1
|
Tomasini M, Caporaso L, Szostak M, Poater A. Towards the activity of twisted acyclic amides. RSC Adv 2025; 15:8207-8212. [PMID: 40129490 PMCID: PMC11932378 DOI: 10.1039/d5ra00229j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025] Open
Abstract
N,N-Boc2 amides have emerged as the most common class of acyclic twisted amides that have been engaged in a range of C-N activation and cross-coupling processes of ubiquitous amide bonds. These amides are readily synthesized from primary amides through a site-selective tert-butoxycarbonylation. Due to the steric bulk of di-tert-butoxy groups, these amides exhibit significant C[double bond, length as m-dash]N bond twisting, which promotes N-C bond cleavage, facilitating their use in cross-coupling reactions. Herein, we present a computational blueprint for the C[double bond, length as m-dash]N bond rotation in N,N-Boc2 amides, revealing that the rotational barrier and twist angle (τ) are influenced by the nature of the substituents at the sp2 carbon position. Sterically hindered substituents exhibit the highest distortions, leading to lower rotation barriers. Rotation along the C[double bond, length as m-dash]N bond is accompanied by phenyl ring rotation to minimize steric clashes. A strong correlation between the rotational barriers and the HOMO energies is observed. These findings provide key insights into the fundamental role of amide bond distortion in C-N activation processes.
Collapse
Affiliation(s)
- Michele Tomasini
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona C/Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
- Dipartimento di Chimica e Biologia, Università di Salerno Via Ponte don Melillo 84084 Fisciano Italy
| | - Lucia Caporaso
- Dipartimento di Chimica e Biologia, Università di Salerno Via Ponte don Melillo 84084 Fisciano Italy
| | - Michal Szostak
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Albert Poater
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona C/Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| |
Collapse
|
2
|
Ou L, Li H, Wang W, Zhao Y, Fu H. Ambient Temperature Cleavages of Amides in an Aqueous Medium for the Ipsilateral Effect of 1,8-Substituents on Naphthalene. Org Lett 2025; 27:2098-2103. [PMID: 39976536 DOI: 10.1021/acs.orglett.5c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
The selective release of a molecule in its native form from a constructed framework is very attractive in the chemical and biological fields. The amide bond is ubiquitous in biological and chemical systems. However, the cleavage of an unmodified typical amide is a great challenge because of its high level of stabilization. Here, couplings of 8-azido-1-naphthoic acid prepared by us with amines afforded 8-azido-1-naphthamides. Reductions of 8-azido in 8-azido-1-naphthamides with sodium sulfide yielded 8-amino-1-naphthamides, and then, fast intramolecular nucleophilic attack of 8-amino to carbonyl of 1-amido in the presence of silica gel as the additive afforded 2,3-benzo[cd]indol-2(1H)-one freeing amines in almost quantitative conversion rates for the ipsilateral effect of 1,8-substituents on naphthalene. Furthermore, this strategy was extended to the cleavages of esters (alkyl 8-azido-1-naphthoates) successfully. The cleavages of amides and esters were performed in an aqueous medium at room temperature with wide functional group tolerance and were suitable for gram-scale production.
Collapse
Affiliation(s)
- Lunyu Ou
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hongyun Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Weifeng Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yufen Zhao
- Yufen Zhao-Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | | |
Collapse
|
3
|
Pillai VG, Malyk KR, Kennedy CR. Mechanistic insights on C(acyl)-N functionalisation mediated by late transition metals. Dalton Trans 2024; 53:18803-18818. [PMID: 39115156 PMCID: PMC11614710 DOI: 10.1039/d4dt01829j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
The carboxamide functional group has a privileged role in organic and biological chemistry due to its prevalence and utility across synthetic and natural products. Due to nN → π*CO delocalisation, amides and related functional groups are typically kinetically resistant to degradation. Nonetheless, over the past decade, transition metal catalysis has transformed our ability to utilise molecules featuring C(acyl)-N units as reactants. Alongside the burgeoning catalytic applications ranging from COx utilisation to small molecule synthesis, elucidation of the underlying mechanisms remains a critical ongoing effort. Herein, we aggregate and analyse current understanding of the mechanisms for C(acyl)-N functionalisation of amides and related functional groups with a focus on recent developments involving mechanisms unique to the late transition metals. Discussion is organized around three general mechanistic manifolds: redox-neutral mechanisms, 2e- redox-cycling mechanisms, and mechanisms involving 1e- redox steps. For each class, we focus on reactions that directly involve a transition metal mediator/catalyst in the C(acyl)-N cleavage step. We conclude with an outlook on the outstanding ambiguities and opportunities for innovation.
Collapse
Affiliation(s)
- Vivek G Pillai
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - Kaycie R Malyk
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - C Rose Kennedy
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
4
|
Taghavi A, Chen JL, Wang Z, Sinnadurai K, Salthouse D, Ozon M, Feri A, Fountain MA, Choudhary S, Childs-Disney JL, Disney MD. NMR structures and magnetic force spectroscopy studies of small molecules binding to models of an RNA CAG repeat expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608150. [PMID: 39229124 PMCID: PMC11370455 DOI: 10.1101/2024.08.20.608150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
RNA repeat expansions fold into stable structures and cause microsatellite diseases such as Huntington's disease (HD), myotonic dystrophy type 1 (DM1), and spinocerebellar ataxias (SCAs). The trinucleotide expansion of r(CAG), or r(CAG)exp, causes both HD and SCA3, and the RNA's toxicity has been traced to its translation into polyglutamine (polyQ; HD) as well as aberrant pre-mRNA alternative splicing (SCA3 and HD). Previously, a small molecule, 1, was discovered that binds to r(CAG)exp and rescues aberrant pre-mRNA splicing in patient-derived fibroblasts by freeing proteins bound to the repeats. Here, we report the structures of single r(CAG) repeat motif (5'CAG/3'GAC where the underlined adenosines form a 1×1 nucleotide internal loop) in complex with 1 and two other small molecules via nuclear magnetic resonance (NMR) spectroscopy combined with simulated annealing. Compound 2 was designed based on the structure of 1 bound to the RNA while 3 was selected as a diverse chemical scaffold. The three complexes, although adopting different 3D binding pockets upon ligand binding, are stabilized by a combination of stacking interactions with the internal loop's closing GC base pairs, hydrogen bonds, and van der Waals interactions. Molecular dynamics (MD) simulations performed with NMR-derived restraints show that the RNA is stretched and bent upon ligand binding with significant changes in propeller-twist and opening. Compound 3 has a distinct mode of binding by insertion into the helix, displacing one of the loop nucleotides into the major groove and affording a rod-like shape binding pocket. In contrast, 1 and 2 are groove binders. A series of single molecule magnetic force spectroscopy studies provide a mechanistic explanation for how bioactive compounds might rescue disease-associated cellular phenotypes.
Collapse
Affiliation(s)
- Amirhossein Taghavi
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Jonathan L. Chen
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Zhen Wang
- Depixus SAS, 3-5 Impasse Reille, 75014, Paris, France
| | | | | | - Matthew Ozon
- Depixus SAS, 3-5 Impasse Reille, 75014, Paris, France
| | - Adeline Feri
- Depixus SAS, 3-5 Impasse Reille, 75014, Paris, France
| | - Matthew A. Fountain
- Department of Chemistry and Biochemistry, State University of New York at Fredonia, Fredonia, NY 14063, USA
| | - Shruti Choudhary
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Jessica L. Childs-Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew D. Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
5
|
Lee HJ, Jang S, Kim TY, Han JW, Nam I, Baek J, Kim YJ. Unveiling the Role of DMAP for the Se-Catalyzed Oxidative Carbonylation of Alcohols: A Mechanism Study. ACS OMEGA 2024; 9:13200-13207. [PMID: 38524452 PMCID: PMC10955696 DOI: 10.1021/acsomega.3c09813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Considering the remarkable catalytic activity (160 times higher) of Se/DMAP for the oxidative carbonylation of alcohols, unveiling the role of DMAP in catalysis is highly required. We investigated DFT calculations, and the proposed intermediates were verified with in situ ATR-FTIR analysis. DFT showed that the formation of [DMAP···HSe]δ-[DMAP(CO)OR]δ+ (IV) via nucleophilic substitution of DMAP at the carbonyl group of DMAP···HSe(CO)OR is the most energetically favorable. DMAP acts as both a nucleophile and a hydrogen bond acceptor, which is responsible for its remarkable activity.
Collapse
Affiliation(s)
- Hye Jin Lee
- Green
and Sustainable Materials R&D Department, Korea Institute of Industrial Technology, Chungcheongnam-do 31056, Republic of Korea
| | - Seohyeon Jang
- School
of Chemical Engineering and Materials Science, Department of Intelligent
Energy and Industry, Department of Advanced Materials Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Tae Yong Kim
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Woo Han
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Inho Nam
- School
of Chemical Engineering and Materials Science, Department of Intelligent
Energy and Industry, Department of Advanced Materials Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jayeon Baek
- Green
and Sustainable Materials R&D Department, Korea Institute of Industrial Technology, Chungcheongnam-do 31056, Republic of Korea
| | - Yong Jin Kim
- Green
and Sustainable Materials R&D Department, Korea Institute of Industrial Technology, Chungcheongnam-do 31056, Republic of Korea
| |
Collapse
|
6
|
Cai Y, Zhao Y, Tang K, Zhang H, Mo X, Chen J, Huang Y. Amide C-N bonds activation by A new variant of bifunctional N-heterocyclic carbene. Nat Commun 2024; 15:496. [PMID: 38216571 PMCID: PMC10786861 DOI: 10.1038/s41467-024-44756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
We report an organocatalyst that combines a triazolium N-heterocyclic carbene (NHC) with a squaramide as a hydrogen-bonding donor (HBD), which can effectively catalyze the atroposelective ring-opening of biaryl lactams via a unique amide C-N bond cleavage mode. The free carbene species attacks the amide carbonyl, forming an axially chiral acyl-azolium intermediate. Various axially chiral biaryl amines can be accessed by this methodology with up to 99% ee and 99% yield. By using mercaptan as a catalyst turnover agent, the resulting thioester synthon can be transformed into several interesting atropisomers. Both control experiments and theoretical calculations reveal the crucial role of the hybrid NHC-HBD skeleton, which activates the amide via H-bonding and brings it spatially close to the carbene centre. This discovery illustrates the potential of the NHC-HBD chimera and demonstrates a complementary strategy for amide bond activation and manipulation.
Collapse
Affiliation(s)
- Yuxing Cai
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Yuxin Zhao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Kai Tang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Hong Zhang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Xueling Mo
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China.
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
7
|
Moon H, Lee S. Reductive cross-coupling of N-acyl pyrazole and nitroarene using tetrahydroxydiboron: synthesis of secondary amides. Org Biomol Chem 2023; 21:8329-8334. [PMID: 37795749 DOI: 10.1039/d3ob01040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
We report on a new method for the synthesis of amides using acyl pyrazoles and nitroarenes under reducing conditions. It was found that acyl pyrazoles react with organo-nitro compounds in the presence of B2(OH)4, giving the corresponding amides in good yields. We demonstrated that benzoyl pyrazoles having various substituents and nitroarenes with different substituents can be used to produce a range of N-substituted benzamides. The method shows good functional group tolerance and has potential application in the synthesis of a variety of organic molecules.
Collapse
Affiliation(s)
- Hayeon Moon
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
8
|
F. T. de Souza Í, C. C. Ribeiro M. Understanding ion-ion and ion-urea interactions in mixtures of urea and choline oxyanions salts. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
9
|
Di Mino C, Clancy AJ, Sella A, Howard CA, Headen TF, Seel AG, Skipper NT. Weak Interactions in Dimethyl Sulfoxide (DMSO)-Tertiary Amide Solutions: The Versatility of DMSO as a Solvent. J Phys Chem B 2023; 127:1357-1366. [PMID: 36752593 PMCID: PMC9940205 DOI: 10.1021/acs.jpcb.2c07155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The structures of equimolar mixtures of the commonly used polar aprotic solvents dimethylformamide (DMF) and dimethylacetamide (DMAc) in dimethyl sulfoxide (DMSO) have been investigated via neutron diffraction augmented by extensive hydrogen/deuterium isotopic substitution. Detailed 3-dimensional structural models of these solutions have been derived from the neutron data via Empirical Potential Structure Refinement (EPSR). The intermolecular center-of-mass (CoM) distributions show that the first coordination shell of the amides comprises ∼13-14 neighbors, of which approximately half are DMSO. In spite of this near ideal coordination shell mixing, the changes to the amide-amide structure are found to be relatively subtle when compared to the pure liquids. Analysis of specific intermolecular atom-atom correlations allows quantitative interpretation of the competition between weak interactions in the solution. We find a hierarchy of formic and methyl C-H···O hydrogen bonds forms the dominant local motifs, with peak positions in the range of 2.5-3.0 Å. We also observe a rich variety of steric and dispersion interactions, including those involving the O═C-N amide π-backbones. This detailed insight into the structural landscape of these important liquids demonstrates the versatility of DMSO as a solvent and the remarkable sensitivity of neutron diffraction, which is critical for understanding weak intermolecular interactions at the nanoscale and thereby tailoring solvent properties to specific applications.
Collapse
Affiliation(s)
- Camilla Di Mino
- Department
of Physics and Astronomy, University College
London, Gower Street, LondonWC1E
6BT, U.K.
| | - Adam J. Clancy
- Department
of Chemistry, University College London, 20 Gordon Street, LondonWC1H 0AJ, U.K.
| | - Andrea Sella
- Department
of Chemistry, University College London, 20 Gordon Street, LondonWC1H 0AJ, U.K.
| | - Christopher A. Howard
- Department
of Physics and Astronomy, University College
London, Gower Street, LondonWC1E
6BT, U.K.
| | - Thomas F. Headen
- ISIS
Neutron and Muon Source, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, DidcotOX11 0QX, U.K.
| | - Andrew G. Seel
- ISIS
Neutron and Muon Source, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, DidcotOX11 0QX, U.K.,E-mail: . Phone: +44 (0)1793 547500
| | - Neal T. Skipper
- Department
of Physics and Astronomy, University College
London, Gower Street, LondonWC1E
6BT, U.K.,E-mail: . Phone: +44 (0)207 679 3526
| |
Collapse
|
10
|
Fraser AC, Yankey J, Coronell O, Dingemans TJ. A Sulfonated All-Aromatic Polyamide for Heavy Metal Capture: A Model Study with Pb(II). ACS APPLIED POLYMER MATERIALS 2023; 5:856-865. [PMID: 38144907 PMCID: PMC10735244 DOI: 10.1021/acsapm.2c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Polyelectrolytes are widely used in heavy metal removal, finding applications as coagulants and flocculants. We compare the heavy metal removal capability of a water-soluble sulfonated semirigid polyamide, poly(2,2'-disulfonyl-4,4'-benzidine isophthalamide) (PBDI), with that of a well-known random-coil polymer, poly(sodium 4-styrenesulfonate) (PSS). Using lead (Pb(II)) as a model contaminant, both polymers precipitate out from solution at ~500 mg/L Pb(II) in water. The ability to remove Pb(II) from water was quantified using adsorption isotherms and fitted with Langmuir and Freundlich adsorption models. The sorption of Pb(II) by PSS fit the Langmuir model with a high degree of correlation (0.976 R2), but the sorption of Pb(II) by PBDI could not be accurately predicted using the Langmuir or Freundlich model. The sorption of Pb(II) by PBDI and PSS was compared by normalizing sorption by the number of sulfonate groups of each polymer and the ion exchange capacity (IEC), found by titration. We find that PBDI removes a greater amount of Pb(II) per gram of sorbent compared to PSS, 410 mg/g vs 260 mg/g, respectively, which cannot be accounted for by differences in IEC or number of sulfonate groups. Our findings confirm that the positioning of the sulfonate groups and the rigidity of the polymer backbone play an important role in how Pb(II) coordinates to the polymer prior to precipitating out from solution.
Collapse
Affiliation(s)
- Anna C Fraser
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3050, United States
| | - Jacob Yankey
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3050, United States
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, United States
| | - Theo J Dingemans
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3050, United States
| |
Collapse
|
11
|
Bonsir M, Kennedy AR, Geerts Y. Synthesis and Structural Properties of Adamantane-Substituted Amines and Amides Containing an Additional Adamantane, Azaadamantane or Diamantane Moiety. ChemistryOpen 2022; 11:e202200031. [PMID: 35243816 PMCID: PMC9535505 DOI: 10.1002/open.202200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/11/2022] [Indexed: 11/12/2022] Open
Abstract
Introduction of adamantane moieties on diamondoids such as adamantane, 2-azaadamantane or diamantane by amide formation and reduction to the corresponding amine was performed in a straightforward and easy way by amidation under Schotten-Baumann conditions and reduction with BH3 ⋅ THF. The obtained amides and amines were studied in terms of structural properties towards the perspective of transformation into nanodiamonds. Crystal structure and dynamic NMR experiments of the most crowded amide obtained gave structural insights into the effect of bulkiness and steric strain on out-of-planarity of amide bonds (16.0°) and the kinetics and thermodynamics of amide bond rotation (ΔG≠ 298K =11.5-13.3 kcal ⋅ mol-1 ).
Collapse
Affiliation(s)
- Maxime Bonsir
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/011050BruxellesBelgium
| | - Alan R. Kennedy
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowScotlandUK
| | - Yves Geerts
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/011050BruxellesBelgium
- International Solvay Institutes for Physics and ChemistryUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 2311050BruxellesBelgium
| |
Collapse
|
12
|
Ochmann M, Vaz da Cruz V, Eckert S, Huse N, Föhlisch A. R-Group stabilization in methylated formamides observed by resonant inelastic X-ray scattering. Chem Commun (Camb) 2022; 58:8834-8837. [PMID: 35848855 PMCID: PMC9350990 DOI: 10.1039/d2cc00053a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022]
Abstract
The inherent stability of methylated formamides is traced to a stabilization of the deep-lying σ-framework by resonant inelastic X-ray scattering at the nitrogen K-edge. Charge transfer from the amide nitrogen to the methyl groups underlie this stabilization mechanism that leaves the aldehyde group essentially unaltered and explains the stability of secondary and tertiary amides.
Collapse
Affiliation(s)
- Miguel Ochmann
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Vinícius Vaz da Cruz
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany.
| | - Sebastian Eckert
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany.
| | - Nils Huse
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Alexander Föhlisch
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany.
- Institut für Physik and Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|
13
|
Deb M, Hassan N, Chowdhury D, Sanfui MH, Roy S, Bhattacharjee C, Majumdar S, Chattopadhyay PK, Singha NR. Nontraditional Redox Active Aliphatic Luminescent Polymer for Ratiometric pH Sensing and Sensing-Removal-Reduction of Cu(II): Strategic Optimization of Composition. Macromol Rapid Commun 2022; 43:e2200317. [PMID: 35798327 DOI: 10.1002/marc.202200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/11/2022] [Indexed: 11/11/2022]
Abstract
Here, redox active aliphatic luminescent polymers (ALPs) are synthesized via polymerization of N,N-dimethyl-2-propenamide (DMPA) and 2-methyl-2-propenoic acid (MPA). The structures and properties of the optimum ALP3, ALP3-aggregate and Cu(I)-ALP3, ratiometric pH sensing, redox activity, aggregation enhanced emission (AEE), Stokes shift, and oxygen-donor selective coordination-reduction of Cu(II) to Cu(I) are explored via spectroscopic, microscopic, density functional theory-reduced density gradient (DFT-RDG), fluorescence quenching, adsorption isotherm-thermodynamics, and electrochemical methods. The intense blue and green fluorescence of ALP3 emerges at pH = 7.0 and 9.0, respectively, due to alteration of fluorophores from -C(═O)N(CH3 )2 / -C(═O)OH to -C(O- )═N+ (CH3 )2 / -C(═O)O- , inferred from binding energies at 401.32 eV (-C(O- )═N+ (CH3 )2 ) and 533.08 eV (-C(═O)O- ), significant red shifting in absorption and emission spectra, and peak at 2154 cm-1 . The n-π* communications in ALP3-aggregate, hydrogen bondings within 2.34-2.93 Å (intramolecular) in ALP3 and within 1.66-2.89 Å (intermolecular) in ALP3-aggregate, respectively, contribute significantly in fluorescence, confirmed from NMR titration, ratiometric pH sensing, AEE, excitation dependent emission, and Stokes shift and DFT-RDG analyses. For ALP3, Stokes shift, excellent limit of detection, adsorption capacity, and redox potentials are 13561 cm-1 /1.68 eV, 0.137 ppb, 122.93 mg g-1 , and 0.33/-1.04 V at pH 7.0, respectively.
Collapse
Affiliation(s)
- Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Nadira Hassan
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Deepak Chowdhury
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Md Hussain Sanfui
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Shrestha Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | | | - Swapan Majumdar
- Department of Chemistry, Tripura University, Suryamaninagar, 799022, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| |
Collapse
|
14
|
Przybyłek M, Miernicka A, Nowak M, Cysewski P. New Screening Protocol for Effective Green Solvents Selection of Benzamide, Salicylamide and Ethenzamide. Molecules 2022; 27:3323. [PMID: 35630800 PMCID: PMC9144492 DOI: 10.3390/molecules27103323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
New protocol for screening efficient and environmentally friendly solvents was proposed and experimentally verified. The guidance for solvent selection comes from computed solubility via COSMO-RS approach. Furthermore, solute-solvent affinities computed using advanced quantum chemistry level were used as a rationale for observed solvents ranking. The screening protocol pointed out that 4-formylomorpholine (4FM) is an attractive solubilizer compared to commonly used aprotic solvents such as DMSO and DMF. This was tested experimentally by measuring the solubility of the title compounds in aqueous binary mixtures in the temperature range between 298.15 K and 313.15 K. Additional measurements were also performed for aqueous binary mixtures of DMSO and DMF. It has been found that the solubility of studied aromatic amides is very high and quite similar in all three aprotic solvents. For most aqueous binary mixtures, a significant decrease in solubility with a decrease in the organic fraction is observed, indicating that all systems can be regarded as efficient solvent-anti-solvent pairs. In the case of salicylamide dissolved in aqueous-4FM binary mixtures, a strong synergistic effect has been found leading to the highest solubility for 0.6 mole fraction of 4-FM.
Collapse
Affiliation(s)
- Maciej Przybyłek
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950 Bydgoszcz, Poland; (A.M.); (M.N.)
| | | | | | - Piotr Cysewski
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950 Bydgoszcz, Poland; (A.M.); (M.N.)
| |
Collapse
|
15
|
Abstract
In this contribution, we provide a comprehensive overview of acyclic twisted amides, covering the literature since 1993 (the year of the first recognized report on acyclic twisted amides) through June 2020. The review focuses on classes of acyclic twisted amides and their key structural properties, such as amide bond twist and nitrogen pyramidalization, which are primarily responsible for disrupting nN to π*C═O conjugation. Through discussing acyclic twisted amides in comparison with the classic bridged lactams and conformationally restricted cyclic fused amides, the reader is provided with an overview of amidic distortion that results in novel conformational features of acyclic amides that can be exploited in various fields of chemistry ranging from organic synthesis and polymers to biochemistry and structural chemistry and the current position of acyclic twisted amides in modern chemistry.
Collapse
Affiliation(s)
- Guangrong Meng
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jin Zhang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
16
|
Experimental and theoretical spectroscopic characterization, NLO response, and reactivity of the pharmacological agent spilanthol and analogues. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
An energy decomposition analysis approach to the rotational barriers of amides and thioamides. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Sartyoungkul S, Yakiyama Y, Sakurai H. Synthesis and Dimerization Properties of Cup‐ and Bowl‐shaped Cyclic Trilactams. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sitanan Sartyoungkul
- Division of Applied ChemistryGraduate School of EngineeringOsaka University 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
| | - Yumi Yakiyama
- Division of Applied ChemistryGraduate School of EngineeringOsaka University 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
| | - Hidehiro Sakurai
- Division of Applied ChemistryGraduate School of EngineeringOsaka University 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
| |
Collapse
|
19
|
|
20
|
Li G, Szostak M. Transition-Metal-Free Activation of Amides by N-C Bond Cleavage. CHEM REC 2019; 20:649-659. [PMID: 31833633 DOI: 10.1002/tcr.201900072] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022]
Abstract
The amide bond N-C activation represents a powerful strategy in organic synthesis to functionalize the historically inert amide linkage. This personal account highlights recent remarkable advances in transition-metal-free activation of amides by N-C bond cleavage, focusing on both (1) mechanistic aspects of ground-state-destabilization of the amide bond enabling formation of tetrahedral intermediates directly from amides with unprecedented selectivity, and (2) synthetic utility of the developed transformations. Direct nucleophilic addition to amides enables a myriad of powerful methods for the formation of C-C, C-N, C-O and C-S bonds, providing a straightforward and more synthetically useful alternative to acyl-metals.
Collapse
Affiliation(s)
- Guangchen Li
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| |
Collapse
|
21
|
Chen X, Fulfer KD, Woodard KT, Kuroda DG. Structure and Dynamics of the Lithium-Ion Solvation Shell in Ureas. J Phys Chem B 2019; 123:9889-9898. [DOI: 10.1021/acs.jpcb.9b07623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaobing Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kristen D. Fulfer
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Chemistry Program, Centre College, Danville, Kentucky 40422, United States
| | - Kaylee T. Woodard
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Daniel G. Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
22
|
Ciechańska M, Jóźwiak A, Nazarski RB, Skorupska EA. Unexpected Rearrangement of Dilithiated Isoindoline-1,3-diols into 3-Aminoindan-1-ones via N-Lithioaminoarylcarbenes: A Combined Synthetic and Computational Study. J Org Chem 2019; 84:11425-11440. [PMID: 31449415 DOI: 10.1021/acs.joc.9b01217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of 2-aryl-3-hydroxyisoindolin-1-ones with the s-BuLi·TMEDA system in THF at -78 °C, affording a series of diastereomeric 3-aminoindan-1-ones via a novel rearrangement of the isoindolinone scaffold, is reported. It is proposed that α-elimination of LiOH from the transient N,O-dilithiated hemiaminal carbenoids leads to the formation of singlet carbenes followed by their trapping via an intramolecular C-H insertion. An alternative explanation based on an intramolecular Mannich reaction seem much less probable. A mechanistic-type study that combines spectroscopic data of the products and calculation results, with a special focus on the diverse lithiated intermediates that are most likely to engage in the title process (particularly those with internal Li bonds), is presented. The MP2 approach, including the NPA and QTAIM data, provided insight into structures and properties of all these species. Two reaction routes A and B appeared to be possible for the postulated carbene mechanism. An unusual metamorphosis of the CCN atom triad, from a near sp 1-azaallene-type in more stable noncarbene Li enolates to a roughly sp2 type in their carbene keto tautomers, is recognized in one of these pathways (route B). Dominant forms of resonance structures for the aforementioned tautomeric systems that have seven-membered quasi rings stabilized by Li+ ions bridging the N and carbonyl O atoms are indicated. Large computational difficulties arising from a huge impact of internal Li+ complexation on conformational preferences and electronic properties of carbonyl group-bearing lithium derivatives are also discussed. The new γ-keto carbene species under study belong to a subclass of acyclic aminoarylcarbenes.
Collapse
Affiliation(s)
- Magdalena Ciechańska
- Department of Organic Chemistry, Faculty of Chemistry , University of Lodz , Tamka 12 , 91-403 Łódź , Poland
| | - Andrzej Jóźwiak
- Department of Organic Chemistry, Faculty of Chemistry , University of Lodz , Tamka 12 , 91-403 Łódź , Poland
| | - Ryszard B Nazarski
- Theoretical and Structural Chemistry Group, Department of Physical Chemistry, Faculty of Chemistry , University of Lodz , Pomorska 163/165 , 90-236 Łódź , Poland
| | - Ewa A Skorupska
- Department of Organic Chemistry, Faculty of Chemistry , University of Lodz , Tamka 12 , 91-403 Łódź , Poland
| |
Collapse
|
23
|
Yamasaki R, Morita K, Iizumi H, Ito A, Fukuda K, Okamoto I. N-Ethynylation of Anilides Decreases the Double-Bond Character of Amide Bond while Retaining trans-Conformation and Planarity. Chemistry 2019; 25:10118-10122. [PMID: 31050845 DOI: 10.1002/chem.201901451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/20/2019] [Indexed: 11/08/2022]
Abstract
Activated amide bonds have been attracting intense attention; however, most of the studied moieties have twisted amide character. To add a new strategy to activate amide bonds while maintaining its planarity, we envisioned the introduction of an alkynyl group on the amide nitrogen to disrupt amide resonance by nN→Csp conjugation. In this context, the conformations and properties of N-ethynyl-substituted aromatic amides were investigated by DFT calculations, crystallography, and NMR spectroscopic analysis. In contrast to the cis conformational preference of N-ethyl- and vinyl-substituted acetanilides, N-ethynyl-substituted acetanilide favors the trans conformation in the crystal and in solution. It also has a decreased double bond character of the C(O)-N bond, without twisting of the amide. N-Ethynyl-substituted acetanilides undergo selective C(O)-N bond or N-C(sp) bond cleavage reactions and have potential applications as activated amides for coupling reactions or easily cleavable tethers.
Collapse
Affiliation(s)
- Ryu Yamasaki
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Kento Morita
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Hiromi Iizumi
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Ai Ito
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Kazuo Fukuda
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Iwao Okamoto
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| |
Collapse
|
24
|
Liu Q, Wang C, Guo Y, Peng C, Narayanan A, Kaur S, Xu Y, Weiss RA, Joy A. Opposing Effects of Side-Chain Flexibility and Hydrogen Bonding on the Thermal, Mechanical, and Rheological Properties of Supramolecularly Cross-Linked Polyesters. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01781] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Amide Activation in Ground and Excited States. Molecules 2018; 23:molecules23112859. [PMID: 30400217 PMCID: PMC6278462 DOI: 10.3390/molecules23112859] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 11/22/2022] Open
Abstract
Not all amide bonds are created equally. The purpose of the present paper is the reinterpretation of the amide group by means of two concepts: amidicity and carbonylicity. These concepts are meant to provide a new viewpoint in defining the stability and reactivity of amides. With the help of simple quantum-chemical calculations, practicing chemists can easily predict the outcome of a desired process. The main benefit of the concepts is their simplicity. They provide intuitive, but quasi-thermodynamic data, making them a practical rule of thumb for routine use. In the current paper we demonstrate the performance of our methods to describe the chemical character of an amide bond strength and the way of its activation methods. Examples include transamidation, acyl transfer and amide reductions. Also, the method is highly capable for simple interpretation of mechanisms for biological processes, such as protein splicing and drug mechanisms. Finally, we demonstrate how these methods can provide information about photo-activation of amides, through the examples of two caged neurotransmitter derivatives.
Collapse
|
26
|
Unexpected Resistance to Base-Catalyzed Hydrolysis of Nitrogen Pyramidal Amides Based on the 7-Azabicyclic[2.2.1]heptane Scaffold. MOLECULES (BASEL, SWITZERLAND) 2018; 23:molecules23092363. [PMID: 30223585 PMCID: PMC6225387 DOI: 10.3390/molecules23092363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 11/27/2022]
Abstract
Non-planar amides are usually transitional structures, that are involved in amide bond rotation and inversion of the nitrogen atom, but some ground-minimum non-planar amides have been reported. Non-planar amides are generally sensitive to water or other nucleophiles, so that the amide bond is readily cleaved. In this article, we examine the reactivity profile of the base-catalyzed hydrolysis of 7-azabicyclo[2.2.1]heptane amides, which show pyramidalization of the amide nitrogen atom, and we compare the kinetics of the base-catalyzed hydrolysis of the benzamides of 7-azabicyclo[2.2.1]heptane and related monocyclic compounds. Unexpectedly, non-planar amides based on the 7-azabicyclo[2.2.1]heptane scaffold were found to be resistant to base-catalyzed hydrolysis. The calculated Gibbs free energies were consistent with this experimental finding. The contribution of thermal corrections (entropy term, –TΔS‡) was large; the entropy term (ΔS‡) took a large negative value, indicating significant order in the transition structure, which includes solvating water molecules.
Collapse
|
27
|
Meng G, Szostak M. N
‐Acyl‐Glutarimides: Privileged Scaffolds in Amide N–C Bond Cross‐Coupling. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800109] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Guangrong Meng
- Department of Chemistry Rutgers University 73 Warren Street 07102 Newark NJ United States
| | - Michal Szostak
- Department of Chemistry Rutgers University 73 Warren Street 07102 Newark NJ United States
| |
Collapse
|
28
|
Szostak R, Szostak M. N-Acyl-glutarimides: Resonance and Proton Affinities of Rotationally-Inverted Twisted Amides Relevant to N–C(O) Cross-Coupling. Org Lett 2018; 20:1342-1345. [DOI: 10.1021/acs.orglett.8b00086] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Roman Szostak
- Department
of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department
of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
29
|
Meng G, Shi S, Lalancette R, Szostak R, Szostak M. Reversible Twisting of Primary Amides via Ground State N-C(O) Destabilization: Highly Twisted Rotationally Inverted Acyclic Amides. J Am Chem Soc 2018; 140:727-734. [PMID: 29240413 DOI: 10.1021/jacs.7b11309] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Since the seminal studies by Pauling in 1930s, planarity has become the defining characteristic of the amide bond. Planarity of amides has central implications for the reactivity and chemical properties of amides of relevance to a range of chemical disciplines. While the vast majority of amides are planar, nonplanarity has a profound effect on the properties of the amide bond, with the most common method to restrict the amide bond relying on the incorporation of the amide function into a rigid cyclic ring system. In a major departure from this concept, here, we report the first class of acyclic twisted amides that can be prepared, reversibly, from common primary amides in a single, operationally trivial step. Di-tert-butoxycarbonylation of the amide nitrogen atom yields twisted amides in which the amide bond exhibits nearly perpendicular twist. Full structural characterization of a range of electronically diverse compounds from this new class of twisted amides is reported. Through reactivity studies we demonstrate unusual properties of the amide bond, wherein selective cleavage of the amide bond can be achieved by a judicious choice of the reaction conditions. Through computational studies we evaluate structural and energetic details pertaining to the amide bond deformation. The ability to selectively twist common primary amides, in a reversible manner, has important implications for the design and application of the amide bond nonplanarity in structural chemistry, biochemistry and organic synthesis.
Collapse
Affiliation(s)
- Guangrong Meng
- Department of Chemistry, Rutgers University , 73 Warren Street, Newark, New Jersey 07102, United States
| | - Shicheng Shi
- Department of Chemistry, Rutgers University , 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roger Lalancette
- Department of Chemistry, Rutgers University , 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University , F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University , 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
30
|
Attwood M, Turner SS. Back to back 2,6-bis(pyrazol-1-yl)pyridine and 2,2′:6′,2″-terpyridine ligands: Untapped potential for spin crossover research and beyond. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Zhang YQ, Vogelsang E, Qu ZW, Grimme S, Gansäuer A. Titanocene-Catalyzed Radical Opening of N-Acylated Aziridines. Angew Chem Int Ed Engl 2017; 56:12654-12657. [PMID: 28833905 DOI: 10.1002/anie.201707673] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Indexed: 12/14/2022]
Abstract
Aziridines activated by N-acylation are opened to the higher substituted radical through electron transfer from titanocene(III) complexes in a novel catalytic reaction. This reaction is applicable in conjugate additions, reductions, and cyclizations and suited for the construction of quaternary carbon centers. The concerted mechanism of the ring opening is indicated by DFT calculations.
Collapse
Affiliation(s)
- Yong-Qiang Zhang
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Elisabeth Vogelsang
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| |
Collapse
|
32
|
Zhang Y, Vogelsang E, Qu Z, Grimme S, Gansäuer A. Titanocene‐Catalyzed Radical Opening of N‐Acylated Aziridines. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707673] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yong‐Qiang Zhang
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Elisabeth Vogelsang
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Zheng‐Wang Qu
- Mulliken Center for Theoretical Chemistry Universität Bonn Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry Universität Bonn Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| |
Collapse
|
33
|
Mujika JI, Lopez X. Unveiling the Catalytic Role of B-Block Histidine in the N–S Acyl Shift Step of Protein Splicing. J Phys Chem B 2017; 121:7786-7796. [DOI: 10.1021/acs.jpcb.7b04276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. I. Mujika
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi Spain
| | - X. Lopez
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi Spain
| |
Collapse
|
34
|
Szostak R, Meng G, Szostak M. Resonance Destabilization in N-Acylanilines (Anilides): Electronically-Activated Planar Amides of Relevance in N–C(O) Cross-Coupling. J Org Chem 2017; 82:6373-6378. [DOI: 10.1021/acs.joc.7b00971] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Roman Szostak
- Department
of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Guangrong Meng
- Department
of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department
of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
35
|
Liu C, Szostak M. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N−C Amide Bond Activation. Chemistry 2017; 23:7157-7173. [DOI: 10.1002/chem.201605012] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Chengwei Liu
- Department of Chemistry; Rutgers University; 73 Warren Street Newark NJ 07102 USA
| | - Michal Szostak
- Department of Chemistry; Rutgers University; 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
36
|
Araujo CF, Coutinho JAP, Nolasco MM, Parker SF, Ribeiro-Claro PJA, Rudić S, Soares BIG, Vaz PD. Inelastic neutron scattering study of reline: shedding light on the hydrogen bonding network of deep eutectic solvents. Phys Chem Chem Phys 2017; 19:17998-18009. [DOI: 10.1039/c7cp01286a] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Goldilocks conditions of hydrogen bond strength on the basis of deep eutectic behavior.
Collapse
Affiliation(s)
- C. F. Araujo
- CICECO – Aveiro Institute of Materials
- Departamento de Química
- Universidade de Aveiro
- 3810-193 Aveiro
- Portugal
| | - J. A. P. Coutinho
- CICECO – Aveiro Institute of Materials
- Departamento de Química
- Universidade de Aveiro
- 3810-193 Aveiro
- Portugal
| | - M. M. Nolasco
- CICECO – Aveiro Institute of Materials
- Departamento de Química
- Universidade de Aveiro
- 3810-193 Aveiro
- Portugal
| | - S. F. Parker
- ISIS Neutron & Muon Source
- STFC Rutherford Appleton Laboratory
- Chilton
- Didcot
- UK
| | - P. J. A. Ribeiro-Claro
- CICECO – Aveiro Institute of Materials
- Departamento de Química
- Universidade de Aveiro
- 3810-193 Aveiro
- Portugal
| | - S. Rudić
- ISIS Neutron & Muon Source
- STFC Rutherford Appleton Laboratory
- Chilton
- Didcot
- UK
| | - B. I. G. Soares
- CICECO – Aveiro Institute of Materials
- Departamento de Química
- Universidade de Aveiro
- 3810-193 Aveiro
- Portugal
| | - P. D. Vaz
- ISIS Neutron & Muon Source
- STFC Rutherford Appleton Laboratory
- Chilton
- Didcot
- UK
| |
Collapse
|
37
|
Pace V, Holzer W, Meng G, Shi S, Lalancette R, Szostak R, Szostak M. Structures of Highly Twisted Amides Relevant to Amide N−C Cross-Coupling: Evidence for Ground-State Amide Destabilization. Chemistry 2016; 22:14494-8. [DOI: 10.1002/chem.201603543] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Vittorio Pace
- Department of Pharmaceutical Chemistry; Faculty of Life Sciences; University of Vienna; Althanstrasse 14 Vienna 1090 Austria
| | - Wolfgang Holzer
- Department of Pharmaceutical Chemistry; Faculty of Life Sciences; University of Vienna; Althanstrasse 14 Vienna 1090 Austria
| | - Guangrong Meng
- Department of Chemistry; Rutgers University; 73 Warren Street Newark NJ 07102 United States
| | - Shicheng Shi
- Department of Chemistry; Rutgers University; 73 Warren Street Newark NJ 07102 United States
| | - Roger Lalancette
- Department of Chemistry; Rutgers University; 73 Warren Street Newark NJ 07102 United States
| | - Roman Szostak
- Department of Chemistry; Wroclaw University; F. Joliot-Curie 14 Wroclaw 50-383 Poland
| | - Michal Szostak
- Department of Chemistry; Rutgers University; 73 Warren Street Newark NJ 07102 United States
| |
Collapse
|
38
|
Szostak R, Shi S, Meng G, Lalancette R, Szostak M. Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N–C Cross-Coupling. J Org Chem 2016; 81:8091-4. [DOI: 10.1021/acs.joc.6b01560] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Roman Szostak
- Department
of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Shicheng Shi
- Department
of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Guangrong Meng
- Department
of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roger Lalancette
- Department
of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department
of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
39
|
Ma Y, Li Z, Numata K. Synthetic Short Peptides for Rapid Fabrication of Monolayer Cell Sheets. ACS Biomater Sci Eng 2016; 2:697-706. [DOI: 10.1021/acsbiomaterials.6b00113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yinan Ma
- Laboratory
of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Enzyme
Research Team, Biomass Engineering Program Cooperation Division, Center
for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Zhibo Li
- Laboratory
of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Keiji Numata
- Enzyme
Research Team, Biomass Engineering Program Cooperation Division, Center
for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
40
|
Pandey KK. Does hydrohalic acid HX (X = F, Cl) form true N-protonated twisted amide salts? Effects of anions on the ion-pair interactions and on the amide moiety in N-protonated tricyclic twisted amide salts. NEW J CHEM 2016. [DOI: 10.1039/c6nj01342b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The [BF4]− and [RSO3]− anions interact with N-protonated amide cations through N–H⋯F and N–H⋯O strong hydrogen bonds and hydrohalic acids form very weak N⋯H–X hydrogen bonds.
Collapse
Affiliation(s)
- Krishna K. Pandey
- School of Chemical Sciences
- Devi Ahilya University Indore
- Indore-452017
- India
| |
Collapse
|
41
|
López CS, Faza ON, Freindorf M, Kraka E, Cremer D. Solving the Pericyclic–Pseudopericyclic Puzzle in the Ring-Closure Reactions of 1,2,4,6-Heptatetraene Derivatives. J Org Chem 2015; 81:404-14. [DOI: 10.1021/acs.joc.5b01997] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carlos Silva López
- Departamento
de Química Orgánica, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Olalla Nieto Faza
- Departamento
de Química Orgánica, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Marek Freindorf
- Computational
and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Elfi Kraka
- Computational
and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Dieter Cremer
- Computational
and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| |
Collapse
|
42
|
Szostak R, Aubé J, Szostak M. An efficient computational model to predict protonation at the amide nitrogen and reactivity along the C-N rotational pathway. Chem Commun (Camb) 2015; 51:6395-8. [PMID: 25766378 DOI: 10.1039/c5cc01034a] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Protonation of amides is critical in numerous biological processes, including amide bonds proteolysis and protein folding as well as in organic synthesis as a method to activate amide bonds towards unconventional reactivity. A computational model enabling prediction of protonation at the amide bond nitrogen atom along the C-N rotational pathway is reported. Notably, this study provides a blueprint for the rational design and application of amides with a controlled degree of rotation in synthetic chemistry and biology.
Collapse
Affiliation(s)
- Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | | | | |
Collapse
|
43
|
Ultra-sensitive immunosensor for detection of hepatitis B surface antigen using multi-functionalized gold nanoparticles. Anal Chim Acta 2015; 895:1-11. [DOI: 10.1016/j.aca.2015.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 07/24/2015] [Indexed: 01/03/2023]
|
44
|
Szostak R, Aubé J, Szostak M. Determination of Structures and Energetics of Small- and Medium-Sized One-Carbon-Bridged Twisted Amides using ab Initio Molecular Orbital Methods: Implications for Amidic Resonance along the C–N Rotational Pathway. J Org Chem 2015; 80:7905-27. [DOI: 10.1021/acs.joc.5b00881] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Jeffrey Aubé
- Division of Chemical
Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
45
|
Improta R, Vitagliano L, Esposito L. Bond distances in polypeptide backbones depend on the local conformation. ACTA ACUST UNITED AC 2015; 71:1272-83. [DOI: 10.1107/s1399004715005507] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/17/2015] [Indexed: 11/10/2022]
Abstract
By combining quantum-mechanical analysis of small model peptides and statistical surveys of high-resolution protein structures, a systematic conformational dependence of bond lengths in polypeptide backbones has been unveiled which involves both the peptide bond (C—O and C—N) and those bonds centred on the Cα atom. All of these bond lengths indeed display a systematic variability in the ψ angle according to both calculations and surveys of protein structures. The overall agreement between the computed and the statistical data suggests that these trends are essentially driven by local effects. The dependence of Cα distances on ψ is governed by interactions between the σ system of the Cα moiety and the C—O π system of the peptide bond. Maximum and minimum values for each bond distance are found for conformations with the specific bond perpendicular and parallel to the adjacent CONH peptide plane, respectively. On the other hand, the variability of the C—O and C—N distances is related to the strength of the interactions between the lone pair of the N atom and the C—O π* system, which is modulated by the ψ angle. The C—O and C—N distances are related but their trends are not strictly connected to peptide-bond planarity, although a correlation amongst all of these parameters is expected on the basis of the classical resonance model.
Collapse
|
46
|
Sandoval-Lira J, Fuentes L, Quintero L, Höpfl H, Hernández-Pérez JM, Terán JL, Sartillo-Piscil F. The Stabilizing Role of the Intramolecular C–H···O Hydrogen Bond in Cyclic Amides Derived From α-Methylbenzylamine. J Org Chem 2015; 80:4481-4490. [DOI: 10.1021/acs.joc.5b00286] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jacinto Sandoval-Lira
- Centro de Investigación de la Facultad de Ciencias Químicas and Centro de Química de la Benemérita, Universidad Autónoma de Puebla, México. 14 Sur Esq. San Claudio, San Manuel, C. P. 72570, Puebla, México
| | - Lilia Fuentes
- Centro de Investigación de la Facultad de Ciencias Químicas and Centro de Química de la Benemérita, Universidad Autónoma de Puebla, México. 14 Sur Esq. San Claudio, San Manuel, C. P. 72570, Puebla, México
| | - Leticia Quintero
- Centro de Investigación de la Facultad de Ciencias Químicas and Centro de Química de la Benemérita, Universidad Autónoma de Puebla, México. 14 Sur Esq. San Claudio, San Manuel, C. P. 72570, Puebla, México
| | - Herbert Höpfl
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, C. P. 62209, Cuernavaca, México
| | - Julio M. Hernández-Pérez
- Centro de Investigación de la Facultad de Ciencias Químicas and Centro de Química de la Benemérita, Universidad Autónoma de Puebla, México. 14 Sur Esq. San Claudio, San Manuel, C. P. 72570, Puebla, México
| | - Joel L. Terán
- Centro de Investigación de la Facultad de Ciencias Químicas and Centro de Química de la Benemérita, Universidad Autónoma de Puebla, México. 14 Sur Esq. San Claudio, San Manuel, C. P. 72570, Puebla, México
| | - Fernando Sartillo-Piscil
- Centro de Investigación de la Facultad de Ciencias Químicas and Centro de Química de la Benemérita, Universidad Autónoma de Puebla, México. 14 Sur Esq. San Claudio, San Manuel, C. P. 72570, Puebla, México
| |
Collapse
|
47
|
Park YS, Park J, Paek K. A chromogenic molecular capsule attributable to dipolar amide resonance structure. Chem Commun (Camb) 2015; 51:6006-9. [DOI: 10.1039/c4cc10412a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new chromogenic, self-assembled molecular capsule G@22is developed by introducing four (N,N-dimethyl-4-aminophenyl) azobenzyl moieties on the upper rim of a resorcin[4]arene-based amidoimino-cavitand. The tuning of conjugation between amido and (N,N-dimethyl-4-aminophenyl)azobenzyl groups by acid–base titration allows naked-eye observation of molecular capsule formation.
Collapse
Affiliation(s)
- Yeon Sil Park
- Department of Chemistry
- Soongsil University
- Seoul 156-743
- Korea
| | - Juwan Park
- Department of Chemistry
- Soongsil University
- Seoul 156-743
- Korea
| | - Kyungsoo Paek
- Department of Chemistry
- Soongsil University
- Seoul 156-743
- Korea
| |
Collapse
|
48
|
Pandey KK. Theoretical insights into structure, bonding, reactivity and importance of ion-pair interactions in Kirby's tetrafluoroboric acid salts of twisted amides. RSC Adv 2015. [DOI: 10.1039/c5ra22792e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The hydrolysis of amide 1 is more exothermic and is more favorable than amides 2 and 3 with bridgehead methyl.
Collapse
Affiliation(s)
- Krishna K. Pandey
- School of Chemical Sciences
- D. A. University Indore
- Indore 452 017
- India
| |
Collapse
|
49
|
Md. Abdur Rauf S, Arvidsson PI, Albericio F, Govender T, Maguire GEM, Kruger HG, Honarparvar B. The effect of N-methylation of amino acids (Ac-X-OMe) on solubility and conformation: a DFT study. Org Biomol Chem 2015; 13:9993-10006. [DOI: 10.1039/c5ob01565k] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
N-Methylation of amino acid derivatives (Ac-X-OMe, X = Gly, Val, Leu, Ile, Phe, Met, Cys, Ser, Asp and His) leads to an increase in aqueous solubility, lipophilicity and lowering of the cis/trans amide conformational energy barrier (EA).
Collapse
Affiliation(s)
- Shah Md. Abdur Rauf
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Per I. Arvidsson
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Fernando Albericio
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Glenn E. M. Maguire
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| |
Collapse
|
50
|
Wong YM, Hoshino Y, Sudesh K, Miura Y, Numata K. Optimization of Poly(N-isopropylacrylamide) as an Artificial Amidase. Biomacromolecules 2014; 16:411-21. [DOI: 10.1021/bm501671r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yoke-Ming Wong
- Enzyme
Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Ecobiomaterial
Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang Malaysia
| | - Yu Hoshino
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kumar Sudesh
- Ecobiomaterial
Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang Malaysia
| | - Yoshiko Miura
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keiji Numata
- Enzyme
Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|