyme for glutamate mutase, with a 15-fold lower k(cat)/K(M) than 5'-deoxyadenosylcobalamin. This indicates that stabilization of the 5'-deoxyadenosyl radical by a hydrogen bond that involves the C19-H and the 3'-OH group of the cofactor is, at most, 7 kJ mol(-1) (-ΔG). Examination of the crystal structure of glutamate mutase revealed additional stabilizing factors: hydrogen bonds between both the 2'-OH and 3'-OH groups and glutamate 330. The actual strength of a hydrogen bond between the C19-H and the 3'-O of the ribose moiety of the 5'-deoxyadenosyl group is concluded not to exceed 6 kJ mol(-1) (-ΔG).
Collapse
Affiliation(s)
- Peter Friedrich
- School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Buckel W, Friedrich P, Golding BT. Wasserstoffbrücken führen das kurzlebige 5′-Desoxyadenosylradikal zum Tatort. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Buckel W, Friedrich P, Golding BT. Hydrogen bonds guide the short-lived 5'-deoxyadenosyl radical to the place of action. Angew Chem Int Ed Engl 2012; 51:9974-6. [PMID: 22945861 DOI: 10.1002/anie.201205299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Wolfgang Buckel
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, 35032 Marburg, Germany.
| | | | | |
Collapse
|
19
|
Kumar N, Liu S, Kozlowski PM. Charge Separation Propensity of the Coenzyme B12-Tyrosine Complex in Adenosylcobalamin-Dependent Methylmalonyl-CoA Mutase Enzyme. J Phys Chem Lett 2012; 3:1035-1038. [PMID: 26286568 DOI: 10.1021/jz300102s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report the electrophilic Fukui function analysis based on density functional reactivity theory (DFRT) to demonstrate the feasibility of the proton-coupled electron transfer (PCET) mechanism. To characterize the charge propensity of an electron-transfer site other than the proton-acceptor site of the coenzyme B12-tyrosine complex, several structural models (ranging from minimal to actual enzyme scaffolds) have been employed at DFT and QM/MM computations. It is shown, based on the methylmalonyl-CoA mutase (MCM) enzyme that substrate binding plays a significant role in displacing the phenoxyl proton of the tyrosine (Y89), which initiates the electron transfer from Y89 to coenzyme B12. PCET-based enzymatic reaction implies that one electron-reduced form of the AdoCbl cofactor induces the cleavage of the Co-C bond, as an alternative to its neutral analogue, which can assist in understanding the origin of the observed trillion-fold rate enhancement in MCM enzyme.
Collapse
Affiliation(s)
- Neeraj Kumar
- †Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Shubin Liu
- ‡Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, United States
| | - Pawel M Kozlowski
- †Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
20
|
Bucher D, Sandala GM, Durbeej B, Radom L, Smith DM. The Elusive 5′-Deoxyadenosyl Radical in Coenzyme-B12-Mediated Reactions. J Am Chem Soc 2012; 134:1591-9. [DOI: 10.1021/ja207809b] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Denis Bucher
- School of Chemistry and ARC Centre of Excellence
for Free Radical Chemistry
and Biotechnology, University of Sydney, Sydney, NSW 2006, Australia
| | - Gregory M. Sandala
- School of Chemistry and ARC Centre of Excellence
for Free Radical Chemistry
and Biotechnology, University of Sydney, Sydney, NSW 2006, Australia
- Division of Organic
Chemistry and Biochemistry, Ruđer Bošković Institute, 10002 Zagreb, Croatia
| | - Bo Durbeej
- Division of Computational
Physics, IFM Theory and Modelling, Linköping University, SE-581 83 Linköping, Sweden
| | - Leo Radom
- School of Chemistry and ARC Centre of Excellence
for Free Radical Chemistry
and Biotechnology, University of Sydney, Sydney, NSW 2006, Australia
| | - David M. Smith
- Division of Organic
Chemistry and Biochemistry, Ruđer Bošković Institute, 10002 Zagreb, Croatia
- Computer-Chemie-Centrum, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
21
|
Abstract
Vitamin B12, the "antipernicious anaemia factor", is a crystallisable cobalt-complex, which belongs to a group of unique "complete" corrinoids, named cobalamins (Cbl). In humans, instead of the "vitamin", two organometallic B12-forms are coenzymes in two metabolically important enzymes: Methyl-cobalamin, the cofactor of methionine synthase, and coenzyme B12 (adenosyl-cobalamin), the cofactor of methylmalonyl-CoA mutase. The cytoplasmatic methionine synthase catalyzes the transfer of a methyl group from N-methyl-tetrahydrofolate to homocysteine to yield methionine and to liberate tetrahydrofolate. In the mitochondrial methylmalonyl-CoA mutase a radical process transforms methylmalonyl-CoA (a remains e.g. from uneven numbered fatty acids) into succinyl-CoA, for further metabolic use. In addition, in the human mitochondria an adenosyl-transferase incorporates the organometallic group of coenzyme B12. In all these enzymes, the bound B12-derivatives engage (or are formed) in exceptional organometallic enzymatic reactions. This chapter recapitulates the physiological chemistry of vitamin B12, relevant in the context of the metabolic transformation of B12-derivatives into the relevant coenzyme forms and their use in B12-dependent enzymes.
Collapse
Affiliation(s)
- Bernhard Kräutler
- Institute of Organic Chemistry and Centre of Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria,
| |
Collapse
|
22
|
Enzyme catalyzed radical dehydrations of hydroxy acids. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:1278-90. [PMID: 22178228 DOI: 10.1016/j.bbapap.2011.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 11/28/2011] [Indexed: 11/24/2022]
Abstract
BACKGROUND The steadily increasing field of radical biochemistry is dominated by the large family of S-adenosylmethionine dependent enzymes, the so-called radical SAM enzymes, of which several new members are discovered every year. Here we report on 2- and 4-hydroxyacyl-CoA dehydratases which apply a very different method of radical generation. In these enzymes ketyl radicals are formed by one-electron reduction or oxidation and are recycled after each turnover without further energy input. Earlier reviews on 2-hydroxyacyl-CoA dehydratases were published in 2004 [J. Kim, M. Hetzel, C.D. Boiangiu, W. Buckel, FEMS Microbiol. Rev. 28 (2004) 455-468. W. Buckel, M. Hetzel, J. Kim, Curr. Opin. Chem. Biol. 8 (2004) 462-467.] SCOPE OF REVIEW The review focuses on four types of 2-hydroxyacyl-CoA dehydratases that are involved in the fermentation of amino acids by anaerobic bacteria, especially clostridia. These enzymes require activation by one-electron transfer from an iron-sulfur protein driven by hydrolysis of ATP. The review further describes the proposed mechanism that is highlighted by the identification of the allylic ketyl radical intermediate and the elucidation of the crystal structure of 2-hydroxyisocapryloyl-CoA dehydratase. With 4-hydroxybutyryl-CoA dehydratase the crystal structure, the complete stereochemistry and the function of several conserved residues around the active site could be identified. Finally potential biotechnological applications of the radical dehydratases are presented. GENERAL SIGNIFICANCE The action of the activator as an 'Archerase' shooting electrons into difficultly reducible acceptors becomes an emerging principle in anaerobic metabolism. The dehydratases may provide useful tools in biotechnology. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.
Collapse
|
23
|
Kozlowski PM, Kamachi T, Kumar M, Yoshizawa K. Initial step of B12-dependent enzymatic catalysis: energetic implications regarding involvement of the one-electron-reduced form of adenosylcobalamin cofactor. J Biol Inorg Chem 2011; 17:293-300. [DOI: 10.1007/s00775-011-0850-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 09/28/2011] [Indexed: 11/29/2022]
|
24
|
Abstract
Carboxylases are among the most important enzymes in the biosphere, because they catalyze a key reaction in the global carbon cycle: the fixation of inorganic carbon (CO₂). This minireview discusses the physiological roles of carboxylases in different microbial pathways that range from autotrophy, carbon assimilation, and anaplerosis to biosynthetic and redox-balancing functions. In addition, the current and possible future uses of carboxylation reactions in synthetic biology are discussed. Such uses include the possible transformation of the greenhouse gas carbon dioxide into value-added compounds and the production of novel antibiotics.
Collapse
|
25
|
Molecular hijacking of siroheme for the synthesis of heme and d1 heme. Proc Natl Acad Sci U S A 2011; 108:18260-5. [PMID: 21969545 DOI: 10.1073/pnas.1108228108] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modified tetrapyrroles such as chlorophyll, heme, siroheme, vitamin B(12), coenzyme F(430), and heme d(1) underpin a wide range of essential biological functions in all domains of life, and it is therefore surprising that the syntheses of many of these life pigments remain poorly understood. It is known that the construction of the central molecular framework of modified tetrapyrroles is mediated via a common, core pathway. Herein a further branch of the modified tetrapyrrole biosynthesis pathway is described in denitrifying and sulfate-reducing bacteria as well as the Archaea. This process entails the hijacking of siroheme, the prosthetic group of sulfite and nitrite reductase, and its processing into heme and d(1) heme. The initial step in these transformations involves the decarboxylation of siroheme to give didecarboxysiroheme. For d(1) heme synthesis this intermediate has to undergo the replacement of two propionate side chains with oxygen functionalities and the introduction of a double bond into a further peripheral side chain. For heme synthesis didecarboxysiroheme is converted into Fe-coproporphyrin by oxidative loss of two acetic acid side chains. Fe-coproporphyrin is then transformed into heme by the oxidative decarboxylation of two propionate side chains. The mechanisms of these reactions are discussed and the evolutionary significance of another role for siroheme is examined.
Collapse
|
26
|
Rezola A, de Figueiredo LF, Brock M, Pey J, Podhorski A, Wittmann C, Schuster S, Bockmayr A, Planes FJ. Exploring metabolic pathways in genome-scale networks via generating flux modes. ACTA ACUST UNITED AC 2010; 27:534-40. [PMID: 21149278 DOI: 10.1093/bioinformatics/btq681] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION The reconstruction of metabolic networks at the genome scale has allowed the analysis of metabolic pathways at an unprecedented level of complexity. Elementary flux modes (EFMs) are an appropriate concept for such analysis. However, their number grows in a combinatorial fashion as the size of the metabolic network increases, which renders the application of EFMs approach to large metabolic networks difficult. Novel methods are expected to deal with such complexity. RESULTS In this article, we present a novel optimization-based method for determining a minimal generating set of EFMs, i.e. a convex basis. We show that a subset of elements of this convex basis can be effectively computed even in large metabolic networks. Our method was applied to examine the structure of pathways producing lysine in Escherichia coli. We obtained a more varied and informative set of pathways in comparison with existing methods. In addition, an alternative pathway to produce lysine was identified using a detour via propionyl-CoA, which shows the predictive power of our novel approach. AVAILABILITY The source code in C++ is available upon request.
Collapse
Affiliation(s)
- A Rezola
- Biomedical Engineering, University of Navarra, 20018 San Sebastian, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Taga ME, Walker GC. Sinorhizobium meliloti requires a cobalamin-dependent ribonucleotide reductase for symbiosis with its plant host. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1643-54. [PMID: 20698752 PMCID: PMC2979309 DOI: 10.1094/mpmi-07-10-0151] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Vitamin B(12) (cobalamin) is a critical cofactor for animals and protists, yet its biosynthesis is limited to prokaryotes. We previously showed that the symbiotic nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti requires cobalamin to establish a symbiotic relationship with its plant host, Medicago sativa (alfalfa). Here, the specific requirement for cobalamin in the S. meliloti-alfalfa symbiosis was investigated. Of the three known cobalamin-dependent enzymes in S. meliloti, the methylmalonyl CoA mutase (BhbA) does not affect symbiosis, whereas disruption of the metH gene encoding the cobalamin-dependent methionine synthase causes a significant defect in symbiosis. Expression of the cobalamin-independent methionine synthase MetE alleviates this symbiotic defect, indicating that the requirement for methionine synthesis does not reflect a need for the cobalamin-dependent enzyme. To investigate the function of the cobalamin-dependent ribonucleotide reductase (RNR) encoded by nrdJ, S. meliloti was engineered to express an Escherichia coli cobalamin-independent (class Ia) RNR instead of nrdJ. This strain is severely defective in symbiosis. Electron micrographs show that these cells can penetrate alfalfa nodules but are unable to differentiate into nitrogen-fixing bacteroids and, instead, are lysed in the plant cytoplasm. Flow cytometry analysis indicates that these bacteria are largely unable to undergo endoreduplication. These phenotypes may be due either to the inactivation of the class Ia RNR by reactive oxygen species, inadequate oxygen availability in the nodule, or both. These results show that the critical role of the cobalamin-dependent RNR for survival of S. meliloti in its plant host can account for the considerable resources that S. meliloti dedicates to cobalamin biosynthesis.
Collapse
Affiliation(s)
- Michiko E. Taga
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A
- To whom correspondence should be addressed:
| |
Collapse
|
28
|
Alber BE. Biotechnological potential of the ethylmalonyl-CoA pathway. Appl Microbiol Biotechnol 2010; 89:17-25. [PMID: 20882276 DOI: 10.1007/s00253-010-2873-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/22/2010] [Accepted: 08/24/2010] [Indexed: 11/26/2022]
Abstract
The ethylmalonyl-CoA pathway is central to the carbon metabolism of many α-proteobacteria, like Rhodobacter sphaeroides and Methylobacterium extorquens as well as actinomycetes, like Streptomyces spp. Its function is to convert acetyl-CoA, a central carbon intermediate, to other precursor metabolites for cell carbon biosynthesis. In contrast to the glyoxylate cycle--another widely distributed acetyl-CoA assimilation strategy--the ethylmalonyl-CoA pathway contains many unique CoA-ester intermediates, such as (2R)- and (2S)-ethylmalonyl-CoA, (2S)-methylsuccinyl-CoA, mesaconyl-(C1)-CoA, and (2R, 3S)-methylmalyl-CoA. With this come novel catalysts that interconvert these compounds. Among these unique enzymes is a novel carboxylase that reductively carboxylates crotonyl-CoA, crotonyl-CoA carboxylase/reductase, and (3S)-malyl-CoA thioesterase. The latter represents the first example of a non-Claisen condensation enzyme of the malate synthase superfamily and defines a new class of thioesterases apart from the hotdog-fold and α/β-fold thioesterases. The biotechnological implications of the ethylmalonyl-CoA pathway are tremendous as one looks to tap into the potential of using these new intermediates and catalysts to produce value-added products.
Collapse
Affiliation(s)
- Birgit E Alber
- The Department of Microbiology, Ohio State University, 484 West 12th Ave, Room 417, Columbus, OH, USA.
| |
Collapse
|
29
|
Murtaza S, Ruetz M, Gruber K, Kräutler B. Isovitamin B12: A Vitamin B12 Derivative That Flips Its Tail. Chemistry 2010; 16:10984-8. [DOI: 10.1002/chem.201001616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Randaccio L, Geremia S, Demitri N, Wuerges J. Vitamin B12: unique metalorganic compounds and the most complex vitamins. Molecules 2010; 15:3228-59. [PMID: 20657474 PMCID: PMC6257451 DOI: 10.3390/molecules15053228] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 11/16/2022] Open
Abstract
The chemistry and biochemistry of the vitamin B(12) compounds (cobalamins, XCbl) are described, with particular emphasis on their structural aspects and their relationships with properties and function. A brief history of B(12), reveals how much the effort of chemists, biochemists and crystallographers have contributed in the past to understand the basic properties of this very complex vitamin. The properties of the two cobalamins, the two important B(12) cofactors Ado- and MeCbl are described, with particular emphasis on how the Co-C bond cleavage is involved in the enzymatic mechanisms. The main structural features of cobalamins are described, with particular reference to the axial fragment. The structure/property relationships in cobalamins are summarized. The recent studies on base-off/base-on equilibrium are emphasized for their relevance to the mode of binding of the cofactor to the protein scaffold. The absorption, transport and cellular uptake of cobalamins and the structure of the B(12) transport proteins, IF and TC, in mammals are reviewed. The B(12) transport in bacteria and the structure of the so far determined proteins are briefly described. The currently accepted mechanisms for the catalytic cycles of the AdoCbl and MeCbl enzymes are reported. The structure and function of B(12) enzymes, particularly the important mammalian enzymes methyltransferase (MetH) and methyl-malonyl-coenzyme A mutase (MMCM), are described and briefly discussed. Since fast proliferating cells require higher amount of vitamin B(12) than that required by normal cells, the study of B(12 )conjugates as targeting agents has recently gained importance. Bioconjugates have been studied as potential agents for delivering radioisotopes and NMR probes or as various cytotoxic agents towards cancer cells in humans and the most recent studies are described. Specifically, functionalized bioconjugates are used as "Trojan horses" to carry into the cell the appropriate antitumour or diagnostic label. Possible future developments of B(12) work are summarized.
Collapse
Affiliation(s)
- Lucio Randaccio
- Centre of Excellence in Biocrystallography, Department of Chemical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy.
| | | | | | | |
Collapse
|
31
|
Durbeej B, Sandala GM, Bucher D, Smith DM, Radom L. On the importance of ribose orientation in the substrate activation of the coenzyme B12-dependent mutases. Chemistry 2009; 15:8578-8585. [PMID: 19630017 DOI: 10.1002/chem.200901002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The degree to which the corrin ring portion of coenzyme B(12) can facilitate the H-atom-abstraction step in the glutamate mutase (GM)-catalyzed reaction of (S)-glutamate has been investigated with density functional theory. The crystal structure of GM identifies two possible orientations of the ribose portion of coenzyme B(12). In one orientation (A), the OH groups of the ribose extend away from the corrin ring, whereas in the other orientation (B) the OH groups, especially that involving O3', are instead directed towards the corrin ring. Our calculations identify a sizable stabilization amounting to about 30 kJ mol(-1) in the transition structure (TS) complex corresponding to orientation B (TS(B)CorIm). In the TS complex where the ribose instead is positioned in orientation A, no such effect is manifested. The observed stabilization in TS(B)CorIm appears to be the result of favorable interactions involving O3' and the corrin ring, including a C-HO hydrogen bond. We find that the degree of stabilization is not particularly sensitive to the Co-C distance. Our calculations show that any potential stabilization afforded to the H-atom-abstraction step by coenzyme B(12) is sensitive to the orientation of the ribose moiety.
Collapse
Affiliation(s)
- Bo Durbeej
- School of Chemistry and ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | |
Collapse
|
32
|
Abstract
An increasing number of enzymes are being discovered that contain radicals or catalyze reactions via radical intermediates. These radical enzymes are able to open reaction pathways that two-electron steps cannot achieve. Recently, organic chemists started to apply related radical chemistry for synthetic purposes, whereby an electron energized by light is recycled in every turnover. This Minireview compares this new type of reaction with enzymes that use recycling radicals and single electrons as cofactors.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, 35032 Marburg, Germany.
| |
Collapse
|
33
|
|
34
|
Li X, Chung LW, Paneth P, Morokuma K. DFT and ONIOM(DFT:MM) studies on Co-C bond cleavage and hydrogen transfer in B12-dependent methylmalonyl-CoA mutase. Stepwise or concerted mechanism? J Am Chem Soc 2009; 131:5115-25. [PMID: 19309090 DOI: 10.1021/ja807677z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The considerable protein effect on the homolytic Co-C bond cleavage to form the 5'-deoxyadenosyl (Ado) radical and cob(II)alamin and the subsequent hydrogen transfer from the methylmalonyl-CoA substrate to the Ado radical in the methylmalonyl-CoA mutase (MMCM) have been extensively studied by DFT and ONIOM(DFT/MM) methods. Several quantum models have been used to systematically study the protein effect. The calculations have shown that the Co-C bond dissociation energy is very much reduced in the protein, compared to that in the gas phase. The large protein effect can be decomposed into the cage effect, the effect of coenzyme geometrical distortion, and the protein MM effect. The largest contributor is the MM effect, which mainly consists of the interaction of the QM part of the coenzyme with the MM part of the coenzyme and the surrounding residues. In particular, Glu370 plays an important role in the Co-C bond cleavage process. These effects tremendously enhance the stability of the Co-C bond cleavage state in the protein. The initial Co-C bond cleavage and the subsequent hydrogen transfer were found to occur in a stepwise manner in the protein, although the concerted pathway for the Co-C bond cleavage coupled with the hydrogen transfer is more favored in the gas phase. The assumed concerted transition state in the protein has more deformation of the coenzyme and the substrate and has less interaction with the protein than the stepwise route. Key factors and residues in promoting the enzymatic reaction rate have been discussed in detail.
Collapse
Affiliation(s)
- Xin Li
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | | | | | | |
Collapse
|
35
|
Formation and metabolism of methylmalonyl coenzyme A in Corynebacterium glutamicum. J Bacteriol 2009; 191:2899-901. [PMID: 19233926 DOI: 10.1128/jb.01756-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome sequence information suggests that B(12)-dependent mutases are present in a number of bacteria, including members of the suborder Corynebacterineae like Mycobacterium tuberculosis and Corynebacterium glutamicum. We here functionally identify a methylmalonyl coenzyme A (CoA) mutase in C. glutamicum that is retained in all of the members of the suborder Corynebacterineae and is encoded by NCgl1471, NCgl1472, and NCgl1470. In addition, we observe the presence of methylmalonate in C. glutamicum, reaching concentrations of up to 757 nmol g (dry weight)(-1) in propionate-grown cells, whereas in Escherichia coli no methylmalonate was detectable. As demonstrated with a mutase deletion mutant, the presence of methylmalonate in C. glutamicum is independent of mutase activity but possibly due to propionyl-CoA carboxylase activity. During growth on propionate, increased mutase activity has severe cellular consequences, resulting in growth arrest and excretion of succinate. The physiological context of the mutase present in members of the suborder Corynebacterineae is discussed.
Collapse
|
36
|
Abstract
This chapter reviews the literature on cobalamin- and corrinoid-containing enzymes. These enzymes fall into two broad classes, those using methylcobalamin or related methylcorrinoids as prosthetic groups and catalyzing methyl transfer reactions, and those using adenosylcobalamin as the prosthetic group and catalyzing the generation of substrate radicals that in turn undergo rearrangements and/or eliminations.
Collapse
Affiliation(s)
- Rowena G Matthews
- Department of Biological Chemistry and Life Sciences Institute, University of Michigan, Ann Arbor MI 48109-2216, USA
| |
Collapse
|
37
|
Erb TJ, Rétey J, Fuchs G, Alber BE. Ethylmalonyl-CoA mutase from Rhodobacter sphaeroides defines a new subclade of coenzyme B12-dependent acyl-CoA mutases. J Biol Chem 2008; 283:32283-93. [PMID: 18819910 DOI: 10.1074/jbc.m805527200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coenzyme B(12)-dependent mutases are radical enzymes that catalyze reversible carbon skeleton rearrangement reactions. Here we describe Rhodobacter sphaeroides ethylmalonyl-CoA mutase (Ecm), a novel member of the family of coenzyme B(12)-dependent acyl-CoA mutases, that operates in the recently discovered ethylmalonyl-CoA pathway for acetate assimilation. Ecm is involved in the central reaction sequence of this novel pathway and catalyzes the transformation of ethylmalonyl-CoA to methylsuccinyl-CoA in combination with a second enzyme that was further identified as promiscuous ethylmalonyl-CoA/methylmalonyl-CoA epimerase. In contrast to the epimerase, Ecm is highly specific for its substrate, ethylmalonyl-CoA, and accepts methylmalonyl-CoA only at 0.2% relative activity. Sequence analysis revealed that Ecm is distinct from (2R)-methylmalonyl-CoA mutase as well as isobutyryl-CoA mutase and defines a new subfamily of coenzyme B(12)-dependent acyl-CoA mutases. In combination with molecular modeling, two signature sequences were identified that presumably contribute to the substrate specificity of these enzymes.
Collapse
Affiliation(s)
- Tobias J Erb
- Mikrobiologie, Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | | | | | | |
Collapse
|
38
|
Sommer P, Uhlich NA, Reymond JL, Darbre T. A peptide dendrimer model for vitamin B12 transport proteins. Chembiochem 2008; 9:689-93. [PMID: 18297678 DOI: 10.1002/cbic.200700606] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peter Sommer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | | | | |
Collapse
|
39
|
Gschösser S, Kräutler B. B12-retro-Riboswitches: Guanosyl-Induced Constitutional Switching of B12 Coenzymes. Chemistry 2008; 14:3605-19. [DOI: 10.1002/chem.200701365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Duléry V, Uhlich NA, Maillard N, Fluxá VS, Garcia J, Dumy P, Renaudet O, Reymond JL, Darbre T. A cyclodecapeptide ligand to vitamin B12. Org Biomol Chem 2008; 6:4134-41. [DOI: 10.1039/b811234g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Dybala-Defratyka A, Paneth P, Banerjee R, Truhlar DG. Coupling of hydrogenic tunneling to active-site motion in the hydrogen radical transfer catalyzed by a coenzyme B12-dependent mutase. Proc Natl Acad Sci U S A 2007; 104:10774-9. [PMID: 17581872 PMCID: PMC1904141 DOI: 10.1073/pnas.0702188104] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrogen transfer reactions catalyzed by coenzyme B(12)-dependent methylmalonyl-CoA mutase have very large kinetic isotope effects, indicating that they proceed by a highly quantal tunneling mechanism. We explain the kinetic isotope effect by using a combined quantum mechanical/molecular mechanical potential and semiclassical quantum dynamics calculations. Multidimensional tunneling increases the magnitude of the calculated intrinsic hydrogen kinetic isotope effect by a factor of 3.6 from 14 to 51, in excellent agreement with experimental results. These calculations confirm that tunneling contributions can be large enough to explain even a kinetic isotope effect >50, not because the barrier is unusually thin but because corner-cutting tunneling decreases the distance over which the system tunnels without a comparable increase in either the effective potential barrier or the effective mass for tunneling.
Collapse
Affiliation(s)
- Agnieszka Dybala-Defratyka
- *Institute of Applied Radiation Chemistry, Department of Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland
- To whom correspondence may be addressed. E-mail: or
| | - Piotr Paneth
- *Institute of Applied Radiation Chemistry, Department of Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland
| | - Ruma Banerjee
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664; and
| | - Donald G. Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
42
|
Kozlowski P, Kamachi T, Toraya T, Yoshizawa K. Does Cob(II)alamin Act as a Conductor in Coenzyme B12 Dependent Mutases? Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200602977] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Kozlowski PM, Kamachi T, Toraya T, Yoshizawa K. Does Cob(II)alamin Act as a Conductor in Coenzyme B12 Dependent Mutases? Angew Chem Int Ed Engl 2007; 46:980-3. [PMID: 17171745 DOI: 10.1002/anie.200602977] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|
44
|
Abstract
This review describes enzymes that contain radicals and/or catalyze reactions with radical intermediates. Because radicals irreversibly react with dioxygen, most of these enzymes occur in anaerobic bacteria and archaea. Exceptions are the families of coenzyme B(12)- and S-adenosylmethionine (SAM)-dependent radical enzymes, of which some members also occur in aerobes. Especially oxygen-sensitive radical enzymes are the glycyl radical enzymes and 2-hydroxyacyl-CoA dehydratases. The latter are activated by an ATP-dependent one-electron transfer and act via a ketyl radical anion mechanism. Related enzymes are the ATP-dependent benzoyl-CoA reductase and the ATP-independent 4-hydroxybenzoyl-CoA reductase. Ketyl radical anions may also be generated by one-electron oxidation as shown by the flavin-adenine-dinucleotide (FAD)- and [4Fe-4S]-containing 4-hydroxybutyryl-CoA dehydratase. Finally, two radical enzymes are discussed, pyruvate:ferredoxin oxidoreductase and methane-forming methyl-CoM reductase, which catalyze their main reaction in two-electron steps, but subsequent electron transfers proceed via radicals.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Fachbereich Biologie, Philipps-Universität, D-35032 Marburg, Germany.
| | | |
Collapse
|
45
|
Speranza G, Morelli CF, Cairoli P, Müller B, Schink B. Mechanism of anaerobic degradation of triethanolamine by a homoacetogenic bacterium. Biochem Biophys Res Commun 2006; 349:480-4. [PMID: 16949039 DOI: 10.1016/j.bbrc.2006.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 08/01/2006] [Indexed: 11/25/2022]
Abstract
Triethanolamine (TEA) is converted into acetate and ammonia by a strictly anaerobic, gram-positive Acetobacterium strain LuTria3. Fermentation experiments with resting cell suspensions and specifically deuterated substrates indicate that in the acetate molecule the carboxylate and the methyl groups correspond to the alcoholic function and to its adjacent methylene group, respectively, of the 2-hydroxyethyl unit of TEA. A 1,2 shift of a hydrogen (deuterium) atom from -CH2-O- to =N-CH2- without exchange with the medium was observed. This fact gives evidence that a radical mechanism occurs involving the enzyme and/or coenzyme molecule as a hydrogen carrier. Such a biodegradation appears analogous to the conversion of 2-phenoxyethanol into acetate mediated by another strain of the anaerobic homoacetogenic bacterium Acetobacterium.
Collapse
Affiliation(s)
- Giovanna Speranza
- Dipartimento di Chimica Organica e Industriale, Università degli Studi di Milano, via Venezian 21, I-20133 Milano, Italy.
| | | | | | | | | |
Collapse
|
46
|
Buckel W, Pierik AJ, Plett S, Alhapel A, Suarez D, Tu SM, Golding BT. Mechanism-Based Inactivation of Coenzyme B12-Dependent 2-Methyleneglutarate Mutase by (Z)-Glutaconate and Buta-1,3-diene-2,3-dicarboxylate. Eur J Inorg Chem 2006. [DOI: 10.1002/ejic.200600405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|