1
|
Ryan P, Iftikhar R, Hunter L. Origami with small molecules: exploiting the C-F bond as a conformational tool. Beilstein J Org Chem 2025; 21:680-716. [PMID: 40196389 PMCID: PMC11973591 DOI: 10.3762/bjoc.21.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
When present within an organic molecule, the C-F bond tends to align in predictable ways with neighbouring functional groups, due to stereoelectronic effects such as hyperconjugation and electrostatic attraction/repulsion. These fluorine-derived conformational effects have been exploited to control the shapes, and thereby enhance the properties, of a wide variety of functional molecules including pharmaceutical agents, liquid crystals, fragrance chemicals, organocatalysts, and peptides. This comprehensive review summarises developments in this field during the period 2010-2024.
Collapse
Affiliation(s)
- Patrick Ryan
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| | - Ramsha Iftikhar
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| |
Collapse
|
2
|
Kawasaki M, Shirai T, Yatsuzuka K, Shirai R. Hydrolytic dynamic kinetic resolution of racemic 3-phenyl-2-oxetanone to chiral tropic acid. RSC Adv 2024; 14:6121-6126. [PMID: 38375001 PMCID: PMC10875416 DOI: 10.1039/d3ra08594e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
Tropic acid was synthesized in a good yield and with high enantioselectivity (81% ee) under non-biphasic conditions via the novel hydrolytic dynamic kinetic resolution of racemic 3-phenyl-2-oxetanone (tropic acid β-lactone) in the presence of a chiral quaternary ammonium phase-transfer catalyst and strongly basic anion exchange resin as the hydroxide ion donor.
Collapse
Affiliation(s)
- Midori Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts 97-1 Minamihokotate, Kodo, Kyotanabe Kyoto 610-0395 Japan
| | - Takahiro Shirai
- Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3 Kasumi, Minami-ku Hiroshima 734-8553 Japan
| | - Kenji Yatsuzuka
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts 97-1 Minamihokotate, Kodo, Kyotanabe Kyoto 610-0395 Japan
| | - Ryuichi Shirai
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts 97-1 Minamihokotate, Kodo, Kyotanabe Kyoto 610-0395 Japan
| |
Collapse
|
3
|
Shavrina OM, Rassukana YV, Onysko PP. Recent Advancements in the Synthesis of α-fluoroalkylated Azine-derived Heterocycles through Direct Fluorination. Curr Org Synth 2024; 21:1053-1074. [PMID: 38037906 DOI: 10.2174/0115701794271650231016094853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/21/2023] [Indexed: 12/02/2023]
Abstract
The review highlights recent advancements in the synthesis of α-fluoro and α,α- difluoroalkylated azines, focusing on two main approaches. The first approach involves nucleophilic deoxofluorination, wherein α-hydroxy- or α-oxoalkylated azines are treated with diethylaminosulfur trifluoride or other S-F reagents to introduce fluorine atoms. The second approach employs direct electrophilic benzylic fluorination, whereby alkylazines undergo fluorination using N-F reagents. Both methods provide flexibility in designing and synthesizing fluoroalkylated heterocycles.
Collapse
Affiliation(s)
- Oksana M Shavrina
- Department of Chemistry of Organoelement Compounds, Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya str., Kyiv, 02660, Ukraine
| | - Yuliya V Rassukana
- Department of Chemistry of Organoelement Compounds, Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya str., Kyiv, 02660, Ukraine
| | - Petro P Onysko
- Department of Chemistry of Organoelement Compounds, Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya str., Kyiv, 02660, Ukraine
| |
Collapse
|
4
|
Shibata N, Cahard D. N-Fluoro Ammonium Salts of Cinchona Alkaloids in Enantioselective Electrophilic Fluorination. CHEM REC 2023; 23:e202300096. [PMID: 37096873 DOI: 10.1002/tcr.202300096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/31/2023] [Indexed: 04/26/2023]
Abstract
From 2000, our two research groups independently and simultaneously designed and developed a novel family of electrophilic fluorinating reagents based on the use of Cinchona alkaloids. The chiral N-fluoro ammonium salts demonstrated the highest efficiency compared to prior art in enantioselective electrophilic fluorination for a wide range of substrates. In this account, we tell our respective stories, how the same idea germinated in our laboratories, the characterization of the chiral reagents, the use in stoichiometric quantity then the development of a catalytic version, the application to the synthesis of chiral fluorinated molecules of pharmaceutical interest, and finally the exploitation of our reagents by other teams and for other applications.
Collapse
Affiliation(s)
- Norio Shibata
- Department of Engineering, Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Dominique Cahard
- CNRS, UMR 6014 COBRA - Normandie Université, 76821, Mont Saint Aignan, France
| |
Collapse
|
5
|
Liang W, Chen ZJ, Ran LH, Chen L. A Palladium-Catalyzed Borylation/Silica Gel Promoted Hydrolysis Sequence for the Synthesis of Hydroquinine-6'-Boric Acid and Its Applications. J Org Chem 2023. [PMID: 37471456 DOI: 10.1021/acs.joc.3c00774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Hydroquinine-6'-boric acid was first synthesized via a palladium-catalyzed borylation/silica gel promoted hydrolysis sequence of hydroquinine-derived triflate and bis(pinacolato)diboron. The newly designed chiral building block was subjected to the Suzuki-Miyaura cross-coupling reaction, Petasis reaction, and selenylation reaction, respectively, and all these reactions worked well to afford the corresponding 6'-functionalized hydroquinines with satisfactory results, demonstrating its extraordinary application potency.
Collapse
Affiliation(s)
- Wei Liang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, P. R. China
| | - Zheng-Jun Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, P. R. China
| | - Long-Hao Ran
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, P. R. China
| | - Lin Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, P. R. China
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
Bing JA, Johnston JN. Enantioselective Synthesis of cis- and trans-Cycloheptyl β-Fluoro Amines by Sequential aza-Henry Addition/Ring-Closing Metathesis. Org Lett 2023; 25:950-955. [PMID: 36735762 PMCID: PMC10240541 DOI: 10.1021/acs.orglett.2c04285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The synthesis of 7-membered carbocyclic β-fluoroamines is accomplished by a combination of the enantioselective aza-Henry reaction of aliphatic N-Boc imines and ring-closing metathesis. Use of reductive denitration gives both diastereomers of the β-fluoro amine carbocycle, each with high enantiomeric excess.
Collapse
Affiliation(s)
- Jade A. Bing
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Jeffrey N. Johnston
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
7
|
Lee S, Chung W. Enantioselective halogenation via asymmetric
phase‐transfer
catalysis. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sunggi Lee
- Department of Physics and Chemistry DGIST Daegu Republic of Korea
| | - Won‐jin Chung
- Department of Chemistry GIST Gwangju Republic of Korea
| |
Collapse
|
8
|
Remete AM, Nonn M, Escorihuela J, Fustero S, Kiss L. Asymmetric Methods for Carbon‐Fluorine Bond Formation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Attila M. Remete
- Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
- Interdisciplinary Excellence Centre Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
| | - Melinda Nonn
- Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
- Interdisciplinary Excellence Centre Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
| | - Jorge Escorihuela
- Department of Organic Chemistry University of Valencia Pharmacy Faculty 46100- Burjassot Valencia Spain
| | - Santos Fustero
- Department of Organic Chemistry University of Valencia Pharmacy Faculty 46100- Burjassot Valencia Spain
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
- Interdisciplinary Excellence Centre Institute of Pharmaceutical Chemistry University of Szeged 6720 Szeged Eötvös u. 6 Hungary
| |
Collapse
|
9
|
|
10
|
Neufeld J, Stünkel T, Mück‐Lichtenfeld C, Daniliuc CG, Gilmour R. Synthese von trifluorierten Tetralinen durch I(I)/I(III)‐katalysierte Ringexpansion: programmieren von Konformationen über [CH
2
CH
2
] → [CF
2
CHF] Isosterismus. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jessica Neufeld
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Timo Stünkel
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Christian Mück‐Lichtenfeld
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
11
|
Neufeld J, Stünkel T, Mück‐Lichtenfeld C, Daniliuc CG, Gilmour R. Trifluorinated Tetralins via I(I)/I(III)-Catalysed Ring Expansion: Programming Conformation by [CH 2 CH 2 ] → [CF 2 CHF] Isosterism. Angew Chem Int Ed Engl 2021; 60:13647-13651. [PMID: 33721384 PMCID: PMC8251640 DOI: 10.1002/anie.202102222] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Indexed: 12/15/2022]
Abstract
Saturated, fluorinated carbocycles are emerging as important modules for contemporary drug discovery. To expand the current portfolio, the synthesis of novel trifluorinated tetralins has been achieved. Fluorinated methyleneindanes serve as convenient precursors and undergo efficient difluorinative ring expansion with in situ generated p-TolIF2 (>20 examples, up to >95 %). A range of diverse substituents are tolerated under standard catalysis conditions and this is interrogated by Hammett analysis. X-ray analysis indicates a preference for the CH-F bond to occupy a pseudo-axial orientation, consistent with stabilising σC-H →σC-F * interactions. The replacement of the symmetric [CH2 -CH2 ] motif by [CF2 -CHF] removes the conformational degeneracy intrinsic to the parent tetralin scaffold leading to a predictable half-chair. The conformational behavior of this novel structural balance has been investigated by computational analysis and is consistent with stereoelectronic theory.
Collapse
Affiliation(s)
- Jessica Neufeld
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Timo Stünkel
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Christian Mück‐Lichtenfeld
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Ryan Gilmour
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
12
|
Mondal R, Agbaria M, Nairoukh Z. Fluorinated Rings: Conformation and Application. Chemistry 2021; 27:7193-7213. [PMID: 33512034 DOI: 10.1002/chem.202005425] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/16/2022]
Abstract
The introduction of fluorine atoms into molecules and materials across many fields of academic and industrial research is now commonplace, owing to their unique properties. A particularly interesting feature is the impact of fluorine substitution on the relative orientation of a C-F bond when incorporated into organic molecules. In this Review, we will be discussing the conformational behavior of fluorinated aliphatic carbo- and heterocyclic systems. The conformational preference of each system is associated with various interactions introduced by fluorine substitution such as charge-dipole, dipole-dipole, and hyperconjugative interactions. The contribution of each interaction on the stabilization of the fluorinated alicyclic system, which manifests itself in low conformations, will be discussed in detail. The novelty of this feature will be demonstrated by presenting the most recent applications.
Collapse
Affiliation(s)
- Rajarshi Mondal
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Mohamed Agbaria
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Zackaria Nairoukh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| |
Collapse
|
13
|
Auria‐Luna F, Mohammadi S, Divar M, Gimeno MC, Herrera RP. Asymmetric Fluorination Reactions promoted by Chiral Hydrogen Bonding‐based Organocatalysts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Fernando Auria‐Luna
- Laboratorio de Organocatálisis Asimétrica. Departamento de Química Orgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC- Universidad de Zaragoza. C/ Pedro Cerbuna 12 50009 Zaragoza Spain)
| | - Somayeh Mohammadi
- Medicinal & Natural Products Chemistry Research Center Shiraz University of Medical Sciences. 7134853734 Shiraz (Iran)
| | - Masoumeh Divar
- Medicinal & Natural Products Chemistry Research Center Shiraz University of Medical Sciences. 7134853734 Shiraz (Iran)
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC- Universidad de Zaragoza. C/ Pedro Cerbuna 12 50009 Zaragoza Spain)
| | - Raquel P. Herrera
- Laboratorio de Organocatálisis Asimétrica. Departamento de Química Orgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC- Universidad de Zaragoza. C/ Pedro Cerbuna 12 50009 Zaragoza Spain)
| |
Collapse
|
14
|
Arimitsu S, Iwasa S, Arakaki R. Enantioselective Fluorination of α-Branched β-Ynone Esters Using a Cinchona-Based Phase-Transfer Catalyst. J Org Chem 2020; 85:12804-12812. [PMID: 32955893 DOI: 10.1021/acs.joc.0c01997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report the fluorination of α-branched β-ynone esters to afford their corresponding quaternary fluorinated products with good enantioselectivity (ee = 73-90%) using a cinchona-based phase-transfer catalyst. α-Branched β-ynone esters possess a highly acidic α-proton and form their corresponding enolate as a single isomer, which allows the enantioselective fluorination reaction to occur under standard cinchona-based phase-transfer catalyst conditions. Moreover, the obtained α-fluorinated product can be treated with [(SPhos)AuNTf2] (1 mol %) to afford a fluorinated 3,5-diketo carboxylic acid.
Collapse
Affiliation(s)
- Satoru Arimitsu
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Senbaru 1, Nakagami, Nishihara, Okinawa 903-0213, Japan
| | - Satsuki Iwasa
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Senbaru 1, Nakagami, Nishihara, Okinawa 903-0213, Japan
| | - Ryunosuke Arakaki
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Senbaru 1, Nakagami, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
15
|
Asymmetric Preparation of α-Quaternary Fluorinated β-keto Esters. Review. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25143264. [PMID: 32708946 PMCID: PMC7397287 DOI: 10.3390/molecules25143264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 01/24/2023]
Abstract
In this review, recent advances over the past decade in the preparation of fluorinated stereogenic quaternary centers on β-keto esters compounds are analyzed. Since the incorporation of fluorine and fluorinated groups is of special interest in pharmaceutical chemistry, a range of metal-catalyzed and organocatalyzed methods have been developed. Herein, we review the enantioselective fluorination, trifluoromethylation and trifluoromethylthiolation of 3-oxo esters. The scope, the induction of enantioselectivity and mechanistic investigations are presented.
Collapse
|
16
|
Wang J, Liu Y, Wei Z, Cao J, Liang D, Lin Y, Duan H. Synthesis of 4-Azaindolines Using Phase-Transfer Catalysis via an Intramolecular Mannich Reaction. J Org Chem 2020; 85:4047-4057. [PMID: 32130006 DOI: 10.1021/acs.joc.9b03025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of bifunctional asymmetric phase-transfer catalysts containing novel fluorine-containing urea groups derived from cinchona alkaloids have been synthesized and successfully applied in the asymmetric intramolecular Mannich reaction. The 4-azaindoline products bearing multiple substrates were obtained in excellent yield (90-99%), with high enantioselectivity (up to 95%) and diastereoselectivity (up to >99:1).
Collapse
Affiliation(s)
- Jingdong Wang
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yuxin Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhonglin Wei
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jungang Cao
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Dapeng Liang
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yingjie Lin
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Haifeng Duan
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
17
|
Thorve PR, Guru MM, Maji B. Manganese-Catalyzed Divergent Markovnikov Addition and [2+2+2] Cycloaddition of 2-Carbonyl Indanone with Terminal Alkyne. J Org Chem 2019; 84:8185-8193. [PMID: 31149821 DOI: 10.1021/acs.joc.9b01173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we report on manganese-catalyzed regioselective Markovnikov addition and [2+2+2] cycloaddition of 2-carbonyl indanones with terminal alkynes. This method provides an efficient approach for the construction of all-carbon quaternary centers and complex polycyclic hydrocarbon frameworks by the formation of new carbon-carbon single bonds in a regio- and stereoselective manner. Preliminary mechanistic experiments involving deuterium labeling, kinetic, catalytic, and stoichiometric reactions with plausible intermediates were performed to shed light on the reaction mechanism.
Collapse
Affiliation(s)
- Pradip Ramdas Thorve
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741246 , India
| | - Murali Mohan Guru
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741246 , India
| | - Biplab Maji
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741246 , India
| |
Collapse
|
18
|
Crawford JM, Sigman MS. Conformational Dynamics in Asymmetric Catalysis: Is Catalyst Flexibility a Design Element? SYNTHESIS-STUTTGART 2019; 51:1021-1036. [PMID: 31235980 PMCID: PMC6590688 DOI: 10.1055/s-0037-1611636] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Traditionally, highly selective low molecular weight catalysts have been designed to contain rigidifying structural elements. As a result, many proposed stereochemical models rely on steric repulsion for explaining the observed selectivity. Recently, as is the case for enzymatic systems, it has become apparent that some flexibility can be beneficial for imparting selectivity. Dynamic catalysts can reorganize to maximize attractive non-covalent interactions that stabilize the favored diastereomeric transition state, while minimizing repulsive non-covalent interactions for enhanced selectivity. This Short Review discusses catalyst conformational dynamics and how these effects have proven beneficial for a variety of catalyst classes, including tropos ligands, cinchona alkaloids, hydrogen-bond donating catalysts, and peptides.
Collapse
Affiliation(s)
- Jennifer M. Crawford
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
19
|
Wang B, Wang Y, Jiang Y, Chu M, Qi S, Ju W, Xu D. Asymmetric fluorination of indanone-2-carboxylates using a polystyrene-supported diphenylamine-linked bis(oxazoline) complex. Org Biomol Chem 2018; 16:7702-7710. [PMID: 30288521 DOI: 10.1039/c8ob01943f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective fluorination of indanone-2-carboxylates catalyzed by a polystyrene-supported diphenylamine-linked bis(oxazoline) (PS-box)-Cu(OTf)2 complex has been developed in a continuous flow system. The supported complex exhibited extremely efficient catalytic performance with high activity, affording the corresponding products in excellent yields (up to 99% yield) with excellent enantioselectivities (up to 99% ee) and more than 4000 turnover number (TON).
Collapse
Affiliation(s)
- Biao Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yifeng Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yidong Jiang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Mingming Chu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Suosuo Qi
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Wanzhen Ju
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Danqian Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
20
|
Aufiero M, Gilmour R. Informing Molecular Design by Stereoelectronic Theory: The Fluorine Gauche Effect in Catalysis. Acc Chem Res 2018; 51:1701-1710. [PMID: 29894155 DOI: 10.1021/acs.accounts.8b00192] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The axioms of stereoelectronic theory constitute an atlas to navigate the contours of molecular space. All too rarely lauded, the advent and development of stereoelectronic theory has been one of organic chemistry's greatest triumphs. Inevitably, however, in the absence of a comprehensive treatise, many of the field's pioneers do not receive the veneration that they merit. Rather their legacies are the stereoelectronic pillars that persist in teaching and research. This ubiquity continues to afford practitioners of organic chemistry with an abundance of opportunities for creative endeavor in reaction design, in conceiving novel activation modes, in preorganizing intermediates, or in stabilizing productive transition states and products. Antipodal to steric governance, which mitigates destabilizing nonbonding interactions, stereoelectronic control allows well-defined, often complementary, conformations to be populated. Indeed, the prevalence of stabilizing hyperconjugative interactions in biosynthetic processes renders this approach to molecular preorganization decidedly biomimetic and, by extension, expansive. In this Account, the evolution and application of a simple donor-acceptor model based on the fluorine gauche effect is delineated. Founded on reinforcing hyperconjugative interactions involving C(sp3)-H bonding orbitals and C(sp3)-X antibonding orbitals [σC-H → σC-X*], this general stratagem has been used in conjunction with an array of secondary noncovalent interactions to achieve acyclic conformational control (ACC) in structures of interest. These secondary effects range from 1,3-allylic strain (A1,3) through to electrostatic charge-dipole and cation-π interactions. Synergy between these interactions ensures that rotation about strategic C(sp3)-C(sp3) bonds is subject to the stereoelectronic requirement for antiperiplanarity (180°). Logically, in a generic [X-CH2-CH2-Y] system (X, Y = electron withdrawing groups) conformations in which the two C(sp3)-X bonds are synclinal (i.e., gauche) are significantly populated. As such, simple donor-acceptor models are didactically and predictively powerful in achieving topological preorganization. In the case of the gauche effect, the low steric demand of fluorine ensures that the remaining substituents at the C(sp3) hybridized center are placed in a predictable area of molecular space: An exit vector analogy is thus appropriate. Furthermore, the intrinsic chemical stability of the C-F bond is advantageous, thus it may be considered as an inert conformational steering group: This juxtaposition of size and electronegativity renders fluorinated organic molecules unique among the organo-halogen series. Cognizant that the replacement of one fluorine atom in the difluoroethylene motif by another electron withdrawing group preserves the gauche conformation, it was reasoned that β-fluoroamines would be intriguing candidates for investigation. The burgeoning field of Lewis base catalysis, particularly via iminium ion activation, provided a timely platform from which to explore a postulated fluorine-iminium ion gauche effect. Necessarily, activation of this stereoelectronic effect requires a process of intramolecularization to generate the electron deficient neighboring group: Examples include protonation, condensation to generate iminium salts, or acylation. This process, akin to substrate binding, has obvious parallels with enzymatic catalysis, since it perturbs the conformational dynamics of the system [ synclinal-endo, antiperiplanar, synclinal-exo]. This Account details the development of conformationally predictable small molecules based on the [X-Cα-Cβ-F] motif through a logical process of molecular design and illustrates their synthetic value in enantioselective catalysis.
Collapse
Affiliation(s)
- Marialuisa Aufiero
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
21
|
Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JAS, Toste FD. Modern Approaches for Asymmetric Construction of Carbon-Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs. Chem Rev 2018; 118:3887-3964. [PMID: 29608052 DOI: 10.1021/acs.chemrev.7b00778] [Citation(s) in RCA: 448] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
New methods for preparation of tailor-made fluorine-containing compounds are in extremely high demand in nearly every sector of chemical industry. The asymmetric construction of quaternary C-F stereogenic centers is the most synthetically challenging and, consequently, the least developed area of research. As a reflection of this apparent methodological deficit, pharmaceutical drugs featuring C-F stereogenic centers constitute less than 1% of all fluorine-containing medicines currently on the market or in clinical development. Here we provide a comprehensive review of current research activity in this area, including such general directions as asymmetric electrophilic fluorination via organocatalytic and transition-metal catalyzed reactions, asymmetric elaboration of fluorine-containing substrates via alkylations, Mannich, Michael, and aldol additions, cross-coupling reactions, and biocatalytic approaches.
Collapse
Affiliation(s)
- Yi Zhu
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , Nanjing University , 210093 Nanjing , China
| | - Jianlin Han
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , Nanjing University , 210093 Nanjing , China
| | - Jiandong Wang
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Frontier Materials , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory , RIKEN, and RIKEN Center for Sustainable Resourse Science , 2-1 Hirosawa , Wako 351-0198 , Japan
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry , University of the Basque Country UPV/EHU , 20018 San Sebastian , Spain.,IKERBASQUE, Basque Foundation for Science , 48011 Bilbao , Spain
| | - Jaime A S Coelho
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - F Dean Toste
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
22
|
Xue Y, Wang Y, Cao Z, Zhou J, Chen ZX. Computational insight into the cooperative role of non-covalent interactions in the aza-Henry reaction catalyzed by quinine derivatives: mechanism and enantioselectivity. Org Biomol Chem 2018; 14:9588-9597. [PMID: 27714327 DOI: 10.1039/c6ob01611a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Density functional theory (DFT) calculations were performed to elucidate the mechanism and the origin of the high enantioselectivity of the aza-Henry reaction of isatin-derived N-Boc ketimine catalyzed by a quinine-derived catalyst (QN). The C-C bond formation step is found to be both the rate-determining and the stereo-controlled step. The results revealed the important role of the phenolic OH group in pre-organizing the complex of nitromethane and QN and stabilizing the in situ-generated nitronate and protonated QN. Three possible activation modes for C-C bond formation involving different coordination patterns of catalyst and substrates were studied, and it was found that both the ion pair-hydrogen bonding mode and the Brønsted acid-hydrogen bonding mode are viable, with the latter slightly preferred for the real catalytic system. The calculated enantiomeric excess (ee) favouring the S enantiomer is in good agreement with the experimental result. The high reactivity and enantioselectivity can be ascribed to the cooperative role of the multiple non-covalent interactions, including classical and non-classical H bonding as well as anionπ interactions. These results also highlight the importance of the inclusion of dispersion correction for achieving a reasonable agreement between theory and experiment for the current reaction.
Collapse
Affiliation(s)
- Yunsheng Xue
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China. and School of Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, P. R. China
| | - Yuhui Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Zhongyan Cao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Zhao-Xu Chen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|
23
|
Schörgenhumer J, Tiffner M, Waser M. Chiral phase-transfer catalysis in the asymmetric α-heterofunctionalization of prochiral nucleophiles. Beilstein J Org Chem 2017; 13:1753-1769. [PMID: 28904619 PMCID: PMC5588627 DOI: 10.3762/bjoc.13.170] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/10/2017] [Indexed: 01/10/2023] Open
Abstract
Chiral phase-transfer catalysis is one of the major catalytic principles in asymmetric catalysis. A broad variety of different catalysts and their use for challenging applications have been reported over the last decades. Besides asymmetric C–C bond forming reactions the use of chiral phase-transfer catalysts for enantioselective α-heterofunctionalization reactions of prochiral nucleophiles became one of the most important field of application of this catalytic principle. Based on several highly spectacular recent reports, we thus wish to discuss some of the most important achievements in this field within the context of this review.
Collapse
Affiliation(s)
- Johannes Schörgenhumer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Maximilian Tiffner
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| |
Collapse
|
24
|
Baranac-Stojanović M, Stojanović M, Aleksić J. Theoretical study of azido gauche effect and its origin. NEW J CHEM 2017. [DOI: 10.1039/c7nj00369b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The strength and origin of the azido gauche effect were studied by ab initio calculations and compared with the well-known fluorine gauche effect.
Collapse
Affiliation(s)
| | | | - Jovana Aleksić
- Center for Chemistry ICTM
- University of Belgrade
- 11000 Belgrade
- Serbia
| |
Collapse
|
25
|
Scheidt F, Selter P, Santschi N, Holland MC, Dudenko DV, Daniliuc C, Mück-Lichtenfeld C, Hansen MR, Gilmour R. Emulating Natural Product Conformation by Cooperative, Non-Covalent Fluorine Interactions. Chemistry 2016; 23:6142-6149. [PMID: 27788283 DOI: 10.1002/chem.201604632] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Indexed: 01/22/2023]
Abstract
Pervasive in Nature, the propane unit is an essential component of numerous bioactive molecules. These range from acyclic systems, such as the neurotransmitter γ-aminobutyric acid, through to the bicyclic nuclei of various chromanes and dihydrobenzofurans. In the latter case, cyclisation via cyclic ether formation ensures a highly pre-organised structure, whilst linear scaffolds display more dynamic conformational behaviour resulting from rotation about the two internal C(sp3 )-C(sp3 ) bonds. In this study, the replacement of -[CH2 ]- units by -[CHF]- centres is evaluated as a strategy to achieve acyclic conformational control by hindering these internal rotations. Reinforcing, non-covalent fluorine interactions are validated as powerful design features that result in programmable conformational behaviours: These are encoded by the relative configuration of each centre. By exploiting cooperative neighbouring stereoelectronic effects in a multi-vicinal fluoroalkane it is possible to emulate the overall conformation of the dihydrobenzofuran scaffold found in a variety of natural products with an acyclic mimic. This is described as a function of two bond vectors at the chain termini and validated by combined theoretical, crystallographic and spectroscopic analyses. In view of the favourable physicochemical properties associated with fluorine introduction, this approach to bioactive scaffold design may prove to be expansive.
Collapse
Affiliation(s)
- Felix Scheidt
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Germany
| | - Philipp Selter
- Institute for Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Germany
| | - Nico Santschi
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Germany
| | - Mareike C Holland
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Germany
| | - Dmytro V Dudenko
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Constantin Daniliuc
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Germany
| | - Christian Mück-Lichtenfeld
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Germany
| | - Michael Ryan Hansen
- Institute for Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Germany
| | - Ryan Gilmour
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Germany.,Excellence Cluster EXC 1003, Cells in Motion, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
26
|
Affiliation(s)
- Christian Thiehoff
- Institute for Organic Chemistry; Westfälische Wilhelms-Universität Münster; Corrensstr. 40 48149 Münster Germany
| | - Yannick P. Rey
- Institute for Organic Chemistry; Westfälische Wilhelms-Universität Münster; Corrensstr. 40 48149 Münster Germany
| | - Ryan Gilmour
- Institute for Organic Chemistry; Westfälische Wilhelms-Universität Münster; Corrensstr. 40 48149 Münster Germany
| |
Collapse
|
27
|
A comprehensive theoretical investigation of the transition states and a proposed kinetic model for the cinchoninium ion asymmetric phase-transfer catalyzed alkylation reaction. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Catalytic enantioselective addition of organoboron reagents to fluoroketones controlled by electrostatic interactions. Nat Chem 2016; 8:768-77. [PMID: 27442282 PMCID: PMC4957664 DOI: 10.1038/nchem.2523] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/30/2016] [Indexed: 12/25/2022]
Abstract
Organofluorine compounds are central to modern chemistry, and broadly applicable transformations that generate them efficiently and enantioselectively are in much demand. Here we introduce efficient catalytic methods for the addition of allyl and allenyl organoboron reagents to fluorine-substituted ketones. These reactions are facilitated by readily and inexpensively available catalysts and deliver versatile and otherwise difficult-to-access tertiary homoallylic alcohols in up to 98% yield and >99:1 enantiomeric ratio. Utility is highlighted by a concise enantioselective approach to the synthesis of the antiparasitic drug fluralaner (Bravecto, presently sold as the racemate). Different forms of ammonium-organofluorine interactions play a key role in the control of enantioselectivity. The greater understanding of various non-bonding interactions afforded by these studies should facilitate the future development of transformations that involve fluoroorganic entities.
Collapse
|
29
|
Vidhani DV, Krafft ME, Alabugin IV. Gold(I)-Catalyzed Allenyl Cope Rearrangement: Evolution from Asynchronicity to Trappable Intermediates Assisted by Stereoelectronic Switching. J Am Chem Soc 2016; 138:2769-79. [DOI: 10.1021/jacs.5b12920] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dinesh V. Vidhani
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Marie E. Krafft
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Igor V. Alabugin
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
30
|
|
31
|
|
32
|
Catalytic asymmetric conjugate addition of α-fluoro β-ketophosphonates to nitroalkenes in the presence of nickel complexes. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Aleksić J, Stojanović M, Baranac-Stojanović M. Origin of Fluorine/Sulfur Gauche Effect of β-Fluorinated Thiol, Sulfoxide, Sulfone, and Thionium Ion. J Org Chem 2015; 80:10197-207. [DOI: 10.1021/acs.joc.5b01779] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jovana Aleksić
- Center
for Chemistry ICTM, University of Belgrade, P.O. Box 473, 11000 Belgrade, Serbia
| | - Milovan Stojanović
- Center
for Chemistry ICTM, University of Belgrade, P.O. Box 473, 11000 Belgrade, Serbia
| | - Marija Baranac-Stojanović
- Faculty
of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 158, 11000 Belgrade, Serbia
| |
Collapse
|
34
|
Thiehoff C, Holland MC, Daniliuc C, Houk KN, Gilmour R. Can acyclic conformational control be achieved via a sulfur-fluorine gauche effect? Chem Sci 2015; 6:3565-3571. [PMID: 29511517 PMCID: PMC5659174 DOI: 10.1039/c5sc00871a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/16/2015] [Indexed: 01/04/2023] Open
Abstract
The gauche conformation of the 1,2-difluoroethane motif is known to involve stabilising hyperconjugative interactions between donor (bonding, σC-H) and acceptor (antibonding, σ*C-F) orbitals. This model rationalises the generic conformational preference of F-Cβ-Cα-X systems (φFCCX ≈ 60°), where X is an electron deficient substituent containing a Period 2 atom. Little is known about the corresponding Period 3 systems, such as sulfur and phosphorus, where multiple oxidation states are possible. Conformational analyses of β-fluorosulfides, -sulfoxides and -sulfones are disclosed here, thus extending the scope of the fluorine gauche effect to the 3rd Period (F-C-C-S(O) n ; φFCCS ≈ 60°). Synergy between experiment and computation has revealed that the gauche effect is only pronounced in structures bearing an electropositive vicinal sulfur atom (S+-O-, SO2).
Collapse
Affiliation(s)
- C Thiehoff
- Organisch Chemisches Institut, and Excellence Cluster EXC 1003 , Cells in Motion , Westfälische Wilhelms-Universität Münster , Corrensstrasse 40 , Münster , Germany .
| | - M C Holland
- Organisch Chemisches Institut, and Excellence Cluster EXC 1003 , Cells in Motion , Westfälische Wilhelms-Universität Münster , Corrensstrasse 40 , Münster , Germany .
- Department of Chemistry and Biochemistry , University of California Los Angeles , 607 Charles E. Young Drive East , Los Angeles 90095-1569 , USA .
| | - C Daniliuc
- Organisch Chemisches Institut, and Excellence Cluster EXC 1003 , Cells in Motion , Westfälische Wilhelms-Universität Münster , Corrensstrasse 40 , Münster , Germany .
| | - K N Houk
- Department of Chemistry and Biochemistry , University of California Los Angeles , 607 Charles E. Young Drive East , Los Angeles 90095-1569 , USA .
| | - R Gilmour
- Organisch Chemisches Institut, and Excellence Cluster EXC 1003 , Cells in Motion , Westfälische Wilhelms-Universität Münster , Corrensstrasse 40 , Münster , Germany .
- Excellence Cluster EXC 1003 , Cells in Motion , Westfälische Wilhelms-Universität Münster , Münster , Germany
| |
Collapse
|
35
|
Tatum NJ, Yufit DS, Cobb SL, Coxon CR. Synthesis, Ni(II) Schiff base complexation and structural analysis of fluorinated analogs of the ligand (S)-2-[N-(N′-benzylprolyl)amino]benzophenone (BPB). J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Champagne PA, Desroches J, Hamel JD, Vandamme M, Paquin JF. Monofluorination of Organic Compounds: 10 Years of Innovation. Chem Rev 2015; 115:9073-174. [PMID: 25854146 DOI: 10.1021/cr500706a] [Citation(s) in RCA: 699] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pier Alexandre Champagne
- Canada Research Chair in Organic and Medicinal Chemistry, CGCC, PROTEO, Département de Chimie, Université Laval , 1045 Avenue de la Médecine, Québec (QC), Canada G1V 0A6
| | - Justine Desroches
- Canada Research Chair in Organic and Medicinal Chemistry, CGCC, PROTEO, Département de Chimie, Université Laval , 1045 Avenue de la Médecine, Québec (QC), Canada G1V 0A6
| | - Jean-Denys Hamel
- Canada Research Chair in Organic and Medicinal Chemistry, CGCC, PROTEO, Département de Chimie, Université Laval , 1045 Avenue de la Médecine, Québec (QC), Canada G1V 0A6
| | - Mathilde Vandamme
- Canada Research Chair in Organic and Medicinal Chemistry, CGCC, PROTEO, Département de Chimie, Université Laval , 1045 Avenue de la Médecine, Québec (QC), Canada G1V 0A6
| | - Jean-François Paquin
- Canada Research Chair in Organic and Medicinal Chemistry, CGCC, PROTEO, Département de Chimie, Université Laval , 1045 Avenue de la Médecine, Québec (QC), Canada G1V 0A6
| |
Collapse
|
37
|
Holland MC, Gilmour R. Deconstructing Covalent Organocatalysis. Angew Chem Int Ed Engl 2015; 54:3862-71. [DOI: 10.1002/anie.201409004] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Indexed: 01/15/2023]
|
38
|
|
39
|
Lam YH, Houk KN. Origins of Stereoselectivity in Intramolecular Aldol Reactions Catalyzed by Cinchona Amines. J Am Chem Soc 2015; 137:2116-27. [DOI: 10.1021/ja513096x] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yu-hong Lam
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - K. N. Houk
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
40
|
Sugiishi T. Drastic Influence of Fluorine Substitution in the Organic Molecules on Regio- and Enantioselective Catalytic Reactions. J SYN ORG CHEM JPN 2015. [DOI: 10.5059/yukigoseikyokaishi.73.751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Sugiishi T, Matsugi M, Hamamoto H, Amii H. Enhancement of stereoselectivities in asymmetric synthesis using fluorinated solvents, auxiliaries, and catalysts. RSC Adv 2015. [DOI: 10.1039/c4ra11860j] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this review, the drastic changes using fluorinated solvents, additives, auxiliaries, and catalysts in catalytic asymmetric transformations are presented.
Collapse
Affiliation(s)
- Tsuyuka Sugiishi
- Division of Molecular Science
- Graduate School of Science and Technology
- Gunma University
- Kiryu
- Japan
| | | | | | - Hideki Amii
- Division of Molecular Science
- Graduate School of Science and Technology
- Gunma University
- Kiryu
- Japan
| |
Collapse
|
42
|
Holland MC, Metternich JB, Mück-Lichtenfeld C, Gilmour R. Cation–π interactions in iminium ion activation: correlating quadrupole moment & enantioselectivity. Chem Commun (Camb) 2015; 51:5322-5. [DOI: 10.1039/c4cc08520e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A cation–π interaction is operational in the addition of uncharged nucleophiles to iminium salts derived from MacMillan's 1st generation catalyst.
Collapse
Affiliation(s)
- M. C. Holland
- Organisch Chemisches Institut
- and Excellence Cluster EXC 1003
- Cells in Motion
- Westfälische Wilhelms-Universität Münster
- Münster
| | - J. B. Metternich
- Organisch Chemisches Institut
- and Excellence Cluster EXC 1003
- Cells in Motion
- Westfälische Wilhelms-Universität Münster
- Münster
| | - C. Mück-Lichtenfeld
- Organisch Chemisches Institut
- and Excellence Cluster EXC 1003
- Cells in Motion
- Westfälische Wilhelms-Universität Münster
- Münster
| | - R. Gilmour
- Organisch Chemisches Institut
- and Excellence Cluster EXC 1003
- Cells in Motion
- Westfälische Wilhelms-Universität Münster
- Münster
| |
Collapse
|
43
|
Baranac-Stojanović M, Aleksić J, Stojanović M. Energy decomposition analysis of gauche preference in 2-haloethanol, 2-haloethylamine (halogen = F, Cl), their protonated forms and anti preference in 1-chloro-2-fluoroethane. RSC Adv 2015. [DOI: 10.1039/c5ra01164g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Small, electronegative elements contribute more electrostatic and orbital stabilization to the anti → gauche isomerization, and greater steric repulsion. The first and the latter actually oppose our traditional view of conformational equilibria.
Collapse
Affiliation(s)
| | - Jovana Aleksić
- Center for Chemistry ICTM
- University of Belgrade
- 11000 Belgrade
- Serbia
| | | |
Collapse
|
44
|
Baranac-Stojanović M. Gauche preference in 1,2-difluoroethane originates from both orbital and electrostatic stabilization interactions. RSC Adv 2014. [DOI: 10.1039/c4ra07909d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
45
|
Abstract
Note from the Editor: Science, collegiality, travel without borders. Big smiles and warmth. Eternally youthful vigor. When I think of Tetsuo Nozoe, these are the images that immediately come to mind. When I think of the Nozoe Autograph Books, I also think of time. For 40 years, Nozoe carried with him his autograph books and collected his treasures which The Chemical Record is now publishing. Vladimir Prelog signed first when he was 47 and signed last when he was almost 80. Derek Barton signed first when he was 35 and signed last when he was almost 70. Time! I was fascinated by Eva Wille's recommendation that we publish an essay by Eva-Maria Tanzer, a young organic chemist with already a lifetime's experience in exploring chemical research in laboratories around the world. Tanzer brings to us a charming, even innocent perspective that embraces so much of Tetsuo Nozoe's ideals. We are privileged to include Tanzer's vision and her experiences in the collection of essays that accompany the Nozoe Autograph Books. Our contributors range in age and experiences, from the youthful Tanzer to the more mature (including myself!) as do the signatories in the autograph books. Tetsuo Nozoe would have beamed!--Jeffrey I. Seeman Guest Editor University of Richmond Richmond, Virginia 23173, USA E-mail: jseeman@richmond.edu.
Collapse
Affiliation(s)
- Eva-Maria Tanzer
- Department of Chemistry, Westfälische Wilhelms-Universität, Correnstr. 40, Münster, Germany.
| |
Collapse
|
46
|
Prakash GKS, Wang F, Rahm M, Zhang Z, Ni C, Shen J, Olah GA. The trifluoromethyl group as a conformational stabilizer and probe: conformational analysis of cinchona alkaloid scaffolds. J Am Chem Soc 2014; 136:10418-31. [PMID: 24979676 DOI: 10.1021/ja504376u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The introduction of the CF3 group on the C9 atom in quinidine can significantly increase the conformational interconversion barrier of the cinchona alkaloid scaffold. With this modification the conformational behavior of cinchona alkaloids in various solvents can be conveniently investigated via (19)F NMR spectroscopy. Based on the reliable conformational distribution information obtained, the accuracy of both theoretical (PCM) and empirical (Kamlet-Taft) solvation models has been assessed using linear free energy relationship methods. The empirical solvation model was found to provide accurate prediction of solvent effects, while PCM demonstrated a relatively low reliability in the present study. Utilizing similar empirical solvation models along with Karplus-type equations, the conformational behavior of quinidine and 9-epi-quinidine has also been investigated. A model SN2 reaction has been presented to reveal the important role of solvent-induced conformational behavior of cinchona alkaloids in their reactivity.
Collapse
Affiliation(s)
- G K Surya Prakash
- Loker Hydrocarbon Research Institute, Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | | | | | | | | | | | | |
Collapse
|
47
|
Lam YH, Houk KN. How cinchona alkaloid-derived primary amines control asymmetric electrophilic fluorination of cyclic ketones. J Am Chem Soc 2014; 136:9556-9. [PMID: 24967514 PMCID: PMC4105079 DOI: 10.1021/ja504714m] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Indexed: 12/31/2022]
Abstract
The origin of selectivity in the α-fluorination of cyclic ketones catalyzed by cinchona alkaloid-derived primary amines is determined with density functional calculations. The chair preference of a seven-membered ring at the fluorine transfer transition state is key in determining the sense and level of enantiofacial selectivity.
Collapse
Affiliation(s)
- Yu-hong Lam
- Department
of Chemistry and
Biochemistry, University of California,
Los Angeles, 607 Charles
E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - K. N. Houk
- Department
of Chemistry and
Biochemistry, University of California,
Los Angeles, 607 Charles
E. Young Drive East, Los Angeles, California 90095-1569, United States
| |
Collapse
|
48
|
Peng J, Du DM. Efficient enantioselective fluorination of β-keto esters/amides catalysed by diphenylamine-linked bis(thiazoline)–Cu(OTf)2complexes. RSC Adv 2014. [DOI: 10.1039/c3ra45438j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Asymmetric Phase-Transfer Catalysis as a Powerful Tool in the Synthesis of Biologically Active Chiral Complex Natural Products. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-63430-6.00014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
50
|
Rey YP, Gilmour R. Modulating NHC catalysis with fluorine. Beilstein J Org Chem 2013; 9:2812-20. [PMID: 24367445 PMCID: PMC3869272 DOI: 10.3762/bjoc.9.316] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/08/2013] [Indexed: 11/23/2022] Open
Abstract
Fluorination often confers a range of advantages in modulating the conformation and reactivity of small molecule organocatalysts. By strategically introducing fluorine substituents, as part of a β-fluoroamine motif, in a triazolium pre-catalyst, it was possible to modulate the behaviour of the corresponding N-heterocyclic carbene (NHC) with minimal steric alterations to the catalyst core. In this study, the effect of hydrogen to fluorine substitution was evaluated as part of a molecular editing study. X-ray crystallographic analyses of a number of derivatives are presented and the conformations are discussed. Upon deprotonation, the fluorinated triazolium salts generate catalytically active N-heterocyclic carbenes, which can then participate in the enantioselective Steglich rearrangement of oxazolyl carbonates to C-carboxyazlactones (e.r. up to 87.0:13.0).
Collapse
Affiliation(s)
- Yannick P Rey
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
- Department of Chemistry and Applied Biosciences, ETH Zürich, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
- Excellence Cluster EXC 1003, Cells in Motion, Münster, Germany
| |
Collapse
|