1
|
Ding W, Gu J, Xu W, Wu J, Huang Y, Zhang S, Lin S. The Biosynthesis and Applications of Protein Lipidation. Chem Rev 2024; 124:12176-12212. [PMID: 39441663 DOI: 10.1021/acs.chemrev.4c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Protein lipidation dramatically affects protein structure, localization, and trafficking via remodeling protein-membrane and protein-protein interactions through hydrophobic lipid moieties. Understanding the biosynthesis of lipidated proteins, whether natural ones or mimetics, is crucial for reconstructing, validating, and studying the molecular mechanisms and biological functions of protein lipidation. In this Perspective, we first provide an overview of the natural enzymatic biosynthetic pathways of protein lipidation in mammalian cells, focusing on the enzymatic machineries and their chemical linkages. We then discuss strategies to biosynthesize protein lipidation in mammalian cells by engineering modification machineries and substrates. Additionally, we explore site-specific protein lipidation biosynthesis in vitro via enzyme-mediated ligations and in vivo primarily through genetic code expansion strategies. We also discuss the use of small molecule tools to modulate the process of protein lipidation biosynthesis. Finally, we provide concluding remarks and discuss future directions for the biosynthesis and applications of protein lipidation.
Collapse
Affiliation(s)
- Wenlong Ding
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Jiayu Gu
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenyuan Xu
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
| | - Jing Wu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiwen Huang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuai Zhang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Shixian Lin
- Life Sciences Institute, Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
2
|
Alexander AK, Elshahawi SI. Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization. Chembiochem 2023; 24:e202300372. [PMID: 37338668 PMCID: PMC10496146 DOI: 10.1002/cbic.202300372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The late-stage functionalization of peptides and proteins holds significant promise for drug discovery and facilitates bioorthogonal chemistry. This selective functionalization leads to innovative advances in in vitro and in vivo biological research. However, it is a challenging endeavor to selectively target a certain amino acid or position in the presence of other residues containing reactive groups. Biocatalysis has emerged as a powerful tool for selective, efficient, and economical modifications of molecules. Enzymes that have the ability to modify multiple complex substrates or selectively install nonnative handles have wide applications. Herein, we highlight enzymes with broad substrate tolerance that have been demonstrated to modify a specific amino acid residue in simple or complex peptides and/or proteins at late-stage. The different substrates accepted by these enzymes are mentioned together with the reported downstream bioorthogonal reactions that have benefited from the enzymatic selective modifications.
Collapse
Affiliation(s)
- Ashley K Alexander
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
3
|
Hadjabdelhafid-Parisien A, Bitsch S, Macarrón Palacios A, Deweid L, Kolmar H, Pelletier JN. Tag-free, specific conjugation of glycosylated IgG1 antibodies using microbial transglutaminase. RSC Adv 2022; 12:33510-33515. [PMID: 36505706 PMCID: PMC9680618 DOI: 10.1039/d2ra05630e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
We present an efficient approach for tag-free, site-specific conjugation of a fully glycosylated antibody using microbial transglutaminase (mTG). We created variants of trastuzumab where a single surface-exposed residue of the human crystallizable fragment had been substituted to glutamine, with the objective of enabling site-specific mTG-mediated conjugation with primary amine payloads. MTG reactivity was determined by conjugation to an amino fluorophore, demonstrating effective tag-free conjugation at the newly introduced I253Q site. The conjugation of one payload per antibody heavy chain was confirmed by mass spectrometry. We further demonstrated two-step mTG/click chemistry-based conjugation of I253Q trastuzumab with monomethyl auristatin E. Cytotoxicity and specificity of the resulting antibody-drug conjugate were indistinguishable from trastuzumab conjugated by another method although binding to the neonatal Fc receptor was impaired. The resulting fully glycosylated ADC is unique in that it results from minimal modification of the antibody sequence and offers potential for application to cellular imaging, fluorescence microscopy, western blotting or ELISA.
Collapse
Affiliation(s)
- Adem Hadjabdelhafid-Parisien
- Department of Biochemistry, University of Montreal Montreal QC Canada
- Center for Green Chemistry and Catalysis (CGCC) Montreal QC Canada
- PROTEO, the Quebec Research Network on Protein Function, Engineering and Applications Quebec City QC Canada
| | - Sebastian Bitsch
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt Darmstadt Germany
| | - Arturo Macarrón Palacios
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt Darmstadt Germany
| | - Lukas Deweid
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt Darmstadt Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt Darmstadt Germany
- Centre for Synthetic Biology, Technical University of Darmstadt Darmstadt Germany
| | - Joelle N Pelletier
- Department of Biochemistry, University of Montreal Montreal QC Canada
- Center for Green Chemistry and Catalysis (CGCC) Montreal QC Canada
- PROTEO, the Quebec Research Network on Protein Function, Engineering and Applications Quebec City QC Canada
- Department of Chemistry, University of Montreal Montreal QC Canada
| |
Collapse
|
4
|
Yamaguchi S, Ikeda R, Umeda Y, Kosaka T, Yamahira S, Okamoto A. Chemoenzymatic labeling to visualize intercellular contacts using lipidated sortase A. Chembiochem 2022; 23:e202200474. [PMID: 35976800 DOI: 10.1002/cbic.202200474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/09/2022]
Abstract
Methods to label intercellular contact have attracted attention because of their potential in cell biological and medical applications for the analysis of intercellular communications. In this study, a simple and versatile method for chemoenzymatic labeling of intercellularly contacting cells is demonstrated using a cell-surface anchoring reagent of a poly(ethylene glycol)(PEG)-lipid conjugate. The surfaces of each cell in the cell pairs of interest were decorated with sortase A (SrtA) and triglycine peptide that were lipidated with PEG-lipid. In the mixture of the two cell populations, the triglycine-modified cells were enzymatically labeled with a fluorescent labeling reagent when in contact with SrtA-modified cells on a substrate. The selective labeling of the contacting cells was confirmed by confocal microscopy. The method is a promising tool for selective visualization of intercellularly contacting cells in cell mixtures for cell-cell communication analysis.
Collapse
Affiliation(s)
- Satoshi Yamaguchi
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, 4-6-1 Komaba, Meguro-ku, 153-8904, Tokyo, JAPAN
| | - Ryosuke Ikeda
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, JAPAN
| | - Yuki Umeda
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, JAPAN
| | - Takahiro Kosaka
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, JAPAN
| | - Shinya Yamahira
- St Luke's International University: Sei Roka Kokusai Daigaku, Center for Medical Sciences, JAPAN
| | - Akimitsu Okamoto
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, JAPAN
| |
Collapse
|
5
|
Uchida K, Obayashi H, Minamihata K, Wakabayashi R, Goto M, Shimokawa N, Takagi M, Kamiya N. Artificial Palmitoylation of Proteins Controls the Lipid Domain-Selective Anchoring on Biomembranes and the Raft-Dependent Cellular Internalization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9640-9648. [PMID: 35882009 DOI: 10.1021/acs.langmuir.2c01205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Protein palmitoylation, a post-translational modification, is universally observed in eukaryotic cells. The localization of palmitoylated proteins to highly dynamic, sphingolipid- and cholesterol-rich microdomains (called lipid rafts) on the plasma membrane has been shown to play an important role in signal transduction in cells. However, this complex biological system is not yet completely understood. Here, we used a combined approach where an artificial lipidated protein was applied to biomimetic model membranes and plasma membranes in cells to illuminate chemical and physiological properties of the rafts. Using cell-sized giant unilamellar vesicles, we demonstrated the selective partitioning of enhanced green fluorescent protein modified with a C-terminal palmitoyl moiety (EGFP-Pal) into the liquid-ordered phase consisting of saturated phospholipids and cholesterol. Using Jurkat T cells treated with an immunostimulant (concanavalin A), we observed the vesicular transport of EGFP-Pal. Further cellular studies with the treatment of methyl β-cyclodextrin revealed the cholesterol-dependent internalization of EGFP-Pal, which can be explained by a raft-dependent, caveolae-mediated endocytic pathway. The present synthetic approach using artificial and natural membrane systems can be further extended to explore the potential utility of artificially lipidated proteins at biological and artificial interfaces.
Collapse
Affiliation(s)
- Kazuki Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroki Obayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
6
|
Cong M, Tavakolpour S, Berland L, Glöckner H, Andreiuk B, Rakhshandehroo T, Uslu S, Mishra S, Clark L, Rashidian M. Direct N- or C-Terminal Protein Labeling Via a Sortase-Mediated Swapping Approach. Bioconjug Chem 2021; 32:2397-2406. [PMID: 34748323 PMCID: PMC9595177 DOI: 10.1021/acs.bioconjchem.1c00442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Site-specific protein labeling is important in biomedical research and biotechnology. While many methods allow site-specific protein modification, a straightforward approach for efficient N-terminal protein labeling is not available. We introduce a novel sortase-mediated swapping approach for a one-step site-specific N-terminal labeling with a near-quantitative yield. We show that this method allows rapid and efficient cleavage and simultaneous labeling of the N or C termini of fusion proteins. The method does not require any prior modification beyond the genetic incorporation of the sortase recognition motif. This new approach provides flexibility for protein engineering and site-specific protein modifications.
Collapse
Affiliation(s)
- Min Cong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Soheil Tavakolpour
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Lea Berland
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06100 Nice, France
| | - Hannah Glöckner
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Bohdan Andreiuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Taha Rakhshandehroo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Safak Uslu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Medical Scientist Training Program, Hacettepe University Faculty of Medicine, Ankara, 06230, Turkey
| | - Shruti Mishra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Louise Clark
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
7
|
Zhang Q, Wu L, Liu S, Chen Q, Zeng L, Chen X, Zhang Q. Moderating hypoxia and promoting immunogenic photodynamic therapy by HER-2 nanobody conjugate nanoparticles for ovarian cancer treatment. NANOTECHNOLOGY 2021; 32:425101. [PMID: 34319255 DOI: 10.1088/1361-6528/ac07d1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) and immunotherapy have been often adopted for ovarian cancer therapy, yet their application is limited by the high recurrence rate and toxic side effects. Intriguingly, nanoparticles contribute to enhancing the performance of PDT. Here, we investigated the synthesis of HER-2-Nanobody (Nb)-conjugated human serum albumin (HSA) incorporated with chlorin (Ce6) and catalase (CAT) (Nb@HCC), and analyzed the synergic effect of Nb@HCC-mediated PDT and immunotherapy for SK-OV-3 tumors. The Ce6 and CAT were incorporated into HSA to construct the HCC nanoparticles. HER-2-Nanobody was the purified bacterial crude extract, and conjugated with HCC to prepare Nb@HCC via heterodisulfide. The effects of Nb@HCC with near infrared ray (NIR) irradiation on moderating hypoxia and hypoxia inducible factor-1α(HIF-1α) expression were evaluated in the SK-OV-3 cells and tumor tissues. A SK-OV-3 tumor-bearing model was developed, where the synergistic effect of Nb@HCC-mediated PDT and anti-CTLA-4 therapy was investigated. Nb@HCC with a 660 nm laser irradiation could induce massive reactive oxygen species and trigger apoptosis in SK-OV-3 cells. Nb@HCC and PDT promoted danger-associated molecular patterns (DAMPs), which indicated immunogenic cell death and maturation of dendritic cells in the SK-OV-3 cells. Irradiated by NIR, Nb@HCC alleviated the hypoxia and decreased the expression of HIF-1α. The Nb@HCC-mediated PDT and anti-CTLA-4 therapy synergically inhibited the progression of distant tumor, and induced T cell infiltration. Biosafety tests suggested that Nb@HCC would not cause damage to the major organs with less toxicity and side effects. To conclude, a combination of Nb@HCC-mediated PDT and anti-CTLA-4 therapy could inhibit the progression of distant tumor to attain remarkable therapeutic outcomes.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Lian Wu
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Shaozheng Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Qingjie Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Lingpeng Zeng
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Xuezhong Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Qing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| |
Collapse
|
8
|
Glutamine-walking: Creating reactive substrates for transglutaminase-mediated protein labeling. Methods Enzymol 2020. [PMID: 32943142 DOI: 10.1016/bs.mie.2020.04.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Chemically modified proteins are increasingly being tested and approved as therapeutic products. Batch-to-batch homogeneity is crucial to ensure safety and quality of therapeutic products. Highly selective protein modification may be achieved using enzymatic routes. Microbial transglutaminase (mTG) is a robust, easy to use and well-established enzyme that is used at a very large scale in the food industry such that its efficacy and its safety for human consumption are well established. In the context of therapeutic protein modification, mTG should crosslink one or more glutamines on the target protein with an aminated moiety such as a solubilizer, a tracer or a cytotoxic moiety. mTG has the advantage of being unreactive toward the majority of surface-exposed glutamines on most proteins, reducing sample heterogeneity. The caveat is that there may be no reactive glutamine on the target protein, or else a reactive glutamine may be found in a location where its modification compromises function of the target protein. Here we describe the glutamine-walk (Gln-walk), a straightforward method to create a glutamine-substrate site that is reactive to mTG in a target protein. Iterative substitution of single amino acids to a glutamine is followed by facile identification of reactivity with mTG, where covalent labeling of the target with an aminated fluorophore allows visualization of the most reactive modified targets. The approach is empirical; knowledge of the target protein structure and functional regions facilitates application of the method.
Collapse
|
9
|
Takahara M, Kamiya N. Synthetic Strategies for Artificial Lipidation of Functional Proteins. Chemistry 2020; 26:4645-4655. [DOI: 10.1002/chem.201904568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/29/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Mari Takahara
- Department of Materials Science & Chemical EngineeringNational Institute of TechnologyKitakyushu College 5-20-1 Shii Kokuraminamiku Kitakyushu 802-0985 Japan
| | - Noriho Kamiya
- Department of Applied ChemistryGraduate School of Engineering 744 Motooka Nishiku Fukuoka 819-0395 Japan
- Division of Biotechnology, Center for Future ChemistryKyushu University 744 Motooka Nishiku Fukuoka 819-0395 Japan
| |
Collapse
|
10
|
Mostafa HS. Microbial transglutaminase: An overview of recent applications in food and packaging. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1720660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Heba Sayed Mostafa
- Faculty of Agriculture, Department of Food Science, University of Cairo, Giza, Egypt
| |
Collapse
|
11
|
Deweid L, Avrutina O, Kolmar H. Microbial transglutaminase for biotechnological and biomedical engineering. Biol Chem 2019; 400:257-274. [PMID: 30291779 DOI: 10.1515/hsz-2018-0335] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
Research on bacterial transglutaminase dates back to 1989, when the enzyme has been isolated from Streptomyces mobaraensis. Initially discovered during an extensive screening campaign to reduce costs in food manufacturing, it quickly appeared as a robust and versatile tool for biotechnological and pharmaceutical applications due to its excellent activity and simple handling. While pioneering attempts to make use of its extraordinary cross-linking ability resulted in heterogeneous polymers, currently it is applied to site-specifically ligate diverse biomolecules yielding precisely modified hybrid constructs comprising two or more components. This review covers the extensive and rapidly growing field of microbial transglutaminase-mediated bioconjugation with the focus on pharmaceutical research. In addition, engineering of the enzyme by directed evolution and rational design is highlighted. Moreover, cumbersome drawbacks of this technique mainly caused by the enzyme's substrate indiscrimination are discussed as well as the ways to bypass these limitations.
Collapse
Affiliation(s)
- Lukas Deweid
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| |
Collapse
|
12
|
Takahara M, Wakabayashi R, Fujimoto N, Minamihata K, Goto M, Kamiya N. Enzymatic Cell‐Surface Decoration with Proteins using Amphiphilic Lipid‐Fused Peptide Substrates. Chemistry 2019; 25:7315-7321. [DOI: 10.1002/chem.201900370] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/03/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Mari Takahara
- Department of Materials Science & Chemical EngineeringNational Institute of Technology, Kitakyushu College 5-20-1 Shii, Kokuraminamiku Kitakyushu 802-0985 Japan
| | - Rie Wakabayashi
- Department of Applied ChemistryGraduate School of EngineeringKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
| | - Naoki Fujimoto
- Department of Applied ChemistryGraduate School of EngineeringKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
| | - Kosuke Minamihata
- Department of Applied ChemistryGraduate School of EngineeringKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
| | - Masahiro Goto
- Department of Applied ChemistryGraduate School of EngineeringKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
- Division of Biotechnology, Center for Future ChemistryKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
| | - Noriho Kamiya
- Department of Applied ChemistryGraduate School of EngineeringKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
- Division of Biotechnology, Center for Future ChemistryKyushu University 744 Motooka, Nishiku Fukuoka 819-0395 Japan
| |
Collapse
|
13
|
Wakabayashi R, Suehiro A, Goto M, Kamiya N. Designer aromatic peptide amphiphiles for self-assembly and enzymatic display of proteins with morphology control. Chem Commun (Camb) 2019; 55:640-643. [PMID: 30628590 DOI: 10.1039/c8cc08163h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We herein designed bi-functional aromatic peptide amphiphiles both self-assembling to fibrous nanomaterials and working as a substrate of microbial transglutaminase, leading to peptidyl scaffolds with different morphologies that can be enzymatically post-functionalized with proteins.
Collapse
Affiliation(s)
- Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | | | | | | |
Collapse
|
14
|
Menacho-Melgar R, Decker JS, Hennigan JN, Lynch MD. A review of lipidation in the development of advanced protein and peptide therapeutics. J Control Release 2018; 295:1-12. [PMID: 30579981 DOI: 10.1016/j.jconrel.2018.12.032] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022]
Abstract
The use of biologics (peptide and protein based drugs) has increased significantly over the past few decades. However, their development has been limited by their short half-life, immunogenicity and low membrane permeability, restricting most therapies to extracellular targets and administration by injection. Lipidation is a clinically-proven post-translational modification that has shown great promise to address these issues: improving half-life, reducing immunogenicity and enabling intracellular uptake and delivery across epithelia. Despite its great potential, lipidation remains an underutilized strategy in the clinical translation of lead biologics. We review how lipidation can overcome common challenges in biologics development as well as highlight gaps in our understanding of the effect of lipidation on therapeutic efficacy, where increased research and development efforts may lead to next-generation drugs.
Collapse
Affiliation(s)
| | - John S Decker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Michael D Lynch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
15
|
Abstract
Microbial transglutaminase is heavily used in the food processing industries to improve food qualities. Being a protein's glue, by cross-linking it creates neoepitope complexes that are immunogenic and potentially pathogenic in celiac disease. Despite low sequence identity, it imitates functionally its family member, the endogenous tissue transglutaminase, which is the autoantigen of celiac disease. The present comprehensive review highlights the enzyme characteristics, endogenous and exogenous intestinal sources, its cross-talks with gluten and gliadin, its immunogenicity and potential pathogenicity and risks for the gluten induced conditions. If substantiated, it might represent a new environmental inducer of celiac disease. The present findings might affect nutritional product labeling, processed food additive policies and consumer health education.
Collapse
Affiliation(s)
- Lerner Aaron
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; AESKU.KIPP Institute, Wendelsheim, Germany.
| | | |
Collapse
|
16
|
Biocatalysis by Transglutaminases: A Review of Biotechnological Applications. MICROMACHINES 2018; 9:mi9110562. [PMID: 30715061 PMCID: PMC6265872 DOI: 10.3390/mi9110562] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 02/08/2023]
Abstract
The biocatalytic activity of transglutaminases (TGs) leads to the synthesis of new covalent isopeptide bonds (crosslinks) between peptide-bound glutamine and lysine residues, but also the transamidation of primary amines to glutamine residues, which ultimately can result into protein polymerisation. Operating with a cysteine/histidine/aspartic acid (Cys/His/Asp) catalytic triad, TGs induce the post-translational modification of proteins at both physiological and pathological conditions (e.g., accumulation of matrices in tissue fibrosis). Because of the disparate biotechnological applications, this large family of protein-remodelling enzymes have stimulated an escalation of interest. In the past 50 years, both mammalian and microbial TGs polymerising activity has been exploited in the food industry for the improvement of aliments' quality, texture, and nutritive value, other than to enhance the food appearance and increased marketability. At the same time, the ability of TGs to crosslink extracellular matrix proteins, like collagen, as well as synthetic biopolymers, has led to multiple applications in biomedicine, such as the production of biocompatible scaffolds and hydrogels for tissue engineering and drug delivery, or DNA-protein bio-conjugation and antibody functionalisation. Here, we summarise the most recent advances in the field, focusing on the utilisation of TGs-mediated protein multimerisation in biotechnological and bioengineering applications.
Collapse
|
17
|
Takahara M, Wakabayashi R, Minamihata K, Goto M, Kamiya N. Design of Lipid–Protein Conjugates Using Amphiphilic Peptide Substrates of Microbial Transglutaminase. ACS APPLIED BIO MATERIALS 2018; 1:1823-1829. [DOI: 10.1021/acsabm.8b00271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mari Takahara
- Department of Materials Science & Chemical Engineering, National Institute of Technology, Kitakyushu College, 5-20-1 Shii, Kokuraminamiku, Kitakyushu, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
18
|
Deweid L, Neureiter L, Englert S, Schneider H, Deweid J, Yanakieva D, Sturm J, Bitsch S, Christmann A, Avrutina O, Fuchsbauer HL, Kolmar H. Directed Evolution of a Bond-Forming Enzyme: Ultrahigh-Throughput Screening of Microbial Transglutaminase Using Yeast Surface Display. Chemistry 2018; 24:15195-15200. [PMID: 30047596 DOI: 10.1002/chem.201803485] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Indexed: 12/12/2022]
Abstract
Microbial transglutaminase from Streptomyces mobaraensis (mTG) has emerged as a useful biotechnological tool due to its ability to crosslink a side chain of glutamine and primary amines. To date, the substrate specificity of mTG is not fully understood, which poses an obvious challenge when mTG is used to address novel targets. To that end, a viable strategy providing an access to tailor-made transglutaminases is required. This work reports an ultrahigh-throughput screening approach based on yeast surface display and fluorescence-activated cell sorting (FACS) that enabled the evolution of microbial transglutaminase towards enhanced activity. Five rounds of FACS screening followed by recombinant expression of the most potent variants in E. coli yielded variants that possessed, compared to the wild type enzyme, improved enzymatic performance and labeling behavior upon conjugation with an engineered therapeutic anti-HER2 antibody. This robust and generally applicable platform enables tailoring of the catalytic efficiency of mTG.
Collapse
Affiliation(s)
- Lukas Deweid
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Lara Neureiter
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Simon Englert
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Hendrik Schneider
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Jakob Deweid
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Desislava Yanakieva
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Janna Sturm
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Sebastian Bitsch
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Andreas Christmann
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Olga Avrutina
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Hans-Lothar Fuchsbauer
- Fachbereich Chemie- und Biotechnologie, Hochschule Darmstadt, Stephanstraße 7, 64295, Darmstadt, Germany
| | - Harald Kolmar
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| |
Collapse
|
19
|
Wu T, Huang H, Sheng Y, Shi H, Min Y, Liu Y. Transglutaminase mediated PEGylation of nanobodies for targeted nano-drug delivery. J Mater Chem B 2018; 6:1011-1017. [PMID: 32254288 DOI: 10.1039/c7tb03132g] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Targeted delivery of anticancer drugs that selectively accumulate in malignant cells could enhance drug efficacy and reduce side effects of conventional chemotherapy. In this work, we designed a single domain antibody (nanobody) based drug delivery system for targeted delivery of anticancer drugs. An anti-EGFR nanobody (Nb) was constructed with a C3-tag and a Q-tag for site specific modifications under physiological conditions. The site specific PEGylation of the nanobody was achieved via a transglutaminase catalyzed reaction through the coupling of the Q-tag with PEG-NH2. As a proof of concept, the PEGylated nanobody was tethered to HSA coated upconversion nanoparticles (UCNPs) through the C3-tag, and an anticancer drug, doxorubicin (DOX), was loaded. Results showed that the Nb-conjugated drug delivery system exhibits superior specificity to the EGFR positive tumor cells. The drug delivery system is highly accumulated in the EGFR positive tumor cells (A431), whereas there was no detectable accumulation in the EGFR negative cells (MCF-7). Consequently, the drug loaded particles demonstrated significantly higher anti-proliferation to A431 cells than to MCF-7 cells. This work provides an effective approach for site-specific modification of nanobodies for the construction of targeted drug delivery systems.
Collapse
Affiliation(s)
- Tiantian Wu
- CAS Key Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The ability to rationally manipulate and augment the cytoplasmic membrane can be used to overcome many of the challenges faced by conventional cellular therapies and provide innovative opportunities when combined with new biotechnologies. The focus of this review is on emerging strategies used in cell functionalization, highlighting both pioneering approaches and recent developments. These will be discussed within the context of future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- James Pk Armstrong
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK Centre for Organized Matter Chemistry and Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
21
|
Wakabayashi R, Yahiro K, Hayashi K, Goto M, Kamiya N. Protein-Grafted Polymers Prepared Through a Site-Specific Conjugation by Microbial Transglutaminase for an Immunosorbent Assay. Biomacromolecules 2016; 18:422-430. [DOI: 10.1021/acs.biomac.6b01538] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rie Wakabayashi
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kensuke Yahiro
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kounosuke Hayashi
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Hitachi Aloka
Medical, Ltd., 3-7-19 Imai, Ome-shi, Tokyo 198-8577, Japan
| | - Masahiro Goto
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division
of Biotechnology, Center for Future Chemistry, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395 Japan
| | - Noriho Kamiya
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division
of Biotechnology, Center for Future Chemistry, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395 Japan
| |
Collapse
|
22
|
Tatsukawa H, Liu HH, Oba S, Kamiya N, Nakanishi Y, Hitomi K. FRET-based detection of isozyme-specific activities of transglutaminases. Amino Acids 2016; 49:615-623. [PMID: 27586957 DOI: 10.1007/s00726-016-2322-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/25/2016] [Indexed: 01/07/2023]
Abstract
Transglutaminases (TGs) comprise a protein family in which the members catalyze the formation of isopeptide bonds between glutamine and lysine residues in various proteins. Expression studies on its three major members, FXIII, TG1, and TG2, have been performed in a relatively large number of mammalian tissues in comparison with those on the other isozymes. We previously identified a highly reactive substrate peptide, including glutamine, for each isozyme from a phage display library and developed a method for detecting isozyme-specific activities by incorporating a labeled substrate peptide into lysine residues of proteins. Here, we describe genetically encoded Förster resonance energy transfer (FRET)-based probes composed of each fluorescence protein (Cerulean and EVenus) fused with substrate peptides. The probe pairs, designated as Trac-MTG (His-CerΔ11-LQ/EV-K-His) containing linker and substrate peptide sequence for microbial TG (MTG), increased the EVenus:Cerulean fluorescence intensity ratio by more than 1.5-fold. Furthermore, we demonstrated that Trac-TG1 (His-CerΔ11-K5) and Trac-TG2 (His-CerΔ11-T26) containing substrate peptide sequence for mammalian TGs successfully detected the isozyme-specific activity of TG1 and TG2, respectively. In this study, we developed a rapid and convenient experimental system for measuring the isozyme-specific activity of TGs. The application of these probes for analyses in cells and tissues will be helpful for elucidating the physiological and pathological functions of TGs.
Collapse
Affiliation(s)
- Hideki Tatsukawa
- Cellular Biochemistry Lab., Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-0814, Japan.
| | - Hong Hong Liu
- Cellular Biochemistry Lab., Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-0814, Japan
| | - Shota Oba
- Cellular Biochemistry Lab., Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-0814, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan.,Division of Biotechnology, Center for Future Chemistry, Kyushu University, Fukuoka, 819-0388, Japan
| | - Yoichi Nakanishi
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kiyotaka Hitomi
- Cellular Biochemistry Lab., Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-0814, Japan
| |
Collapse
|
23
|
Lotze J, Reinhardt U, Seitz O, Beck-Sickinger AG. Peptide-tags for site-specific protein labelling in vitro and in vivo. MOLECULAR BIOSYSTEMS 2016; 12:1731-45. [DOI: 10.1039/c6mb00023a] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peptide-tag based labelling can be achieved by (i) enzymes (ii) recognition of metal ions or small molecules and (iii) peptide–peptide interactions and enables site-specific protein visualization to investigate protein localization and trafficking.
Collapse
Affiliation(s)
- Jonathan Lotze
- Institut für Biochemie
- Universität Leipzig
- D-04103 Leipzig
- Germany
| | - Ulrike Reinhardt
- Institut für Chemie
- Humboldt-Universität zu Berlin
- D-12489 Berlin
- Germany
| | - Oliver Seitz
- Institut für Chemie
- Humboldt-Universität zu Berlin
- D-12489 Berlin
- Germany
| | | |
Collapse
|
24
|
Bosmans RPG, Hendriksen WE, Verheijden M, Eelkema R, Jonkheijm P, van Esch JH, Brunsveld L. Supramolecular Protein Immobilization on Lipid Bilayers. Chemistry 2015; 21:18466-73. [DOI: 10.1002/chem.201502461] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 01/08/2023]
|
25
|
Lerner A, Matthias T. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun Rev 2015; 14:479-489. [PMID: 25676324 DOI: 10.1016/j.autrev.2015.01.009] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 01/18/2015] [Indexed: 12/11/2022]
Abstract
The incidence of autoimmune diseases is increasing along with the expansion of industrial food processing and food additive consumption. The intestinal epithelial barrier, with its intercellular tight junction, controls the equilibrium between tolerance and immunity to non-self-antigens. As a result, particular attention is being placed on the role of tight junction dysfunction in the pathogenesis of AD. Tight junction leakage is enhanced by many luminal components, commonly used industrial food additives being some of them. Glucose, salt, emulsifiers, organic solvents, gluten, microbial transglutaminase, and nanoparticles are extensively and increasingly used by the food industry, claim the manufacturers, to improve the qualities of food. However, all of the aforementioned additives increase intestinal permeability by breaching the integrity of tight junction paracellular transfer. In fact, tight junction dysfunction is common in multiple autoimmune diseases and the central part played by the tight junction in autoimmune diseases pathogenesis is extensively described. It is hypothesized that commonly used industrial food additives abrogate human epithelial barrier function, thus, increasing intestinal permeability through the opened tight junction, resulting in entry of foreign immunogenic antigens and activation of the autoimmune cascade. Future research on food additives exposure-intestinal permeability-autoimmunity interplay will enhance our knowledge of the common mechanisms associated with autoimmune progression.
Collapse
Affiliation(s)
- Aaron Lerner
- Pediatric Gastroenterology and Nutrition Unit, Carmel Medical Center, B, Rappaport School of Medicine, Technion-Israel institute of Technology, Michal St, No. 7, Haifa 34362, Israel.
| | - Torsten Matthias
- Aesku.Kipp Institute, Mikroforum Ring 2, Wendelsheim 55234, Germany.
| |
Collapse
|
26
|
Rashidian M, Dozier JK, Distefano MD. Enzymatic labeling of proteins: techniques and approaches. Bioconjug Chem 2014; 24:1277-94. [PMID: 23837885 DOI: 10.1021/bc400102w] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Site-specific modification of proteins is a major challenge in modern chemical biology due to the large number of reactive functional groups typically present in polypeptides. Because of its importance in biology and medicine, the development of methods for site-specific modification of proteins is an area of intense research. Selective protein modification procedures have been useful for oriented protein immobilization, for studies of naturally occurring post-translational modifications, for creating antibody–drug conjugates, for the introduction of fluorophores and other small molecules on to proteins, for examining protein structure, folding, dynamics, and protein–protein interactions, and for the preparation of protein–polymer conjugates. One of the most important approaches for protein labeling is to incorporate bioorthogonal functionalities into proteins at specific sites via enzymatic reactions. The incorporated tags then enable reactions that are chemoselective, whose functional groups not only are inert in biological media, but also do not occur natively in proteins or other macromolecules. This review article summarizes the enzymatic strategies, which enable site-specific functionalization of proteins with a variety of different functional groups. The enzymes covered in this review include formylglycine generating enzyme, sialyltransferases, phosphopantetheinyltransferases, O-GlcNAc post-translational modification, sortagging, transglutaminase, farnesyltransferase, biotin ligase, lipoic acid ligase, and N-myristoyltransferase.
Collapse
|
27
|
Rachel NM, Pelletier JN. Biotechnological applications of transglutaminases. Biomolecules 2013; 3:870-88. [PMID: 24970194 PMCID: PMC4030973 DOI: 10.3390/biom3040870] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 12/28/2022] Open
Abstract
In nature, transglutaminases catalyze the formation of amide bonds between proteins to form insoluble protein aggregates. This specific function has long been exploited in the food and textile industries as a protein cross-linking agent to alter the texture of meat, wool, and leather. In recent years, biotechnological applications of transglutaminases have come to light in areas ranging from material sciences to medicine. There has also been a substantial effort to further investigate the fundamentals of transglutaminases, as many of their characteristics that remain poorly understood. Those studies also work towards the goal of developing transglutaminases as more efficient catalysts. Progress in this area includes structural information and novel chemical and biological assays. Here, we review recent achievements in this area in order to illustrate the versatility of transglutaminases.
Collapse
Affiliation(s)
- Natalie M Rachel
- Chimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.
| | - Joelle N Pelletier
- Chimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.
| |
Collapse
|
28
|
Tomita U, Yamaguchi S, Maeda Y, Chujo K, Minamihata K, Nagamune T. Protein cell-surface display through in situ enzymatic modification of proteins with a poly(Ethylene glycol)-lipid. Biotechnol Bioeng 2013; 110:2785-9. [PMID: 23592269 DOI: 10.1002/bit.24933] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/27/2013] [Accepted: 04/01/2013] [Indexed: 01/24/2023]
Abstract
Cell-surface display of functional proteins is a powerful and useful tool for regulating and reinforcing cellular functions. Direct incorporation of site-specifically lipidated proteins from the extracellular medium is more rapid, easily controllable and reliable in displaying active proteins than expression through gene transfer. However, undesirable amphiphilic reagents such as organic co-solvents and detergents were required for suppressing aggregation of ordinary lipidated proteins in solution. We report here sortase A-catalyzed modification of proteins with a poly(ethylene glycol)(PEG)-lipid in situ on the surface of living cells. Proteins fused with a recognition tag were site-specifically ligated with the PEG-lipid which was preliminary incorporated into cell membranes. Accordingly, target proteins were successfully displayed on living cells without aggregation under an amphiphilic reagent-free condition. Furthermore, to demonstrate the availability of the present method, Fc domains of immunoglobulin G were displayed on cancer cells, and the phagocytosis of cancer cells with dendritic cells were enhanced through the Fc-Fc receptor interaction. Thus, the present facile chemoenzymatic method for protein display can be utilized for modulating cell-cell interactions in cell and tissue engineering fields.
Collapse
Affiliation(s)
- Urara Tomita
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Abe H, Wakabayashi R, Yonemura H, Yamada S, Goto M, Kamiya N. Split Spy0128 as a Potent Scaffold for Protein Cross-Linking and Immobilization. Bioconjug Chem 2013; 24:242-50. [DOI: 10.1021/bc300606b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hiroki Abe
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Rie Wakabayashi
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Hiroaki Yonemura
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Sunao Yamada
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Masahiro Goto
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Noriho Kamiya
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| |
Collapse
|
30
|
Mori Y, Wakabayashi R, Goto M, Kamiya N. Protein supramolecular complex formation by site-specific avidin-biotin interactions. Org Biomol Chem 2012; 11:914-22. [PMID: 23104386 DOI: 10.1039/c2ob26625c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The precise accumulation of protein functions on a nanoscale to fabricate advanced biomaterials has become possible by a bottom-up approach based on molecular self-assembly. The avidin-biotin interaction is widely employed in the design of functional protein self-assemblies. Herein we assessed how the spatial arrangement of the avidin-biotin interaction between protein building blocks affects the formation of a protein supramolecular complex (PSC). The enzymatic site-specific internal labeling of a symmetric protein scaffold, bacterial alkaline phosphatase (AP), with specifically designed biotinylation substrates revealed that the precise positioning of the biotinylation sites on AP and the linker flexibility of the substrate are critical factors for the growth of PSCs in the presence of streptavidin (SA). A potential diagnostic application of the PSCs comprised of AP and SA was demonstrated in an enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Yutaro Mori
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | | | | | | |
Collapse
|
31
|
Spolaore B, Raboni S, Ramos Molina A, Satwekar A, Damiano N, Fontana A. Local unfolding is required for the site-specific protein modification by transglutaminase. Biochemistry 2012; 51:8679-89. [PMID: 23083324 DOI: 10.1021/bi301005z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transglutaminase (TGase) from Streptomyces mobaraensis catalyzes transamidation reactions in a protein substrate leading to the modification of the side chains of Gln and Lys residues according to the A-CONH(2) + H(2)N-B → A-CONH-B + NH(3) reaction, where both A and B can be a protein or a ligand. A noteworthy property of TGase is its susbstrate specificity, so that often only a few specific Gln or Lys residues can be modified in a globular protein. The molecular features of a globular protein dictating the site-specific reactions mediated by TGase are yet poorly understood. Here, we have analyzed the reactivity toward TGase of apomyoglobin (apoMb), α-lactalbumin (α-LA), and fragment 205-316 of thermolysin. These proteins are models of protein structure and folding that have been studied previously using the limited proteolysis technique to unravel regions of local unfolding in their amino acid sequences. The three proteins were modified by TGase at the level of Gln or Lys residues with dansylcadaverine or carbobenzoxy-l-glutaminylglycine, respectively. Despite these model proteins containing several Gln and Lys residues, the sites of TGase derivatization occur over restricted chain regions of the protein substrates. In particular, the TGase-mediated modifications occur in the "helix F" region in apoMb, in the β-domain in apo-α-LA in its molten globule state, and in the N-terminal region in fragment 205-316 of thermolysin. Interestingly, the sites of limited proteolysis are located in the same chain regions of these proteins, thus providing a clear-cut demonstration that chain flexibility or local unfolding overwhelmingly dictates the site-specific modification by both TGase and a protease.
Collapse
Affiliation(s)
- Barbara Spolaore
- CRIBI Biotechnology Centre, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy.
| | | | | | | | | | | |
Collapse
|
32
|
Matsumoto T, Tanaka T, Kondo A. Enzyme-mediated methodologies for protein modification and bioconjugate synthesis. Biotechnol J 2012; 7:1137-46. [DOI: 10.1002/biot.201200022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/19/2012] [Accepted: 06/28/2012] [Indexed: 12/14/2022]
|